MATH1050 Examples: Miscellanies on inequalities.

- 1. Let n be a positive integer.
 - (a) Prove that $k(n-k+1) \ge n$ for each integer k amongst $1, 2, \dots, n$.
 - (b) Hence, or otherwise, prove that $(n!)^2 \ge n^n$.
- 2. (a) Let $n \in \mathbb{N} \setminus \{0\}$. Prove that $\frac{2n}{2n+1} < \frac{2n+1}{2n+2}$.

Remark. There is no need for mathematical induction.

- (b) Prove that $\prod_{k=1}^{5000} \frac{2k-1}{2k} < \frac{1}{100}$
- $3. \quad \text{(a) Prove that } \frac{2m-1}{2m} \leq \sqrt{\frac{3m-2}{3m+1}} \text{ for any } m \in \mathbb{N} \backslash \{0\}.$

Remark. There is no need to use mathematical induction.

(b) Hence, or otherwise, prove that

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \le \frac{1}{\sqrt{3n+1}} \quad \text{for any } n \in \mathbb{N} \setminus \{0\}$$

- 4. In this question you may take for granted the validity of the statement (\star) :
 - (*) Let u, v be positive real numbers. Suppose u > v. Then $\sqrt[3]{u} > \sqrt[3]{v}$.
 - (a) Prove the statement (\sharp):
 - (\sharp) Let x be a real number. Suppose x > 0. Then

$$\sqrt[3]{x+2} - \sqrt[3]{x+1} < \frac{1}{3 \cdot \sqrt[3]{(x+1)^2}} < \sqrt[3]{x+1} - \sqrt[3]{x}.$$

(b) Hence prove that $587 < \sum_{k=10}^{1000000} \frac{2}{\sqrt[3]{k^2}} < 588$.

Remark. You may need the inequality $2.16^3 > 10$.

- 5. Prove the statement below (\sharp) :
 - (\sharp) Let a,b be real numbers. Suppose ab > 1. Then $a^2 + 4b^2 > 4$.
- 6. Here we take for granted the validity of the statement (\sharp) :
 - (#) Suppose $x, y \in \mathbb{R}$. Then $x^2 + y^2 \ge 2xy$. Moreover, equality holds iff x = y.
 - (a) Prove the statement (b) below:
 - (b) Suppose $u, v, w \in \mathbb{R}$. Then $u^2 + v^2 + w^2 \ge uv + vw + wu$. Moreover equality holds iff u = v = w.
 - (b) By applying the result described by (\pmu), or otherwise, prove the statements below:
 - i. Suppose r, s, t be positive real numbers. Then $r + s + t \ge \sqrt{rs} + \sqrt{st} + \sqrt{tr}$.
 - ii. Suppose $x, y, z \in \mathbb{R}$. Then $x^2y^2 + y^2z^2 + z^2x^2 \ge xyz(x+y+z)$.
 - iii. Suppose a, b, c, d are positive real numbers. Then $(a+b)(a+c)(a+d)(b+c)(b+d)(c+d) \ge 64(abcd)^{3/2}$.
 - iv. Let p, q, r, s, t be positive real numbers. Suppose pqrst = 1. Then $(1+p)(1+q)(1+r)(1+s)(1+t) \ge 32$.
- 7. (a) Prove the statement below:
 - (#) Suppose x, y are positive real numbers. Then $\frac{x}{y} + \frac{y}{x} \ge 2$. Moreover, equality holds iff x = y.

1

(b) By applying the result described by (\pmu), or otherwise, prove the statements below:

- i. Suppose a > 1 and b > 1. Then $\log_a(b) + \log_b(a) \ge 2$. Equality holds iff a = b.
- ii. Suppose $u \in \mathbb{R}$. Then $\frac{u^2+2}{\sqrt{u^2+1}} \geq 2$. Equality holds iff u=0.
- iii. Suppose $v \in \mathbb{R}$. Then $\frac{v^2}{1+v^4} \leq \frac{1}{2}$. Equality holds iff (v=1 or v=-1).
- 8. We introduce this definition below:

Let a, b, c be three positive real numbers (not necessarily distinct from each other). The numbers a, b, c are said to **constitute the three sides of a triangle** if the three inequalities a + b > c, b + c > a, c + a > b hold simultaneously.

(a) Let a, b be positive real numbers. Suppose $a \ge b$. Prove that there exists some positive real number c such that a, b, c constitute the three sides of a triangle.

Remark. For the geometric interpretation, see Proposition 22, Book I of *Euclid's Elements*.

- (b) Let a, b, c be positive real numbers. Suppose a, b, c constitute the three sides of a triangle. Prove that $\sqrt{a}, \sqrt{b}, \sqrt{c}$ constitute the three sides of a triangle.
- (c) Let a, b, c be positive real numbers. Suppose a, b, c constitute the three sides of a triangle. Prove the statements below:
 - i. $a^2 + b^2 + c^2 < 2(ab + bc + ca)$.
 - ii. $3(ab+bc+ca) \le (a+b+c)^2 < 4(ab+bc+ca)$.
 - iii. (a+b+c)(a+b-c) < 4ab.
- 9. In this question, you may assume without proof the validity of the statement (‡):
 - (\sharp) For any real numbers μ, ν , if $0 < \mu < \nu < \frac{\pi}{2}$ then $0 < \sin(\mu) < \sin(\nu) < 1$.

