0. With the help of the Bounded-Monotone Theorem and a basic result (Theorem (A)) on absolutely convergent infinite series (which you will learn in your *analysis* course), both stated below, we can 'extend' the Cauchy-Schwarz Inequality and Triangle Inequality to analogous results for 'square-summable infinite sequences in R' (Theorem (B), Theorem (C) respectively).

1. Definition.

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers.

The infinite sequence $\left\{\sum_{j=0}^{n} a_j\right\}_{n=0}^{\infty}$ is called the **infinite series** associated to the infinite sequence $\{a_n\}_{n=0}^{\infty}$.

For convenience, we usually denote the infinite sequence $\left\{\sum_{j=0}^{n} a_j\right\}_{n=0}^{\infty}$ by $\sum_{j=0}^{\infty} a_j$, or by $\sum a_j$.

For each $k \in \mathbb{N}$, we refer to a_k as the k-th term of the infinite series $\sum_{j=0}^{\infty} a_j$.

When the infinite sequence $\left\{\sum_{j=0}^{n} a_j\right\}_{n=0}^{\infty}$ converges in \mathbb{R} , we may denote its limit by $\sum_{n=0}^{\infty} a_n$.

Warning. It may be confusing for beginners that the same symbols ' $\sum_{j=0}^{\infty} a_j$ ' stand for two different objects: a specific

infinite sequence which we call an infinite series, (in which the presence of the symbols $\sum_{j=0}^{\infty}$, ∞ have nothing to do with convergence,) and the limit of that infinite sequence. But this is standard practice in any work on infinite series.

2. Definition.

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers.

- (a) The infinite series $\sum_{j=0}^{\infty} a_j$ is said to be **absolutely convergent** if the infinite series $\sum_{j=0}^{\infty} |a_j|$ is convergent.
- (b) The infinite sequence $\{a_n\}_{n=0}^{\infty}$ is said to be square-summable if the infinite series $\sum_{j=0}^{\infty} a_j^2$ is convergent.

3. Bounded-Monotone Theorem for increasing infinite sequences which are bounded above.

Let $\{u_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers. Suppose $\{u_n\}_{n=0}^{\infty}$ is increasing and is bounded above in \mathbb{R} . Then $\{u_n\}_{n=0}^{\infty}$ converges in \mathbb{R} , and its limit is the supremum of the set $\{x \in \mathbb{R} : x = u_n \text{ for some } n \in \mathbb{N}\}$. Furthermore, for any upper bound β of the infinite sequence $\{u_n\}_{n=0}^{\infty}$, the inequality $\lim_{n\to\infty} u_n \leq \beta$ holds. Also, for any $k \in \mathbb{N}$, the inequality $u_k \leq \lim_{n\to\infty} u_n$ holds.

4. Theorem (A).

Let $\{v_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers.

Suppose the infinite series $\sum_{j=0}^{\infty} v_j$ is absolutely convergent. Then the infinite series $\sum_{j=0}^{\infty} v_j$ is convergent. Moreover the

inequality $\left|\sum_{n=0}^{\infty} v_n\right| \leq \sum_{n=0}^{\infty} |v_n|$ holds. Equality holds iff the terms of $\{v_n\}_{n=0}^{\infty}$ are all non-negative or all non-positive.

Remark. This result is often expressed as: 'every absolutely convergent infinite series is convergent'.

5. Proof of Theorem (A).

Let $\{v_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers.

Suppose the infinite series $\sum_{j=0}^{\infty} v_j$ is absolutely convergent.

For any $n \in \mathbb{N}$, we define $v_n^+ = \frac{|v_n| + v_n}{2}$ and $v_n^- = \frac{|v_n| - v_n}{2}$.

Note that, by definition, for any $n \in \mathbb{N}$, we have $|v_n| = v_n^+ + v_n^-$, $v_n = v_n^+ - v_n^-$, and $|v_n| \ge v_n^+ \ge 0$, $|v_n| \ge v_n^- \ge 0$, .

[We study the infinite series $\sum_{j=0}^{\infty} v_j^+$, $\sum_{j=0}^{\infty} v_j^-$. What are they really?

