
1. Example (A). (‘Congruence modulo n’.)
Let n ∈ N. This will be kept fixed throughout the discussion below.
Definition.
Let x, y ∈ Z.
x is said to be congruent to y modulo n if x− y is divisible by n.
We write x ≡ y(mod n).
Lemma (A1).
The following statements hold:

(ρ): For any x ∈ Z, x ≡ x(mod n).

(σ): For any x, y ∈ Z, if x ≡ y(mod n) then y ≡ x(mod n).

(τ ): For any x, y, z ∈ Z, if x ≡ y(mod n) and y ≡ z(mod n) then x ≡ z(mod n).

From now on assume n ≥ 2. Define En = {(x, y) | x, y ∈ Z and x ≡ y(mod n)}.
By definition, for any x, y ∈ Z, (x, y) ∈ En iff x ≡ y(mod n).
How do the statements (ρ), (σ), (τ ) translate?
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Example (A). (‘Congruence modulo n’.)
Let n ∈ N. This will be kept fixed throughout the discussion below.
Definition.
Let x, y ∈ Z.
x is said to be congruent to y modulo n if x− y is divisible by n.
We write x ≡ y(mod n).
Lemma (A1).
The following statements hold:

(ρ): For any x ∈ Z, x ≡ x(mod n)︸ ︷︷ ︸
(x, x) ∈ En

.

(σ): For any x, y ∈ Z, if x ≡ y(mod n)︸ ︷︷ ︸
(x, y) ∈ En

then y ≡ x(mod n)︸ ︷︷ ︸
(y, x) ∈ En

.

(τ ): For any x, y, z ∈ Z, if x ≡ y(mod n)︸ ︷︷ ︸
(x, y) ∈ En

and y ≡ z(mod n)︸ ︷︷ ︸
(y, z) ∈ En

then x ≡ z(mod n)︸ ︷︷ ︸
(x, z) ∈ En

.

From now on assume n ≥ 2. Define En = {(x, y) | x, y ∈ Z and x ≡ y(mod n)}.
Define Rn = (Z,Z, En). According to Lemma (A1), Rn is an equivalence relation in Z.
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3. Example (C). (Congruence in Euclidean geometry.)
In school maths we learnt the notion of ‘congruence for geometric figures in the plane’, with
special emphasis on ‘congruent triangles’.
The typical ‘textbook definition’ for the notion of congruence might have read:
• Two plane figures are congruent exactly when they are of the same shape and of the same

size.

Then came results like ‘SAS’, ‘SSS’, ‘ASA’, ‘AAS’, which give various ‘sufficient conditions’
for pairs of triangles to be congruent. Probably the symbol ‘∼=’ was introduced in the
context. This symbol would obey certain rules:

(ρ): △ABC ∼= △ABC.
(σ): Suppose △ABC ∼= △DEF . Then △DEF ∼= △ABC.
(τ ): Suppose △ABC ∼= △DEF and △DEF ∼= △JKL. Then △ABC ∼= △JKL.

These rules suggest that some kind of equivalence relations is lurking behind the notion of
‘congruence for geometric figures in the plane’.
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Example (C). (Congruence in Euclidean geometry.)
Let n ∈ N\{0}. This will be kept fixed throughout the discussion below.
Definition.
Let φ : Rn −→ Rn be a bijective function.
φ is called an isometry in Rn if the statement (DP) holds:

(DP) For any x,y ∈ Rn, ∥φ(x)− φ(y)∥ = ∥x − y∥.

Remark. We can in fact drop the assumption on bijectivity in the definition of the
notion of isometry. This is due to the validity of the statement below:

Let ψ : Rn −→ Rn. Suppose that for any x,y ∈ Rn, ∥ψ(x)− ψ(y)∥ = ∥x − y∥. Then
there exist some (n × n)-orthogonal matrix A with real entries and some b ∈ Rn such
that for any x ∈ Rn, ψ(x) = Ax + b.

Such a function ψ is bijective.
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Example (C). (Congruence in Euclidean geometry.)
Let n ∈ N\{0}. This will be kept fixed throughout the discussion below.
Definition.
Let S, T be subsets of Rn.

(a) Let φ be an isometry in Rn.
The set S is said to be congruent to the set T under the isometry φ if T = φ(S).
We write S ∼=φ T .

