
MATH1050 From simple inequalities to basic properties of the reals.

0. In this handout we give some examples on proofs of simple inequalities.
Along the way, we will pinpoint various statements which look ‘basic’ (or ‘fundamental’), in the sense that we have
taken their validity for granted since school days.

1. Statement (A).

Let x be a real number. Suppose 0 < x < 4. Then x2 − 4x < 5.
Digression on logic, through Statement (A).

A chain of words and symbols like ‘Statement (A)’, for which it makes sense to say it is true or false is called a
mathematical statement.
Most statements that you will encounter in this course and beyond can be presented in this form:

‘Let blah-blah-blah. Suppose bleh-bleh-bleh. Then blih-blih-blih.’

The content within ‘blah-blah-blah, bleh-bleh-bleh’ collectively is often referred to as the ‘assumption part’ of the
statement.
The content within ‘Blih-blih-blih’ is often referred to as the ‘conclusion part’ of the statement.
For Statement (A), its ‘assumption part’ is ‘x is a real number and 0 < x < 4’. Its ‘conclusion part’ is
‘x2 − 4x < 5’.
Proof of Statement (A).
Let x be a real number. Suppose 0 < x < 4.

[Roughwork. We want to deduce, under the assumption ‘x is a real number and 0 < x < 4’, the inequality
x2 − 4x < 5.
Question. Is there any equivalent formulation of the conclusion which may be easier to manipulate and which
may seem to link with the assumptions?
Answer. x2 − 4x− 5 < 0. (It is good because the ‘right-hand side’ is 0.)
Observation.
(1) x2 − 4x− 5 = (x+ 1)(x− 5), and
(2) x+ 1 > 1 > 0, and
(3) x− 5 < −1 < 0.

So we know x2 − 4x− 5 < 0. This is exactly what we want.
Now we are ready to organize the ideas appropriately and write up the argument.]

Note that x2 − 4x− 5 = (x+ 1)(x− 5). —— (⋆)

Since x > 0, we have x+ 1 > 1 > 0.
Since x < 4, we have x− 5 < −1 < 0.
Then (x+ 1)(x− 5) < 0.

Therefore by (⋆), we have x2 − 4x− 5 < 0.

Hence x2 − 4x < 5.

2. Further consideration on the proof of Statement (A).

We can identify a few ‘basic’ (or ‘fundamental’) statements whose validity we do take for granted and which we
have applied in support of our argument for Statement (A):

(a) Adding the same real number to both sides of a strict inequality results in a strict inequality of the same
direction.
(For any α, β, γ ∈ R, if α > β then α+ γ > β + γ.)

(b) The product of any positive real number and any negative real number is a negative real number.
(For any α, β ∈ R, if α > 0 and β < 0, then αβ < 0.)
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3. Statement (B).

Suppose x, y are real numbers. Then 4x2 + 12xy + 11y2 ≥ 0.
Proof of Statement (B).
Suppose x, y are real numbers.

[Roughwork. We want to deduce, under the assumption ‘x, y are real numbers’, the inequality 4x2 + 12xy +

11y2 ≥ 0.
Objective. To express 4x2 + 12xy + 11y2 as a sum in which every summand is non-negative. Ask. But how
to do so?
Observation. 4x2 + 12xy + 11y2 is a quadratic expression. Ask. Can we make use of what we have learnt
about completing the square to help us?]

Note that 4x2 + 12xy + 11y2 = (4x2 + 12xy + 9y2) + 2y2 = (2x+ 3y)2 + 2y2. —– (⋆)

Since x, y are real numbers, 2x+ 3y is a real number. Then (2x+ 3y)2 ≥ 0.

Since y is a real number, y2 ≥ 0. Then 2y2 ≥ 0.

Since (2x+ 3y)2 ≥ 0 and 2y2 ≥ 0, we have (2x+ 3y)2 + 2y2 ≥ 0.

Then, by (⋆), 4x2 + 12xy + 11y2 ≥ 0.

