
MATH1050 Examples: Cauchy-Schwarz Inequality and Triangle Inequality.

1. Let a1, a2, · · · , an be positive real numbers. Prove the statements below:

(a) a1
2 + a2

2 + · · ·+ an
2 ≥ a1a2 + a2a3 + · · ·+ an−1an + ana1.

(b) a1
2 + a2

2 + · · ·+ an
2 = a1a2 + a2a3 + · · ·+ an−1an + ana1 iff a1 = a2 = · · · = an.

2. Prove the statement (♯):

(♯) Suppose p, q, r, s, t are positive real numbers.

Then p2 + q2 + r2 + s2 + t2

p2q + q2r + r2s+ s2t+ t2p
≥ p2q + q2r + r2s+ s2t+ t2p

p4 + q4 + r4 + s4 + t4
.

Moreover, equality holds iff p = q = r = s = t.

3. Let a1, a2, · · · , an be non-zero real numbers. Prove the statements below:

(a) n2 ≤

(
n∑

k=1

ak
2

)(
n∑

k=1

1

ak2

)
.

(b) n2 =

(
n∑

k=1

ak
2

)(
n∑

k=1

1

ak2

)
iff |a1| = |a2| = · · · = |an|.

Remark. How about an argument using the Arithmetico-geometrical Inequality?

4. Prove the statement (♯):

(♯) Let α ∈ R. Suppose 0 < α < 1.

Then
(

n∑
k=0

αk · 4

√(
n

k

) )4

<
(n+ 1)(1 + α)n

(1− α3/4)2
for any positive integer n.

5. Prove the statement (♯):

(♯) Suppose n is a positive integer. Then

1

1 · 2n
+

1

2(2n− 1)
+

1

3(2n− 2)
+ · · ·+ 1

k(2n− k + 1)
+ · · ·+ 1

n(n+ 1)
<

1

2

2n∑
j=1

1

j2
.

6. Prove the statements below:

(a) Suppose a1, a2, · · · , an, b1, b2, · · · , bn, c1, c2, · · · , cn, d1, d2, · · · , dn are real numbers. Then

 n∑
j=1

ajbjcjdj

4

≤

 n∑
j=1

aj
4

 n∑
j=1

bj
4

 n∑
j=1

cj
4

 n∑
j=1

dj
4

.

(b) Suppose r1, r2, · · · , rn, s1, s2, · · · , sn, t1, t2, · · · , tn are non-negative real numbers. Then

 n∑
j=1

rjsjtj

3

≤

 n∑
j=1

rj
3

 n∑
j=1

sj
3

 n∑
j=1

tj
3

.

Remark. Can you generalize the results described above?

7. (a) Applying the Cauchy-Schwarz Inequality, or otherwise, prove the statement below (♯):

(♯) Suppose a1, a2, · · · , an are positive real numbers. and m is a non-negative integer.

Then

 n∑
j=1

aj
m+1

2

≤

 n∑
j=1

aj
m

 n∑
j=1

aj
m+2

.
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(b) Applying the statement (♯), or otherwise, prove the statement (♯♯):

(♯♯) Let b1, b2, · · · , bn be positive real numbers. Suppose
n∑

j=1

bj = 1.

Then
n∑

j=1

bj
p ≤ n

n∑
j=1

bj
p+1 for each non-negative integer p.

(c) Applying the statement (♯) and/or the statement (♯♯), prove the statement (♯♯♯):

(♯♯♯) Suppose c1, c2, · · · , cn are positive real numbers. Then

 n∑
j=1

cj

 n∑
j=1

cj
r

 ≤ n

n∑
j=1

cj
r+1 for each

non-negative integer r.

8. In this question, you may need to apply the Cauchy-Schwarz Inequality more than once.

(a) Prove the statement (♯):

(♯) Suppose a1, a2, · · · , an are real numbers. Then 1

n

(
n∑

k=1

ak

)2

≤
n∑

k=1

ak
2.

(b) Prove the statement (♯♯):
(♯♯) Let b1, b2, · · · , bn, c1, c2, · · · , cn be real numbers. Further suppose that b1, b2, · · · , bn are positive.

Then
(

n∑
k=1

bkck

)2

≤

(
n∑

k=1

bk

) n∑
j=1

bjcj
2

.

(c) Applying the results above, or otherwise, prove the statement (♯♯♯):
(♯♯♯) Let r ≥ 2. Suppose x1, x2, · · · , xn are real numbers which are not all zero.

Then
(

n∑
k=1

xk

rk

)2

<

n∑
k=1

xk
2

rk
.

9. (a) Let a1, a2, · · · , an, b1, b2, · · · , bn be non-zero real numbers.
i. Prove the statement (♯):

(♯) Let p, q be real numbers. Suppose p ≤ bk
ak

≤ q for each k = 1, 2, · · · , n. Then

(p+ q)

n∑
k=1

akbk ≥
n∑

k=1

bk
2 + pq

n∑
k=1

ak
2.

ii. Hence, or otherwise, prove the statement (♯♯):
(♯♯) Let m,M be real numbers. Suppose 0 < m ≤ ak ≤ M and 0 < m ≤ bk ≤ M for each

k = 1, 2, · · · , n. Then (
n∑

k=1

ak
2

)(
n∑

k=1

bk
2

)
≤ 1

4

(
M

m
+

m

M

)2
(

n∑
k=1

akbk

)2

.

(b) Applying the results in the previous part, together with the Cauchy-Schwarz Inequality, or otherwise,
prove the statement (♮):
(♮) For each positive integer n,

(
n+

1

9

)2

<

[
n∑

k=1

(
1 +

1

3k

)2
][

n∑
k=1

(
1− 1

3k+1

)2
]
<

169

144

(
n+

1

3

)2

.

10. Let p ∈ (1,+∞) ∩ Q. Define q =

(
1− 1

p

)−1

. (Note that q ∈ (1,+∞) ∩ Q and 1

p
+

1

q
= 1.)

Prove the results below:
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(a) Let u, v be positive real numbers. The inequality uv ≤ up

p
+

vq

q
holds.

(b) Let a, b, c, d be positive real numbers. The inequality ac+ bd ≤ (ap + bp)
1
p (cq + dq)

1
q holds.

(c) Let w, x, y, z be positive real numbers. The inequality [(w + y)p + (x+ z)p]
1
p ≤ (wp + xp)

1
p + (yp + zp)

1
p

holds.

Remark. Apply Bernoulli’s Inequality in part (a). In part (b), apply the result of part (a). In part (c),
apply the result of part (b). The results in part (b), part (c) are ‘baby versions’ of Hölder’s Inequality,
Minkowski’s Inequality respectively. They are respectively generalizations of the Cauchy-Schwarz Inequality
and the Triangle Inequality.

11. (a) Applying the Cauchy-Schwarz Inequality for real vectors, or otherwise, prove the result (†):

(†) Suppose ζ1, ζ2, · · · , ζn, η1, η2, · · · , ηn are complex numbers.

Then

∣∣∣∣∣∣
n∑

j=1

ζjηj

∣∣∣∣∣∣ ≤
 n∑

j=1

|ζj |2
 1

2
 n∑

j=1

|ηj |2
 1

2

.

(b) Applying the statement (†), or otherwise, prove the statement (‡):

(‡) Suppose κ1, κ2, · · · , κn, λ1, λ2, · · · , λn are complex numbers.

Then

 n∑
j=1

|κj + λj |2
 1

2

≤

 n∑
j=1

|κj |2
 1

2

+

 n∑
j=1

|λj |2
 1

2

.

Remark. The statements in part (a), part (b) are respectively the ‘inequality parts’ of the Cauchy-Schwarz
Inequality for complex vectors and the Triangle Inequality for complex vectors, which are generalizations of the
corresponding Cauchy-Schwarz Inequality for real vectors and the Triangle Inequality for real vectors. There
are also corresponding necessary and sufficient conditions for equality to hold.

12. Let α ∈ (0, π). Applying the Cauchy-Schwarz Inequality for definite integrals, or otherwise, prove that

(∫ π

α

sin(u)

u
du

)2

≤ 1

πα
(π − α)

(
π − α

2
+

1

4
sin(2α)

)
.

13. Let a, b ∈ R, with a < b, and φ : [a, b] −→ R be a function. Suppose φ is continuous on [a, b], and φ(t) ≥ 0 for
any t ∈ [a, b].
Applying the Cauchy-Schwarz Inequality for definite integrals, or otherwise, prove that(∫ b

a

φ(u) cos(ku)du

)2

+

(∫ b

a

φ(u) sin(ku)du

)2

≤

(∫ b

a

φ(u)du

)2

for any k ∈ R.

14. Let a, b ∈ R, with a < b, and f be a real-valued function of one real variable which is twice-continuously
differentiable on an open interval which contains the closed and bounded interval [a, b] entirely. Suppose
f(a) = f(b) = 0.

(a) Verify that
∫ b

a

f(x)f ′′(x)dx = −
∫ b

a

(f ′(x))2dx.

(b) Here we suppose that
∫ b

a

(f(x))2dx = 1.

i. Prove that
∫ b

a

xf(x)f ′(x)dx = −1

2
.

ii. By applying the Cauchy-Schwarz Inequality, or otherwise, deduce that(∫ b

a

(f ′(x))2dx

)(∫ b

a

u2(f(u))2du

)
≥ 1

4
.
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(c) Here we no longer suppose that
∫ b

a

(f(x))2dx = 1. We only suppose that f is not constant on [a, b].

Take for granted that
∫ b

a

|f(x)|2dx > 0.

i. Prove that
(∫ b

a

(f ′(x))2dx

)(∫ b

a

u2(f(u))2du

)
≥ 1

4

(∫ b

a

(f(x))2dx

)2

.

ii. Hence, or otherwise, prove that
(∫ b

a

(f ′′(x))2dx

)(∫ b

a

u2(f(u))2du

)2

≥ 1

16

(∫ b

a

(f(x))2dx

)3

.

Hint. At some stage of the argument, you may need the Cauchy-Schwarz Inequality.

15. Take for granted the validity of the result (†) below about definite integrals:

(†) Let a, b be real numbers, with a < b, and let g, h be real-valued functions of one real variable whose domains
contain the interval [a, b]. Suppose g, h are continuous on [a, b]. Further suppose that g(x) ≤ h(x) for any

x ∈ [a, b]. Then
∫ b

a

g(t)dt ≤
∫ b

a

h(t)dt.

Let f : R −→ R be a function. Suppose f is continuously differentiable function on R. Suppose f(0) = 0 and
f(1) = 0.

(a) Prove that f(x) =

∫ x

0

f ′(t)dt = −
∫ 1

x

f ′(t)dt for any x ∈ [0, 1].

(b) By applying the Cauchy-Schwarz Inequality, or otherwise, prove the statements below:

i. (f(x))2 ≤ x

∫ 1
2

0

(f ′(t))2dt for any x ∈
[
0,

1

2

]
.

ii. (f(x))2 ≤ (1− x)

∫ 1

1
2

(f ′(t))2dt for any x ∈
[
1

2
, 1

]
.

(c) Hence, or otherwise, prove that
∫ 1

0

(f(x))2dx ≤ 1

8

∫ 1

0

(f ′(x))2dx.
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