(b) The set S is said to be congruent to the set T if there exists some isometry ψ in Rn

such that T = ψ(S).
When we do not emphasize which isometry ψ is, we agree to write S ∼= T .
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Example (C). (Congruence in Euclidean geometry.)
Lemma (C1).
The following statements hold:

(ρ): For any S ∈ P(Rn), S ∼= S.
(σ): For any S, T ∈ P(Rn), if S ∼= T then T ∼= S.
(τ ): For any S, T, U ∈ P(Rn), if S ∼= T and T ∼= U then S ∼= U .

We define the Euclidean congruence in Rn to be the relation in P(Rn) with graph

E∼=,n = {(S, T ) | S, T ∈P(Rn) and S ∼= T}.

The Euclidean congruence in Rn is an equivalence relation in the set P(Rn).

Through this equivalence relation, we disregard the distinction between two distinct subsets
in Rn exactly when they are of the same shape and the same size (so that the image set of
one subset under an appropriate isometry ‘fits perfectly’ onto the other subset).

Now ‘congruence of triangles in the plane’ in school geometry can be seen as the Euclidean
congruence in R2 ‘restricted’ to some subset of P(R2), namely, the set of all triangles in R2.

Remark. How about similarity in the Euclidean plane/space/...?
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4. Example (D). (Row-equivalence for matrices.)
Let p, q ∈ N\{0}. They will be kept fixed throughout the discussion below.
Definition.
Let C,D be (p× q)-matrices with real entries. We say C is row-equivalent to D if there
is a finite sequence of row operations starting from C and ending at D.
Theorem (D1).
The statements (ρ), (σ), (τ ) holds:

(ρ): Suppose A is a (p× q)-matrix with real entries. Then A is row-equivalent to A.
(σ): Let A,B be (p× q)-matrices with real entries. Suppose A is row-equivalent to B. Then

B is row-equivalent to A.
(τ ): Let A,B,C be (p× q)-matrices with real entries. Suppose A is row-equivalent to B, and

B is row-equivalent to C. Then A is row-equivalent to C.
Define E = {(A,B) | A,B ∈ Matp×q(R) and A is row-equivalent to B}, and
R = (Matp×q(R),Matp×q(R), E).

According to Theorem (D1), R is an equivalence relation in Matp×q(R).
Through this equivalence relation, we disregard the distinction between two distinct (p×q)-
matrices with real entries exactly when they are row-equivalent to each other.
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5. Example (E). (Sets of equal cardinality.)
Recall the definition for the notion of equipotency:
Let S, T be sets. We say that S is of cardinality equal to T , and write S∼T , if there
is a bijective function from S to T .
Let M be a set. This is kept fixed throughout the discussion below.

Theorem (E1).
The statements (ρ), (σ), (τ ) hold:

(ρ): Suppose A ∈ P(M). Then A∼A.
(σ): Let A,B ∈ P(M). Suppose A∼B. Then B∼A.
(τ ): Let A,B,C ∈ P(M). Suppose A∼B and B∼C. Then A∼C.

Define EP = {(A,B) | A,B ∈ P(M) and A∼B}, and RP = (P(M),P(M), EP ).
According to Theorem (E1), RP is an equivalence relation in P(M).

Through the equivalence relation RP , we disregard the distinction between two distinct
subsets of M exactly when they are of equal cardinality to each other.
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6. Example (F). (‘Contours’ and ‘level sets’.)
(a) Let f : R2 −→ R be the function defined by f (x, y) = x2 + y2 for any x, y ∈ R. This is

kept fixed throughout the discussion below.

The statements below hold:
(ρ): For any p, q ∈ R, f (p, q) = f (p, q).
(σ): For any p, q, s, t ∈ R, if f (p, q) = f (s, t) then f (s, t) = f (p, q).
(τ ): For any p, q, s, t, u, v ∈ R, if f (p, q) = f (s, t) and f (s, t) = f (u, v) then
f (p, q) = f (u, v).

DefineEf = {((p, q), (s, t)) | p, q, s, t ∈ R and f (p, q) = f (s, t)}, andRf = (R2,R2, Ef).

Rf is an equivalence relation in R2. It is (naturally) induced by the function f .

10



Example (F). (‘Contours’ and ‘level sets’.)
Through the equivalence relation Rf , we disregard the distinction between two distinct
points in R2 exactly when they belong to the same level set of f .
Each such (non-empty) level set of f is a circle with centre at the origin.
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Remark. The equivalence relation Rf can be understood through (⋆f), in terms of
solving equations:

(⋆f) For any p, q, s, t ∈ R, ((p, q), (s, t)) ∈ Ef iff there exists some c ∈ R such that
‘(x, y) = (p, q)’, ‘(x, y) = (s, t)’ are solutions of the equation x2+y2 = c with unknown
x, y in R.
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Example (F). (‘Contours’ and ‘level sets’.)
(b) Let g : R2 −→ R be the function defined by g(x, y) = x2 − y2 for any x, y ∈ R. This is

kept fixed throughout the discussion below.