4. Further consideration on the proof of Statement (B).

We can identify a few ‘basic’ (or ‘fundamental’) statements whose validity we do take for granted and which we
have applied in support of our argument for Statement (B):

(a) The sum of any two real numbers is a real number.
(For any α, β ∈ R, α+ β ∈ R.)

(b) The square of any real number is a non-negative real number.
(For any α ∈ R, α2 ≥ 0.)

(c) The product of any two non-negative real number is a non-negative real number.
(For any α, β ∈ R, if α ≥ 0 and β ≥ 0 then αβ ≥ 0.)

(d) The sum of any two non-negative real numbers is a non-negative real number.
(For any α, β ∈ R, if α ≥ 0 and β ≥ 0 then α+ β ≥ 0.)

5. Statement (C).

Let x, y be positive real numbers. Suppose x2 > y2. Then x > y.
Proof of Statement (C).

Let x, y be positive real numbers. Suppose x2 > y2.

[Roughwork. We want to deduce, under the assumption ‘x, y are positive real numbers and x2 > y2’, the
inequality x > y.
Question. Is there any equivalent formulation of the conclusion which may be easier to manipulate and which
may seem to link with the assumptions?
Answer. x− y > 0. (It is good because the ‘right-hand side’ is 0.)
Observation.
(1) x2 − y2 > 0, and
(2) x2 − y2 = (x− y)(x+ y), and
(3) x+ y > 0.

So we expect x− y > 0 because both x2 − y2 and x+ y are positive. This is exactly what we want.
Now we are ready to organize the ideas appropriately and write up the argument.]

2



Then x2 − y2 > 0.

Note that x2 − y2 = (x− y)(x+ y).

Then (x− y)(x+ y) > 0.

Therefore (x− y > 0 and x+ y > 0) or (x− y < 0 and x+ y < 0).
Since x > 0 and y > 0, we have x+ y > 0.
Then x− y > 0 and x+ y > 0.
In particular x− y > 0.
Therefore x > y.

6. Further consideration on the proof of Statement (C).
We can identify a few ‘basic’ (or ‘fundamental’) statements whose validity we do take for granted and which we
have applied in support of our argument for Statement (C):

(a) The two individual real numbers in a product which is positive are either both positive or both negative.
(For any α, β,∈ R, if αβ > 0 then (α > 0 and β > 0) or (α < 0 and β < 0).)

(b) The sum of any two positive real numbers is a positive real number.
(For any α, β ∈ R, if α > 0 and β > 0 then α+ β > 0.)

7. Statement (D).

Let x, y be positive real numbers. Suppose x > y. Then x2 > y2.
Proof of Statement (D).
Let x, y be positive real numbers. Suppose x > y.

[Roughwork. We want to deduce, under the assumption ‘x, y are positive real numbers and x > y’, the
inequality x2 > y2.]

Since x > 0 and x > y, we have x2 = x · x > xy.

Since y > 0 and x > y, we have xy > y · y = y2.

Then x2 > xy and xy > y2.

Therefore x2 > y2.

8. Further consideration on the proof of Statement (D).
We can identify a few ‘basic’ (or ‘fundamental’) statements whose validity we do take for granted and which we
have applied in support of our argument for Statement (D):

(a) Multiplying the same positive real number to both sides of a strict inequality results in a strict inequality of
the same direction.
(For any α, β, γ ∈ R, if α > β and γ > 0 then αγ > βγ.)

(b) For three real numbers, if the first is less than the second and the second is less than the third, then the first
is less than the third.
(For any α, β, γ ∈ R, if α < β and β < γ then α < γ.)

9. Digression on logic: assumption, conclusion, converse.
Compare Statement (C) and Statement (D).

• Statement (C).
Let x, y be positive real numbers. Suppose x2 > y2. Then x > y.
Statement (C) can be re-written as:
For any positive real numbers x, y, if x2 > y2 then x > y.

