MATH1050 Cauchy-Schwarz Inequality and Triangle Inequality for square-summable sequences

0. With the help of the Bounded-Monotone Theorem and a basic result (Theorem (A)) on absolutely convergent infinite
series (which you will learn in your analysis course), both stated below, we can ‘extend’ the Cauchy-Schwarz Inequality
and Triangle Inequality to analogous results for ‘square-summable infinite sequences in IR” (Theorem (B), Theorem (C)
respectively).

1. Definition.

Let {an}2 be an infinite sequence of real numbers.
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n
The infinite sequence Z a; is called the infinite series associated to the infinite sequence {an 52 ,.
Jj=0 n=0
n > oo
For convenience, we usually denote the infinite sequence Z a; by Z aj, or by Z aj.

Jj=0 Jj=0

n=0
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For each k € N, we refer to ay, as the k-th term of the infinite series Z aj;.
§=0

o

n oo
When the infinite sequence Z a; converges in IR, we may denote its limit by Z G-
j=0 _— n=0
o0
Warning. It may be confusing for beginners that the same symbols ‘Z a;’ stand for two different objects: a specific
j=0
oo
infinite sequence which we call an infinite series, (in which the presence of the symbols ‘Z’, ‘00’ have nothing to do
j=0

with convergence,) and the limit of that infinite sequence. But this is standard practice in any work on infinite series.

2. Definition.

Let {a,}5% be an infinite sequence of real numbers.

o0 o0
(a) The infinite series Z a; is said to be absolutely convergent if the infinite series Z laj| is convergent.
§=0 =0
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(b) The infinite sequence {a,}52 is said to be square-summable if the infinite series Z a;* is convergent.
7=0

3. Bounded-Monotone Theorem for increasing infinite sequences which are bounded above.
Let {u,}52, be an infinite sequence of real numbers. Suppose {u, }22 is increasing and is bounded above in R.
Then {u,}22, converges in IR, and its limit is the supremum of the set {z € R : x = u,, for some n € N}.

Furthermore, for any upper bound § of the infinite sequence {u,}52, the inequality lim u, < § holds.
n—oo
Also, for any k € N, the inequality uy < lim wu,, holds.
n—oo

4. Theorem (A).

Let {v,}22, be an infinite sequence of real numbers.

o0 (o)
Suppose the infinite series Z v; is absolutely convergent. Then the infinite series Z v; is convergent. Moreover the
j=0 §=0
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< Z |vn| holds. Equality holds iff the terms of {v, }52, are all non-negative or all non-positive.
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inequality

Remark. This result is often expressed as: ‘every absolutely convergent infinite series is convergent’.

5. Proof of Theorem (A).

Let {v,}22, be an infinite sequence of real numbers.



o0
Suppose the infinite series E v; is absolutely convergent.
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Note that, by definition, for any n € N, we have |v,| = v} +v,,, v, = v} — v, , and |v,| > v,F >0, |v,| > v, >0, .

For any n € N, we define v} = and v

o0 o0
[We study the infinite series Z v;f, Z v; . What are they really?
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oo
The infinite series Z v;.r is the infinite series with all terms being non-negative, obtained from the infinite series
j=0

o0
Z v; by replacing all its negative terms by 0.

j=0
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The infinite series Z v; Is the infinite series with all terms being non-negative, obtained from the infinite series
j=0

o0

Z v; by first replacing all its positive terms by 0 and then multiplying every term by —1.
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So heuristically we expect Zvj = Zv;r - Zvj_ “and ° Z lv;| = Zvj' + ZUJ_ . However, there is the
=0 =0 =0 =0 =0 =0

question of convergence.]
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We verify that the infinite series Z vj+ is convergent:
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e For each k € N, Z v;-r - Z v;' = Ulj—i-l > 0. Then the infinite sequence Z v;r is increasing.
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e For each k € N, Zv;' < Z lvj] < Z |vp]. (Why does the second inequality hold?)
j=0 j=0 n=0
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Then the infinite sequence 'U;L is bounded above in R, by Z |vn].
7=0 n=0 n=0
[e.e]
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e Hence, by the Bounded-Monotone Theorem, the infinite sequence Z v;’ is convergent in IR.
J=0 n=0
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Similarly we verify that the infinite series Z v; Is increasing and bounded above, and therefore convergent.
j=0
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We observe that the limits Z v;r, Z v; are both non-negative because each term in the respective infinite series is
j=0 j=0

non-negative.

ivn < i |vy, | holds:
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Now we verify that the infinite series Z v; is convergent , and the inequality

j=0 n=0 n=0
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e For any k € N, we have vi=) (vj —v;)= E v; E vy
Jj=0 Jj=0 Jj=0 Jj=0
oo o0 o0
Then, since both infinite series E v;-r , E v are convergent, the infinite series E v; and is convergent.
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Moreover, the equality Z vy = Z vt — Z v,, holds.
n=0 n=0
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e For any k£ € N, we have Z|vj| = Z(vj’ +v;) = Zvj’ +Zvj_.

Jj=0 Jj=0 Jj=0 Jj=0
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Then since all three infinite series vj' , Zv_, Z |vj| are convergent, the infinite series Zvj, the equality
Jj=0 Jj=0 Jj=0 Jj=0
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Z lvn| = Zv,‘f + Zv; holds.
n=0 n=0 n=0
e By the Triangle Inequality for real numbers, we have
(oo} [ee] oo oo oo (oo} oo (oo}
Zvn = Z’U:—ZU; < Zvj{ —l—Zv; :ZU:_‘_ZU;:Z'UR"
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= Z |vn| to hold is left as an exercise.
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The argument for the necessary and sufficient conditions for the equality

. Theorem (B). (Cauchy-Schwarz Inequality for ‘square-summable infinite sequences in IR’)

Let {xn}22 0, {yn}22 be infinite sequences of real numbers, neither of them being the zero sequence.
o0

Suppose {x,}52, {yn}22, are square-summable. Then the infinite series ijyj is absolutely convergent, and the
§=0

statements below hold:

Z TnYn S (Z xn2> <Z yn2> holds.
n=0 n=0 n=0
(b) The statements (x1), (x2) are logically equivalent:
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*9) There exist some p,q € R, not both zero, such that px; + qy; = 0 for any j € N. (The infinite sequences
J j
{20}, {yn}22, are ‘linearly dependent over R’)

(a) The inequality
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Remark. In the context of the statement of Theorem (B), if one of the infinite sequences {x,,}52 o, {yn}oo, is the
zero sequence, then the inequality in (a) trivially reduces to the equality in (x1) of (b).

. Proof of Theorem (B).

Let {zn}5% 0, {yn}52 be infinite sequences of real numbers, neither of them being the zero sequence.

Suppose {z,}52 o, {yn}5>, are square-summable.

oo

We verify that the infinite series Z x;y; is absolutely convergent:
j=0
n o0
¢ The infinite sequence Z |z, is increasing. (Why?)
J=0 n=0
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e For each n € N, by the Cauchy-Schwarz Inequality, the inequality Z |zy,| < Z sz Z yjz holds.
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Also, by assumption, the inequalities Z xj2 < Z ij, Z ij < Z yj2 hold. (Why?)
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Therefore the infinite sequence Z |z;y;] is bounded above by (Z xn2> (Z yn2> .
7=0 n=0 n=0 n=0
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e Hence by the Bounded-Monotone Theorem, the infinite series Z |z;y;] is convergent.
j=0
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Moreover, the inequality Z |Znyn| < (Z xn2> (Z yn2> holds.
n=0 n=0 n=0



(oo}
By definition, the infinite series Z x;y; is absolutely convergent.
§=0

< Z |2 yn| holds.
n=0

e
Z InYn

n=0

(a) By Theorem (A), the infinite series Z x;y; is convergent, and the inequality
3=0

St <3t < (z) (z)
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(b) i [(x2) = (*1)7]
Suppose there exist some p, ¢ € IR, not both zero, such that pz; + qy; = 0 for any j € N.

Hence

Without loss of generality, assume p # 0.
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Suppose
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Then Z Tnln| = Z |Znyn|, and Z |Tnyn| = <Z a;,ﬂ) (Z yn2>
n=0 n=0 n=0 n=0 n=0

By the former, the terms of {z,y,}>2, are all non-negative or all non-positive.
Without loss of generality, assume the terms of {z,y,}22, are all non-negative.

Then Z TplYn = (Z afn2> <Z yn2> . Therefore (Z xnyn> = <Z xn2> (Z yn2>.
n=0 = = n=0
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Define the polynomial f(t) by f(¢) (Z Ty >t2 +2 (Z xnyn> 1+ (Z Yn )

f(#) is a quadratic polynomial with real coefficient. Its discriminant is 0. Then f(t) has exactly one repeated
real root, which we denote by r. We have

(an )r +2<anyn>r+ (Zyn ) —Z L0212 4 2Ty + yn") = Z(aznr—i—yn)z.

Then, for any n € N, we have rz,, +1 -y, =0.

8. Theorem (C). (Triangle Inequality for ‘square-summable infinite sequences in R’.)
Let {xn}5% 0, {yn 5% be infinite sequences of real numbers, neither of them being the zero sequence.

Suppose {xn}22, {yn}S>, are square-summable. Then the infinite sequence {x,, + yn}2>, Is square-summable, and
the statements below hold:

1 1
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(a) The inequality lZ(mn + Y )? (Z T, > + <Z yn2> holds.
n=0 n=0

(b) The statements (x1), (*2) are logically equivalent:

(*1) Z(xn + yn (Z Tn > + (Z yn2>
n=0 n=0

(*2) There exist non-negative real numbers s,t, not both zero, such that sz; = ty; for any j € N. (One of the
infinite sequences {x,}52 o, {yn}52 Is a non-negative scalar multiple of the other.)

Remark. In the context of the statement of Theorem (C), if one of the infinite sequences {x, }52 o, {yn}52, is the zero

sequence, then the inequality in (a) trivially reduces to the equality in (1) of (b).

The proof of Theorem (C), as an application of Theorem (C), can be done in a similar way as the proof of the Triangle
Inequality for real vectors as an application of the Cauchy-Schwarz Inequality for real vectors.



