
MATH1050 Roots of polynomials with complex coefficients.

1. Here we take for granted everything that you have learnt about polynomials at schools, up to the point where
calculus is involved.
Every definition and every result will remain valid when we replace the word real by the word complex and
replace the symbol R by the symbol C in every definition/result concerned with polynomials.
In particular:—

• When f(z) is a polynomial with complex coefficients, we are allowed to ‘substitute’ a number, say, α, into
its indeterminate z to obtain the number f(α).

• When f(z), g(z) are polynomials, we will say that f(z) is divisible by g(z), exactly when there is a polynomial
k(z) such that f(z) = k(z)g(z).

• Remainder Theorem holds:
Suppose f(z) is a polynomial with complex coefficients, and α is a complex number. Then there exists some
unique polynomial g(x) with complex coefficients and some unique complex number r, namely r = f(α),
such that f(z) = (z − α)g(z) + r as polynomials.

• Factor Theorem holds:
Suppose f(z) is a polynomial with complex coefficients, and α is a complex number.
Then f(z) is divisible by z − α iff f(α) = 0.

2. Definition. (Roots of polynomials.)

Let f(z) be a polynomial with complex coefficients. Let α be a complex number.

We say α is a root of the polynomial f(z) in C if f(α) = 0.

3. Theorem (1).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

The polynomial zn − 1 with indeterminate z is completely factorized as

zn − 1 = (z − 1)(z − ωn)(z − ωn
2) · ... · (z − ωn

n−1).

4. Proof of Theorem (1). Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Write f(z) = zn − 1.

(a) By definition, each of 1, ωn, ωn
2, · · · , ωn

n−1 is a root of the polynomial f(z).

(b) In particular f(1) = 0.
Then by Factor Theorem, there exists some polynomial f1(z) such that f(z) = (z− 1)f1(z) as polynomials.

(c) We have 0 = f(ωn) = (ωn − 1)f1(ωn).
Since ωn ̸= 1, we have f1(ωn) = 0.
Then by Factor Theorem, there exists some polynomial f2(z) such that f1(z) = (z−ωn)f2(z) as polynomials.
So f(z) = (z − 1)(z − ωn)f2(z) as polynomials.

(d) We have 0 = f(ωn
2) = (ωn

2 − 1)(ωn
2 − ωn)f2(ω2).

Since ωn
2 is distinct from each of 1, ωn, we have f2(ωn

2) = 0.
Then by Factor Theorem, there exists some polynomial f3(z) such that f2(z) = (z − ωn

2)f3(z) as polyno-
mials.
Then f(z) = (z − 1)(z − ωn)(z − ωn

2)f3(z) as polynomials.

(e) Repeating this argument, we deduce that there exists some polynomial g(z) such that

f(z) = (z − 1)(z − ωn)(z − ωn
2) · ... · (z − ωn

n−1)g(z)

as polynomials.
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Note that (z − 1)(z − ωn)(z − ωn
2) · ... · (z − ωn

n−1) is a degree-n polynomial with leading coefficient 1.
f(z) is also a degree-n polynomial with leading coefficient 1.
Then g(z) is the constant polynomial 1.
Therefore f(z) = (z − 1)(z − ωn)(z − ωn

2) · ... · (z − ωn
n−1) as polynomials.

5. Theorem (2).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Let v be a non-zero complex number, and ζ be an n-th root of v.
The polynomial zn − v with indeterminate z is completely factorized as

zn − v = (z − ζ)(z − ζωn)(z − ζωn
2) · ... · (z − ζωn

n−1).

Proof of Theorem (2). Exercise. (Imitate the argument for Theorem ().)

Remark. Suppose φ is an argument for v. Take ζ0 = n
√

|v|(cos(φ
n
) + i sin(

φ

n
)). Then ζ0 is an n-th root of v.

Therefore
zn − v = (z − ζ0)(z − ζ0ωn)(z − ζ0ωn

2) · ... · (z − ζ0ωn
n−1)

as polynomials.

6. Theorem (3).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

Suppose s, t are complex numbers.
Then the equality

sn − tn = (s− t)(s− tωn)(s− tωn
2) · ... · (s− tωn

n−1)

holds.
Proof of Theorem (3). Exercise. (Apply Theorem (2).)

7. Using the same argument as in Theorem (1), we can prove Theorem (4).

Theorem (4).
Let f(z) be a non-constant polynomial with complex coefficients. Suppose the degree of f(z) is n.

Then f(z) has at most n distinct roots in C.

Polynomials with real coefficients are automatically polynomial with complex coefficients. Hence Theorem (4)
trivially gives rise to the corollary below:
Corollary to Theorem (4).
Let f(x) be a non-constant polynomial with real coefficients. Suppose the degree of f(x) is n.

Then f(x) has at most n distinct roots in C. In particular, u(x) has at most n distinct roots in R.