• Statement (D).
Let x, y be positive real numbers. Suppose x > y. Then x2 > y2.
Statement (D) can be re-written as:
For any positive real numbers x, y, if x > y then x2 > y2.
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By interchanging the respective positions of ‘x > y’, ‘x2 > y2’ in Statement (C), we obtain Statement (D). And
vice versa.
For this reason, we refer to Statement (C) as the converse of Statement (D), and refer to Statement (D) as the
converse of Statement (C).

10. Statement (E).

Let x be a real number. Suppose x2 − 8x+ 7 < 0. Then 1 < x < 7.
Proof of Statement (E).

Let x be a real number. Suppose x2 − 8x+ 7 < 0.

[Roughwork. We want to deduce, under the assumption ‘x is a real number and x2 − 8x + 7 < 0’, the
inequalities 1 < x < 7.]

By assumption, (x− 1)(x− 7) = x2 − 8x+ 7 < 0.

Then (x− 1 < 0 and x− 7 > 0) or (x− 1 > 0 and x− 7 < 0).

[Reminder. We have two possibilities, neither of them being immediately ‘eliminated’ from what is known.
In this situation, we ‘split’ the argument into various ‘cases’, covering various the respective possibilities. ]

(Case 1). Suppose x− 1 < 0 and x− 7 > 0.
Since x− 1 < 0, we have x < 1.
Since x− 7 > 0, we have x > 7.
Then 7 < x < 1.
Therefore 7 < 1. This is impossible.
(Case 2). Suppose x− 1 > 0 and x− 7 < 0.
Since x− 1 > 0, we have x > 1.
Since x− 7 < 0, we have x < 7.
Then 1 < x < 7.

So, to conclude, we have 1 < x < 7.

11. Statement (F).

Let x, y ∈ R. Suppose x ̸= 0 or y ̸= 0. Then x2 + xy + y2 > 0.
Proof of Statement (F).
Let x, y ∈ R. Suppose x ̸= 0 or y ̸= 0.

[Reminder. We have two possibilities. We ‘split’ the argument into various ‘cases’, covering various the
respective possibilities.
In each case, with the help of the extra assumption in that case, we try to obtain the conclusion ‘x2+xy+y2 >

0’.
The tool to use is ‘completing the square’.]

(Case 1). Suppose x ̸= 0. Then x2 + xy + y2 =
3x2

4
+

(x
2
+ y

)2

> 0 + 0 = 0.

(Case 2). Suppose y ̸= 0. Then x2 + xy + y2 =
3y2

4
+

(y
2
+ x

)2

> 0.

Hence, in any case, x2 + xy + y2 > 0.

12. Statement (G).

Let x, y be non-negative real numbers. Suppose x2 ≥ y2. Then x ≥ y.
Proof of Statement (G).

Let x, y be non-negative real numbers. Suppose x2 ≥ y2.

Then x2 − y2 ≥ 0.
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Note that x2 − y2 = (x− y)(x+ y).

Then (x− y)(x+ y) ≥ 0.
Since x ≥ 0 and y ≥ 0, we have x+ y ≥ 0.

[Reminder. We are not in a position to immediately conclude that x− y ≥ 0. Why?
We cannot ‘divide both sides’ by x+ y, because we have not ruled out the possibility that x+ y may be 0.]

Then x+ y > 0 or x+ y = 0.

(Case 1). Suppose x+ y > 0.
Since (x− y)(x+ y) ≥ 0, we have x− y ≥ 0.
Therefore x ≥ y.
(Case 2). Suppose x+ y = 0.
Since x ≥ 0 and y ≥ 0, we have x = y = 0.
Therefore x ≥ y.

Hence, in any case, x ≥ y.

13. Statement (H). (A ‘baby version’ of the Cauchy-Schwarz Inequality.)

Suppose x, y are real numbers. Then x2 + y2 ≥ 2xy. Equality holds iff x = y.
Proof of statement (H).
Suppose x, y are real numbers.

[Preparatory step. Study the difference ‘L.H.S. minus R.H.S.’ in the desired inequality.]

We have (x2 + y2)− 2xy = (x− y)2.