The statements below hold:
(ρ): For any p, q ∈ R, g(p, q) = g(p, q).
(σ): For any p, q, s, t ∈ R, if g(p, q) = g(s, t) then g(s, t) = g(p, q).
(τ ): For any p, q, s, t, u, v ∈ R, if g(p, q) = g(s, t) and g(s, t) = g(u, v) then
g(p, q) = g(u, v).

Define Eg = {((p, q), (s, t)) | p, q, s, t ∈ R and g(p, q) = g(s, t)}, and Rg = (R2,R2, Eg).

Rg is an equivalence relation in R2. It is (naturally) induced by the function g.
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Example (F). (‘Contours’ and ‘level sets’.)
Through the equivalence relation Rg, we disregard the distinction between two distinct
points in R2 exactly when they belong to the same level set of g.
Each such (non-empty) level set of g is a hyperbola with centre at the origin and with
asymptotes ‘y = x’, ‘y = −x’.
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Remark. The equivalence relation Rg can be understood through (⋆g), in terms of
solving equations:

(⋆g) For any p, q, s, t ∈ R, ((p, q), (s, t)) ∈ Eg iff there exists some c ∈ R such that
‘(x, y) = (p, q)’, ‘(x, y) = (s, t)’ are solutions of the equation x2 − y2 = c with
unknown x, y in R.
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7. Example (G). (Solutions of systems of linear equations with a common
matrix of coefficients.)
Let A be an (m × n)-matrix with real entries. This matrix A is fixed throughout the
discussion.
The statements below hold:

(ρ): For any u ∈ Rn, Au = Au.
(σ): For any u,v ∈ Rn, if Au = Av then Av = Au.
(τ ): For any u,v,w ∈ Rn, if Au = Av and Av = Aw then Au = Aw.

Define the relation SA = (Rn,Rn, EA) by EA = {(u,v) | u,v ∈ Rn and Au = Av}.
SA is an equivalence relation in Rn.

The equivalence relation SA can be understood through (⋆A), in terms of solving equations:
(⋆A) (u,v) ∈ EA iff there exists some b ∈ Rm such that u,v belong to the solution set of the

equation Ax = b with unknown x in Rn.
Therefore, through the equivalence relation SA, we disregard the distinction between two
distinct vectors in Rn exactly when both are solutions to the equation with ‘coefficient
matrix’ A and with the same ‘vector of constant’.
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Example (G). (Solutions of systems of linear equations with a common
matrix of coefficients.)
Remark. SA can be seen to be the equivalence relation (naturally) induced by a function
from Rn to Rm.

Define the function LA : Rn −→ Rm by LA(x) = Ax for any x ∈ Rn.
LA is called the linear transformation defined by matrix multiplication from
the left by A.

By definition, for any u,v ∈ Rn, (u,v) ∈ EA iff LA(u) = LA(v).

Therefore, through the equivalence relation SA, we disregard the distinction between two
distinct vectors in Rn exactly when they belong to the same level set of LA.
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8. Example (H). (Primitives of continuous functions.)
Let I be an open interval in R. This is kept fixed throughout the discussion below.
Denote by C1(I) the set of all real-valued functions with domain I which is continuously
differentiable on I .
Differentiation defines an equivalence relation in C1(I), by virtue of the validity of Theorem
(H1).
Theorem (H1).
The statements (ρ), (σ), (τ ) hold:

(ρ): Suppose f ∈ C1(I). Then f ′ = f ′ as functions.
(σ): Let f, g ∈ C1(I). Suppose f ′ = g′ as functions. Then g′ = f ′ as functions.
(τ ): Let f, g, h ∈ C1(I). Suppose f ′ = g′ as functions and g′ = h′ as functions. Then
f ′ = h′ as functions.

Define ED = {(f, g) | f, g ∈ C1(I) and f ′ = g′}, and RD = (C1(I), C1(I), ED).
RD is an equivalence relation in C1(I).
Through the equivalence relation RD, we disregard the distinction between two distinct
continuously differentiable functions on I exactly when they are primitives of the same
continuous function on I .
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