8. Proof of Theorem (4). Exercise in proof-by-contradiction argument. Fill in the missing steps in the outline
below:

Suppose f(z) is a non-constant polynomial with complex coefficients. Suppose the degree of f(z) is n. By
assumption n ≥ 1.
Suppose it were true that f(z) had more than n distinct roots in C. Suppose α0, α1, α2, · · · , αn were n+ 1

distinct roots of f(z) in C.
By assumption, f(αj) = 0 for each j = 0, 1, 2, · · · , n.
By applying the Factor Theorem, we deduce that there would exist some polynomial g(z) such that f(z) =

(z − α0)(z − α1)(z − α2) · ... · (z − αn)g(z) as polynomials. (Fill in the missing steps.)
Then f(z) would be of degree at least n+ 1. (Fill in the missing steps.)
However, by assumption the degree of f(z) is n. Contradiction arises.
Hence f(z) has at most n distinct roots in C in the first place.
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9. We know that every quadratic polynomial with complex coefficients has exactly two (not necessarily) distinct
roots in C, and completely factorize into a product of linear polynomials. (Refer to the handout Polar form.)
This result can be generalized to non-constant polynomials of arbitrary degrees.
Theorem (5). (Factorization of polynomials with complex coefficients into ‘linear factors’.)

Let f(z) be a non-constant polynomial with complex coefficients. Suppose the degree of f(z) is n. Suppose the
leading coefficient of f(z) is an.
Then there exist some n complex numbers α1, α2, · · · , αn, not necessarily distinct, such that

f(z) = an(z − α1)(z − α2) · ... · (z − αn) as polynomials.

These n numbers α1, α2, · · · , αn are all the roots of f(z) in C.

10. The result in Theorem (1) and Theorem (2) are manifestations of Theorem (5) in a special case.

The proof of Theorem (5) relies on a non-trivial result, called the Fundamental Theorem of Algebra, first
proved by Gauss. Here we take the validity of this result for granted. (Its proof is beyond the scope of this
course.)

Fundamental Theorem of Algebra.
Every non-constant polynomial with complex coefficients has a root in C.

11. Proof of Theorem (5). Exercise in mathematical induction. Fill in the steps in the roughwork below:

For each positive integer n, denote by P (n) the proposition below:

‘Suppose f(z) is a polynomial of degree n. Suppose the leading coefficient of f(z) is an. Then there
exist some n complex numbers α1, α2, · · · , αn, not necessarily distinct, such that

f(z) = an(z − α1)(z − α2) · ... · (z − αn)

as polynomials.’
P (1) is trivial true.
In the inductive argument, apply the Fundamental Theorem of Algebra and the Factor Theorem to an
arbitrary degree-(k + 1) polynomial so as ensure that it is factorized as a product of a linear polynomial
and a degree-k polynomial. Then apply the induction hypothesis on that degree-k polynomial.

12. Theorem (6). (Vieta’s Theorem, relating roots and coefficients of polynomials.)

Let f(z) be a polynomial with complex coefficients, of degree n ≥ 1, with its k-th coefficient being ak for each
k = 0, 1, 2 · · · , n.
Suppose α1, α2, · · · , αn are all the n roots of f(z) in C.
Then 

−an−1

an
=

n∑
k=1

αk,

an−2

an
=

∑
1≤j1<j2≤n

αj1αj2 ,

−an−3

an
=

∑
1≤j1<j2<j3≤n

αj1αj2αj3 ,

...
(−1)n · a0

an
= α1α2 · ... · αn

Proof of Theorem (6). This is a tedious exercise in ‘comparing coefficients’ for the two sides of the equality

a0 + a1z + a2z
2 + · · ·+ anz

n = an(z − α1)(z − α2) · ... · (z − αn) as polynomials,

Theorem (5) has been used in guaranteeing the availability of such an equality.
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13. Digression on Theorem (6).

Below are some special cases of Theorem (6), for ‘polynomials of low degrees’:

(a) Suppose n = 2. Then Theorem (6) gives −a1
a2

= α1 + α2, a0
a2

= α1α2.

These equalities relate the coefficients of the quadratic polynomial f(z) with its sum of roots and its product
of roots. You have learnt them in school maths.
Out of these equalities we can obtain a ‘formula’ for the individual αj ’2 in terms of the ak’s, through the
application of addition, subtraction, multiplication, division and extraction of square roots.
This is the ‘quadratic formula’ for the solutions of the equation a2z

2 + a1z + a0 = 0.
(b) Suppose n = 3. Then Theorem (6) gives

−a2
a3

= α1 + α2 + α3,
a1
a3

= α1α2 + α2α3 + α3α1, −a0
a3

= α1α2α3.

After some hard work, we can obtain a ‘formula’ for the individual αj ’s in terms of the a′ks, through the
application of addition, subtraction, multiplication, division, extraction of square roots and cubic roots (and
with a little help from the cubic roots of unity).
This formula is known as the ‘cubic formula’ for the solution of the cubic equation a3z

3+a2z
2+a1z+a0 = 0.

(c) Suppose n = 4. Then Theorem (6) gives

−a3
a4

= α1 + α2 + α3 + α4,

a2
a4

= α1α2 + α3α4 + α1α3 + α2α4 + α1α4 + α2α3,

−a1
a4

= α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4

a0
a4

= α1α2α3α4.

After some hard work, we can obtain a ‘formula’ for the individual αj ’s in terms of the a′ks, through tha
application of addition, subtraction, multiplication, division, extraction of square roots, cubic roots and
quartic roots (and with a little help from the cubic roots of unity and the quartic roots of unity).
This formula is known as the ‘quartic formula’ for the solution of the quartic equation a4z

4+ a3z
3+ a2z

2+
a1z + a0 = 0.

(d) How about the situation for ‘n ≥ 5’?
We can certainly write down n equalities relating the αj ’s and the ak’s. However, as discovered by Galois
and Abel in the early nineteenth century, we do not have ‘formulae’ for the individual αj ’s in terms of the
a′ks, through the application of addition, subtraction, multiplication, division, extraction of square roots,
cubic roots, ..., n-th roots alone.
Why this happens will be explained in the course Fields and Galois Theory.

14. From now on we focus on polynomials with real coefficients.
Theorem (7). (‘Pairing-up’ of complex roots for polynomials with real coefficients.)

Let f(z) be a polynomial with real coefficients. Let α be a complex number.

Suppose α is a root of f(z) in C.

Then α is also a root of f(z) in C.

15. Proof of Theorem (7).

Let f(z) be a polynomial with real coefficients, say, of degree n. For each k ∈ N, denote by ak the k-th coefficient
of f(z).

Let α be a complex number. Suppose α is a root of f(z) in C. Then 0 = f(α) = a0 + a1α+ a2α
2 + · · ·+ anα

n.
By assumption ak ∈ R for each k = 0, 1, 2, · · · , n.
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Then

0 = f(α) = a0 + a1α+ a2α2 + · · ·+ anαn

= a0 + a1α+ a2α2 + · · ·+ anαn

= a0 + a1α+ a2α
2 + · · ·+ anα

n = f(α).

Therefore α is also a root of f(z) in C.

16. Theorem (8).

Let f(z) be a polynomial with real coefficients. Let α be a complex number.

Suppose α is a non-real root of f(z) in C.

Then f(z) is divisible by the quadratic polynomial with real coefficients z2−2Re(α)z+ |α|2, which has a negative
discriminant.
Proof of Theorem (8). Exercise. (Apply the Factor Theorem to show that there exists some polynomial
g(z) such that f(z) = (z − α)(z − α)g(z) as polynomials. Et cetera.)

17. With the help of Theorem (8), we can deduce the result below.

Theorem (9). (Factorization of polynomials with real coefficients into linear or quadratic factors.)

Suppose f(z) is a non-constant polynomial with real coefficients.

Then f(z) factorizes as a product of linear polynomials with real coefficients and quadratic polynomials with
real coefficients of negative discriminant.
Proof of Theorem (9). Omitted. (The argument is tedious but not technically difficult.)

18. Illustrations on the content of Theorem (9).

(a) x3 − 1 = (x− 1)(x2 + x+ 1) as polynomials.

(b) x4 − 4 = (x−
√
2)(x+

√
2)(x2 + 2) as polynomials.

(c) x4 + 2x2 + 1 = (x2 + 1)2 as polynomials.

(d) x4 + 1 = (x2 −
√
2x+ 1)(x2 +

√
2x+ 1) as polynomials.

(e) x5 − 1 = (x− 1)(x2 −
√
5− 1

2
x+ 1)(x2 +

√
5 + 1

2
x+ 1) as polynomials.

(f) x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1) as polynomials.

Some of these examples are in fact special cases described by Theorem (10).

19. Theorem (10).

Let n be a positive integer. Write θn =
2π

n
. Define ωn = cos(θn) + i sin(θn).

(a) Suppose n is odd. Then the polynomial zn−1 is factorized as a product of polynomials with real coefficients
given by

zn − 1 = (z − 1)(z2 − 2z cos(θn) + 1)(z2 − 2z cos(2θn) + 1) · ... · (z2 − 2z cos(
n− 1

2
θn) + 1).

(b) Suppose n is even. Then the polynomial zn−1 is factorized as a product of polynomials with real coefficients
given by

zn − 1 = (z − 1)(z + 1)(z2 − 2z cos(θn) + 1)(z2 − 2z cos(2θn) + 1) · ... · (z2 − 2z cos(
n− 2

2
θn) + 1).
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