[Reminder. With the help of the preparatory step, we now deduce the statements below:

(1) x2 + y2 ≥ 2xy.
(2) If x = y then x2 + y2 = 2xy.
(3) If x2 + y2 = 2xy then x = y.

The result follows from a combination of these three statements.]

(1) Since x, y are real, x− y is real.
Then (x− y)2 ≥ 0.
Therefore x2 + y2 ≥ 2xy.

(2) Suppose x = y.
Then (x2 + y2)− 2xy = (x− y)2 = (x− x)2 = 0.
Therefore x2 + y2 = 2xy.

(3) Suppose x2 + y2 = 2xy.
Then 0 = (x2 + y2)− 2xy = (x− y)2.
Therefore x− y = 0. Hence x = y.

The result follows.

Remark. Strictly speaking, Statement (H) is not just about an inequality.
It is about a non-strict inequality together with the ‘necessary and sufficient conditions for the equality to hold’.
This kind of statements is common amongst results concerned with inequalities.

14. Tacitly assumed statements about inequality in the real number system.
Carefully examining the proofs of the inequalities above, we probably have to concede that we need expand the
list of ‘rules as regards inequalities’ which we are tacitly assuming since school-days. To be more efficient, we state
them with the help of symbols.
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(1) Suppose α, β ∈ R. Then β − α > 0 iff α < β.

(1∗) Suppose x, y ∈ R. Then β − α ≥ 0 iff α ≤ β.

(2) Let α, β, γ ∈ R. Suppose α < β and β < γ. Then α < γ.

(2∗) The statements below hold:

(2∗a) Suppose α ∈ R. Then α ≤ α.
(2∗b) Let α, β ∈ R. Suppose (α ≤ β and β ≤ α). Then α = β.
(2∗c) Let α, β, γ ∈ R. Suppose (α ≤ β and β ≤ γ). Then α ≤ γ.

(3) Suppose α ∈ R. Then exactly one of ‘α < 0’, ‘α = 0’, ‘α > 0’ is true.

(4) Let α, β ∈ R. Suppose α < β. Then the statements below hold:

(4a) For any γ ∈ R, α+ γ < β + γ and α− γ < β − γ.
(4b) For any γ ∈ R, if γ > 0 then αγ < βγ and α/γ < β/γ.
(4c) For any γ ∈ R, if γ < 0 then αγ > βγ and α/γ > β/γ.

(4∗) Let α, β ∈ R. Suppose α ≤ β. Then the statements below hold:

(4∗a) For any γ ∈ R, α+ γ ≤ β + γ and α− γ ≤ β − γ.
(4∗b) For any γ ∈ R, if γ > 0 then αγ ≤ βγ and α/γ ≤ β/γ.
(4∗c) For any γ ∈ R, if γ < 0 then αγ ≥ βγ and α/γ ≥ β/γ.

(5) Let α, β, γ, δ ∈ R. Suppose α < β and γ < δ. The statements below hold:

(5a) α+ γ < β + δ.
(5b) Further suppose α > 0, β > 0, γ > 0 and δ > 0. Then αγ < βδ.

(5∗) Let α, β, γ, δ ∈ R. Suppose α ≤ β and γ ≤ δ. The statements below hold:

(5∗a) α+ γ ≤ β + δ.
(5∗b) Further suppose α ≥ 0, β ≥ 0, γ ≥ 0 and δ ≥ 0. Then αγ ≤ βδ.

(6) Let α, β ∈ R. The statements below hold:

(6a) Suppose αβ > 0. Then (α > 0 and β > 0) or (α < 0 and β < 0).
(6b) Suppose αβ < 0. Then (α > 0 and β < 0) or (α < 0 and β > 0).

(6∗) Let α, β ∈ R. The statements below hold:

(6∗a) Suppose αβ ≥ 0. Then (α ≥ 0 and β ≥ 0) or (α ≤ 0 and β ≤ 0).
(6∗b) Suppose αβ ≤ 0. Then (α ≥ 0 and β ≤ 0) or (α ≤ 0 and β ≥ 0).

(7) Let α ∈ R. Suppose α ̸= 0. Then α2 > 0.

(7∗) Suppose α ∈ R. Then α2 ≥ 0.

We do not claim that this list is exhaustive in any sense. Nor do we claim that each item in the list is as ‘basic’
as each other.
In fact, some of the above statements are regarded as more ‘basic’ in your analysis course. They are the ones
listed amongst the Laws of Arithmetic for the reals, and Laws of order for the reals (compatible to the arithmetic
operations). The others are deduced from these thirteen statements.

15. Laws of Arithmetic for the reals.

(A1) For any a, b ∈ R, a+ b ∈ R.

(A2) For any a, b, c ∈ R, (a+ b) + c = a+ (b+ c).

(A3) There exists some z ∈ R, namely z = 0, such that for any a ∈ R, a+ z = a and z + a = a.

(A4) For any a ∈ R, there exists some b ∈ R, called an additive inverse of a, such that a+ b = 0 and b+ a = 0.

(A5) For any a, b ∈ R, a+ b = b+ a.

(A6) For any a, b ∈ R, a× b ∈ R.

(A7) For any a, b, c ∈ R, (a× b)× c = a× (b× c).
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(A8) There exists some u ∈ R, namely u = 1, such that for any a ∈ R, a× u = a and u× a = a.

(A9) For any a ∈ R\{0}, there exists some b ∈ R, called a multiplicative inverse of a, such that a× b = 1 and
b× a = 1.

(A10) For any a, b ∈ R, a× b = b× a.

(A11) For any a, b, c ∈ R, (a+ b)× c = (a× c) + (b× c) and a× (b+ c) = (a× b) + (a× c).

Laws of Order for the reals, compatible with the Laws of Arithmetic.

(O1) For any a, b ∈ R, if a ≥ 0 and b ≥ 0 then a+ b ≥ 0 and a× b ≥ 0.

(O2) For any a ∈ R, a ≥ 0 or −a ≥ 0.

(O3) For any a ∈ R, if a ≥ 0 and −a ≥ 0 then a = 0.

16. Digression on logic: ‘Direct proof’.
Re-examine our work on, say, Statement (C):

Let x, y be positive real numbers. Suppose x2 > y2. Then x > y.

We have given the passage below as a ‘proof’ of Statement (C):

Let x, y be positive real numbers. Suppose x2 > y2. Then x2 − y2 > 0. Note that x2 − y2 = (x− y)(x+ y).
Then (x− y)(x+ y) > 0. Therefore (x− y > 0 and x+ y > 0) or (x− y < 0 and x+ y < 0). Since x > 0 and
y > 0, we have x+ y > 0. Then x− y > 0 and x+ y > 0. In particular x− y > 0. Therefore x > y.

Such a passage is called a ‘direct proof’ for Statement (C), in the sense that:

• the assumption of Statement (C), namely, ‘x, y are positive real numbers and x2 > y2’, is the starting point
of the passage,

• the conclusion of Statement (C), namely, ‘x > y’, is the end point of the passage, and
• what is written at each ‘intermediate step’ will have, as its justification, something already established within

the passage, or something known to be ‘true in general’.

This is made apparent when we very formally present the passage as the list of statements labelled by roman
numerals below:

I. Let x, y be positive real numbers. [Assumption.]

II. Suppose x2 > y2. [Assumption.]

III. x2 − y2 > 0. [II.]

IV. x2 − y2 = (x− y)(x+ y). [Properties of the reals.]

V. (x− y)(x+ y) > 0. [III, IV.]

VI. (x− y > 0 and x+ y > 0) or (x− y < 0 and x+ y < 0). [V, properties of the reals.]

VII. x+ y > 0 [I.]

VIII. x− y > 0. [VI, VII.]

IX. x > y. [VIII.]

The content of the square bracket at the end of each line indicates the specific immediate reason for the statement
in that line. (For example, the immediate reason for ‘V’ is ‘III’ and ