1. ‘In-formal’ definition for the notion of function.

Recall the in-formal definition for the notion of function’:
Let D, R be sets.

h is a function from D to R exactly when h is a ‘rule of assignment’ from D to R, so that
each element x of D is being assigned to exactly one element, namely h(x), of R.

D is called the domain of h. R is called the range of h.

Below are the ‘coordinate plane diagram’ and the ‘blobs-and-arrow diagram’ for such a

mathematical object, say, the function h : D — R.
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Here D = {m,n,o0,p,q,s,t,...}, R={c,e,i,j,k,...},

h(m)=e,h(n) =1,h(o) =i, h(p) =k, h(q) =k, h(s) =k, h(t)=k,---, and
the graph of h is the set H = {(m,e), (n,1), (0,7), (p, k), (¢, k), (s, k), (t, k), - }.



2. Problem in the ‘in-formal’ definition for the notion of function, and the
solution.

« What do we mean by the phrase ‘rule of assignment’?
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« How to solve this problem?
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« But what kind of sets shall we be looking at? Why?
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3. Towards the formal definition for the notion of function.

We expect the graph of a function to be necessarily a subset of the cartesian product of the
domain and the range.

However, it cannot be just any subset:
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(a) ‘First forbiddance’:
Subsets of D x R like the one below will not be allowed to be the graph of any function:
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The reason for this forbiddance is that some element of D, namely o, is being assigned
to no element of R.
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Towards the formal definition for the notion of function.

We expect the graph of a function to be necessarily a subset of the cartesian product of the
domain and the range.

However, it cannot be just any subset:
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(a) ‘First forbiddance’: ...
(b) ‘Second forbiddance’:

Subsets of D x R like the one below will not be allowed to be the graph of any function:
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The reason for this forbiddance is that some element of D, namely o, is being assigned
to distinct elements of R, namely ¢ j
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4. Definition. (Relations.)
Let J, K, L be sets.

The ordered triple (J, K, L) is called a relation from J to K with graph L if L be a
subset of J x K.

The sets J, K are respectively called the set of departure and the set of destination
of the relation (J, K, L).

Definition. (Functions as relations.)
Let D, R be sets, and H be a subset of D X R.

The relation (D, R, H) is said to be a function from domain D to range R with
graph H if both of the statements (E), (U) below hold:

(E): For any x € D, there exists some y € R such that (x,y) € H.
(U): For any x € D, for any y,z € R, if (x,y) € H and (x,z) € H then y = z.

Where we refer to (D, R, H) as h, we may write y = h(x) (or xTy) exactly when
(x,y) € H.



Definition. (Functions as relations.)
Let D, R be sets, and H be a subset of D X R.

The relation (D, R, H) is said to be a function from domain D to range R with
graph H if both of the statements (E), (U) below hold:

(E): For any x € D, there exists some y € R such that (x,y) € H.
(U): For any x € D, forany y,z € R, if (x,y) € H and (x,z) € H theny = z.

Remarks.

(a) It is through the graph H of the function h that we understand how h assigns the elements of its domain
D to its range R.

Condition (F) and Condition (U) are formulated to describe what we want H to satisfy as a subset of
D x R.
(b) In plain words, When Conditions (F), (U) read:
(E): Each element of D is assigned by h to at least one element of R.
(U): Each element of D is assigned by h to at most one element of R.
So Condition (F), (U) respectively guarantee that the ‘first forbiddance” and the ‘second forbiddance” are
upheld.
(¢) The conjunction ‘(F) and (U)’ reads:
(EU): Each element of D is assigned by h to exactly one element of R.

Thus we have ‘recovered’ the ‘in-formal definition for the notion of function’.