Let the angles at vertices A, B, C in $\triangle ABC$ be α, β, γ respectively. Suppose each angle in $\triangle ABC$ is an acute angle. Prove the statements below:

- (a) $\cos(\frac{\gamma}{2}) > \sin(\frac{\gamma}{2})$.
- (b) $\sin(\alpha) + \sin(\beta) > \cos(\alpha) + \cos(\beta)$.
- (c) $\sin(\alpha) + \sin(\beta) + \sin(\gamma) > \cos(\alpha) + \cos(\beta) + \cos(\gamma)$.
- 10. (a) Prove the statement (#). (It may be easier to use the method of proof-by-contradiction.)
 - (#) Let a, b be real numbers. Suppose $|a| \le 1$ and $|b| \le 1$. Then $\sqrt{1 a^2} + \sqrt{1 b^2} \le 2\sqrt{1 \frac{(a+b)^2}{4}}$.
 - (b) Applying the statement (#), or otherwise, prove the statement (##).
 - (##) Let a, b, c, d be real numbers. Suppose $|a| \le 1$ and $|b| \le 1$ and $|c| \le 1$ and $|d| \le 1$.

Then
$$\sqrt{1-a^2} + \sqrt{1-b^2} + \sqrt{1-c^2} + \sqrt{1-d^2} \le 4\sqrt{1-\frac{(a+b+c+d)^2}{16}}$$
.

- (c) Applying the statement (##), or otherwise, prove the statement (#).
 - (a) Let a, b, c be real numbers. Suppose $|a| \le 1$ and $|b| \le 1$ and $|c| \le 1$.

Then
$$\sqrt{1-a^2} + \sqrt{1-b^2} + \sqrt{1-c^2} \le 3\sqrt{1-\frac{(a+b+c)^2}{9}}$$
.

Remark. Can you generalize the results described above?

- 11. Prove the statement (#). (It may be easier to use the method of proof-by-contradiction.)
 - $(\sharp) \ \ \text{Let a,b be real numbers. Suppose $ab \neq 0$. Then } \left| \frac{a + \sqrt{a^2 + 2b^2}}{2b} \right| < 1 \ \text{or} \left| \frac{a \sqrt{a^2 + 2b^2}}{2b} \right| < 1 \ .$

2

12. Prove the statement (\sharp) .

(#) Let a, n be positive integers. Suppose $n \ge a$. Then $(2a-1)^n + (2a)^n < (2a+1)^n$.

Remark. There is no need to apply mathematical induction.

- 13. Prove the statement (\sharp) :
 - (\sharp) Suppose z is a non-zero complex number, and n is an integer greater than 1.

Then
$$\left(\frac{1-|z|^n+|z|^{2n}}{1+|z|^{2n}}\right)^{n^2} > 1-\frac{n^2|z|^n}{1+|z|^{2n}}.$$

Remark. There is no need to apply mathematical induction. Bernoulli's Inequality may be relevant, however.

- 14. Let α be a complex number. Suppose $0 < |\alpha| < 1$. Define the number β by $\beta = \frac{1}{|\alpha|} 1$. Note that $\beta > 0$. Let n be a positive integer.
 - (a) Suppose $n \ge 3$. By applying the Binomial Theorem, or otherwise, prove that $(1+\beta)^n \ge \frac{n(n-1)}{2}\beta^2$. Hence deduce that $n|\alpha|^n \le \frac{4}{n\beta^2}$.
 - (b) Suppose $n \ge 4$. By applying the Binomial Theorem prove that $(1+\beta)^n \ge \frac{n(n-1)(n-2)}{6}\beta^3$. Hence deduce that $n^2|\alpha|^n \le \frac{36}{n\beta^3}$.
 - (c) Let k be a non-negative integer. Suppose $n \ge k+2$. By applying the Binomial Theorem, or otherwise, prove that $n^k |\alpha|^n \le \frac{[(k+1)!]^2}{n\beta^{k+1}}$.

Remark. The inequalities described here constitute the key step in the argument for the statement ' $\lim_{n\to\infty} n^k \alpha^n = 0$ '.

- 15. For each $n \in \mathbb{N} \setminus \{0, 1\}$, define $a_n = \sqrt[n]{n} 1$.
 - (a) Prove that $a_n \geq 0$ for any $n \in \mathbb{N} \setminus \{0, 1\}$.
 - (b) By applying the Binomial Theorem to the expression $(1 + a_n)^n$, prove that $a_n \leq \sqrt{\frac{2}{n-1}}$ for any $n \in \mathbb{N} \setminus \{0,1\}$.

Remark. The inequalities described here constitute the key step in the argument for the statement ' $\lim_{n\to\infty} \sqrt[n]{n} = 1$ '.

- 16. Let $\alpha > 1$. For any $n \in \mathbb{N} \setminus \{0\}$, define $a_n = \alpha^{\frac{1}{n}} 1$.
 - (a) Prove that $a_n > 0$ for any $n \in \mathbb{N} \setminus \{0\}$.
 - (b) By applying Bernoulli's Inequality, or otherwise, prove that $a_n \leq \frac{\alpha}{n}$ for any $n \in \mathbb{N} \setminus \{0\}$.

Remark. The inequalities described here constitute the key step in the argument for the statement ' $\lim_{n\to\infty} \alpha^{1/n} = 1$ '.

- 17. Prove the statement (\sharp):
 - (#) Let m, n be integers greater than 1. Let ζ be a complex number. Suppose $0 < |\zeta| < \frac{1}{2}$. Then

3

$$\frac{1 - |\zeta| - |\zeta|^m}{1 - |\zeta|} < |(1 + \zeta^m)(1 + \zeta^{m+1}) \cdot \dots \cdot (1 + \zeta^{m+n})| < \frac{1 - |\zeta|}{1 - |\zeta| - |\zeta|^m}.$$

Remark. You may find Weierstrass' Product Inequality useful.