The infinite series $\sum_{j=0}^{\infty} v_j^+$ is the infinite series with all terms being non-negative, obtained from the infinite series

 $\sum_{j=0}^{\infty} v_j \text{ by replacing all its negative terms by } 0.$

The infinite series $\sum_{j=0}^{\infty} v_j^-$ is the infinite series with all terms being non-negative, obtained from the infinite series

 $\sum_{i=0}^{\infty} v_i$ by first replacing all its positive terms by 0 and then multiplying every term by -1.

So heuristically we expect ' $\sum_{j=0}^{\infty} v_j = \sum_{j=0}^{\infty} v_j^+ - \sum_{j=0}^{\infty} v_j^-$ ' and ' $\sum_{j=0}^{\infty} |v_j| = \sum_{j=0}^{\infty} v_j^+ + \sum_{j=0}^{\infty} v_j^-$ '. However, there is the question of convergence.]

We verify that the infinite series $\sum_{i=0}^{\infty} v_j^+$ is convergent:

- For each $k \in \mathbb{N}$, $\sum_{j=0}^{k+1} v_j^+ \sum_{j=0}^k v_j^+ = v_{k+1}^+ \ge 0$. Then the infinite sequence $\left\{\sum_{j=0}^n v_j^+\right\}_{n=0}^{\infty}$ is increasing.
- For each $k \in \mathbb{N}$, $\sum_{j=0}^k v_j^+ \le \sum_{j=0}^k |v_j| \le \sum_{n=0}^\infty |v_n|$. (Why does the second inequality hold?)

Then the infinite sequence $\left\{\sum_{j=0}^n v_j^+\right\}_{n=0}^{\infty}$ is bounded above in \mathbb{R} , by $\sum_{n=0}^{\infty} |v_n|$.

• Hence, by the Bounded-Monotone Theorem, the infinite sequence $\left\{\sum_{j=0}^n v_j^+\right\}_{n=0}^{\infty}$ is convergent in \mathbb{R} .

Similarly we verify that the infinite series $\sum_{j=0}^{\infty} v_j^-$ is increasing and bounded above, and therefore convergent.

We observe that the limits $\sum_{j=0}^{\infty} v_j^+$, $\sum_{j=0}^{\infty} v_j^-$ are both non-negative because each term in the respective infinite series is non-negative.

Now we verify that the infinite series $\sum_{j=0}^{\infty} v_j$ is convergent , and the inequality $\left|\sum_{n=0}^{\infty} v_n\right| \leq \sum_{n=0}^{\infty} |v_n|$ holds:

• For any $k \in \mathbb{N}$, we have $\sum_{j=0}^k v_j = \sum_{j=0}^k (v_j^+ - v_j^-) = \sum_{j=0}^k v_j^+ - \sum_{j=0}^k v_j^-$.

Then, since both infinite series $\sum_{j=0}^{\infty} v_j^+$, $\sum_{j=0}^{\infty} v_j^-$ are convergent, the infinite series $\sum_{j=0}^{\infty} v_j$ and is convergent.

Moreover, the equality $\sum_{n=0}^{\infty} v_n = \sum_{n=0}^{\infty} v_n^+ - \sum_{n=0}^{\infty} v_n^-$ holds.

• For any
$$k \in \mathbb{N}$$
, we have $\sum_{j=0}^{k} |v_j| = \sum_{j=0}^{k} (v_j^+ + v_j^-) = \sum_{j=0}^{k} v_j^+ + \sum_{j=0}^{k} v_j^-$.

Then since all three infinite series $\sum_{j=0}^{\infty} v_j^+$, $\sum_{j=0}^{\infty} v_j^-$, $\sum_{j=0}^k |v_j|$ are convergent, the infinite series $\sum_{j=0}^{\infty} v_j$, the equality

$$\sum_{n=0}^{\infty} |v_n| = \sum_{n=0}^{\infty} v_n^+ + \sum_{n=0}^{\infty} v_n^- \text{ holds.}$$

• By the Triangle Inequality for real numbers, we have

$$\left| \sum_{n=0}^{\infty} v_n \right| = \left| \sum_{n=0}^{\infty} v_n^+ - \sum_{n=0}^{\infty} v_n^- \right| \le \left| \sum_{n=0}^{\infty} v_n^+ \right| + \left| \sum_{n=0}^{\infty} v_n^- \right| = \sum_{n=0}^{\infty} v_n^+ + \sum_{n=0}^{\infty} v_n^- = \sum_{n=0}^{\infty} |v_n|.$$

The argument for the necessary and sufficient conditions for the equality $\left|\sum_{n=0}^{\infty} v_n\right| = \sum_{n=0}^{\infty} |v_n|$ to hold is left as an exercise.

6. Theorem (B). (Cauchy-Schwarz Inequality for 'square-summable infinite sequences in R'.)

Let $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ be infinite sequences of real numbers, neither of them being the zero sequence.

Suppose $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ are square-summable. Then the infinite series $\sum_{j=0}^{\infty} x_j y_j$ is absolutely convergent, and the statements below hold:

(a) The inequality
$$\left|\sum_{n=0}^{\infty} x_n y_n\right| \leq \left(\sum_{n=0}^{\infty} x_n^2\right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2\right)^{\frac{1}{2}}$$
 holds.

(b) The statements (\star_1) , (\star_2) are logically equivalent:

$$(\star_1) \left| \sum_{n=0}^{\infty} x_n y_n \right| = \left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}.$$

(*2) There exist some $p, q \in \mathbb{R}$, not both zero, such that $px_j + qy_j = 0$ for any $j \in \mathbb{N}$. (The infinite sequences $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ are 'linearly dependent over \mathbb{R} '.)

Remark. In the context of the statement of Theorem (B), if one of the infinite sequences $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ is the zero sequence, then the inequality in (a) trivially reduces to the equality in (\star_1) of (b).

7. Proof of Theorem (B).

Let $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ be infinite sequences of real numbers, neither of them being the zero sequence. Suppose $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ are square-summable.

We verify that the infinite series $\sum_{j=0}^{\infty} x_j y_j$ is absolutely convergent:

• The infinite sequence
$$\left\{\sum_{j=0}^{n}|x_{j}y_{j}|\right\}_{n=0}^{\infty}$$
 is increasing. (Why?)

• For each
$$n \in \mathbb{N}$$
, by the Cauchy-Schwarz Inequality, the inequality $\sum_{j=0}^{n} |x_j y_j| \le \left(\sum_{j=0}^{n} x_j^2\right)^{\frac{1}{2}} \left(\sum_{j=0}^{n} y_j^2\right)^{\frac{1}{2}}$ holds.

Also, by assumption, the inequalities
$$\sum_{j=0}^{n} x_j^2 \le \sum_{j=0}^{\infty} x_j^2$$
, $\sum_{j=0}^{n} y_j^2 \le \sum_{j=0}^{\infty} y_j^2$ hold. (Why?)

Therefore the infinite sequence
$$\left\{\sum_{j=0}^{n}|x_{j}y_{j}|\right\}^{\infty}$$
 is bounded above by $\left(\sum_{n=0}^{\infty}x_{n}^{2}\right)^{\frac{1}{2}}\left(\sum_{n=0}^{\infty}y_{n}^{2}\right)^{\frac{1}{2}}$.

• Hence by the Bounded-Monotone Theorem, the infinite series
$$\sum_{j=0}^{\infty} |x_j y_j|$$
 is convergent.

Moreover, the inequality
$$\sum_{n=0}^{\infty} |x_n y_n| \leq \left(\sum_{n=0}^{\infty} x_n^2\right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2\right)^{\frac{1}{2}} \text{ holds.}$$

By definition, the infinite series $\sum_{j=1}^{\infty} x_j y_j$ is absolutely convergent.

(a) By Theorem (A), the infinite series
$$\sum_{j=0}^{\infty} x_j y_j$$
 is convergent, and the inequality $\left| \sum_{n=0}^{\infty} x_n y_n \right| \leq \sum_{n=0}^{\infty} |x_n y_n|$ holds.

Hence
$$\left| \sum_{n=0}^{\infty} x_n y_n \right| \le \sum_{n=0}^{\infty} |x_n y_n| \le \left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}$$
.

i. $[(\star_2) \Longrightarrow (\star_1)?]$

Suppose there exist some $p, q \in \mathbb{R}$, not both zero, such that $px_j + qy_j = 0$ for any $j \in \mathbb{N}$.

Without loss of generality, assume $p \neq 0$.

Then
$$\left| \sum_{n=0}^{\infty} x_n y_n \right| = \left| \sum_{n=0}^{\infty} -\frac{q}{p} \cdot y_n^2 \right| = \frac{|q|}{|p|} \sum_{n=0}^{\infty} y_n^2 = \left(\sum_{n=0}^{\infty} \frac{|q|^2}{|p|^2} \cdot y_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}} = \left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}.$$

ii. $[(\star_1) \Longrightarrow (\star_2)?]$

Suppose
$$\left| \sum_{n=0}^{\infty} x_n y_n \right| = \left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}.$$

Then
$$\left| \sum_{n=0}^{\infty} x_n y_n \right| = \sum_{n=0}^{\infty} |x_n y_n|$$
, and $\sum_{n=0}^{\infty} |x_n y_n| = \left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}$.

By the former, the terms of $\{x_ny_n\}_{n=0}^{\infty}$ are all non-negative or all non-positive. Without loss of generality, assume the terms of $\{x_ny_n\}_{n=0}^{\infty}$ are all non-negative.

Then
$$\sum_{n=0}^{\infty} x_n y_n = \left(\sum_{n=0}^{\infty} x_n^2\right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} y_n^2\right)^{\frac{1}{2}}$$
. Therefore $\left(\sum_{n=0}^{\infty} x_n y_n\right)^2 = \left(\sum_{n=0}^{\infty} x_n^2\right) \left(\sum_{n=0}^{\infty} y_n^2\right)$.

Define the polynomial
$$f(t)$$
 by $f(t) = \left(\sum_{n=0}^{\infty} x_n^2\right) t^2 + 2 \left(\sum_{n=0}^{\infty} x_n y_n\right) t + \left(\sum_{n=0}^{\infty} y_n^2\right)$.

f(t) is a quadratic polynomial with real coefficient. Its discriminant is 0. Then f(t) has exactly one repeated real root, which we denote by r. We have

$$0 = f(r) = \left(\sum_{n=0}^{\infty} x_n^2\right) r^2 + 2\left(\sum_{n=0}^{\infty} x_n y_n\right) r + \left(\sum_{n=0}^{\infty} y_n^2\right) = \sum_{n=0}^{\infty} (x_n^2 r^2 + 2x_n y_n r + y_n^2) = \sum_{n=0}^{\infty} (x_n r + y_n)^2.$$

Then, for any $n \in \mathbb{N}$, we have $rx_n + 1 \cdot y_n = 0$.

8. Theorem (C). (Triangle Inequality for 'square-summable infinite sequences in R'.)

Let $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ be infinite sequences of real numbers, neither of them being the zero sequence.

Suppose $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ are square-summable. Then the infinite sequence $\{x_n+y_n\}_{n=0}^{\infty}$ is square-summable, and the statements below hold:

(a) The inequality
$$\left[\sum_{n=0}^{\infty} (x_n + y_n)^2\right]^{\frac{1}{2}} \le \left(\sum_{n=0}^{\infty} x_n^2\right)^{\frac{1}{2}} + \left(\sum_{n=0}^{\infty} y_n^2\right)^{\frac{1}{2}}$$
 holds.

(b) The statements $(*_1)$, $(*_2)$ are logically equivalent.

$$(*_1) \left[\sum_{n=0}^{\infty} (x_n + y_n)^2 \right]^{\frac{1}{2}} = \left(\sum_{n=0}^{\infty} x_n^2 \right)^{\frac{1}{2}} + \left(\sum_{n=0}^{\infty} y_n^2 \right)^{\frac{1}{2}}.$$

 $(*_2)$ There exist non-negative real numbers s,t, not both zero, such that $sx_j=ty_j$ for any $j\in\mathbb{N}$. (One of the infinite sequences $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ is a non-negative scalar multiple of the other.)

Remark. In the context of the statement of Theorem (C), if one of the infinite sequences $\{x_n\}_{n=0}^{\infty}$, $\{y_n\}_{n=0}^{\infty}$ is the zero sequence, then the inequality in (a) trivially reduces to the equality in $(*_1)$ of (b).

The proof of Theorem (C), as an application of Theorem (C), can be done in a similar way as the proof of the Triangle Inequality for real vectors as an application of the Cauchy-Schwarz Inequality for real vectors.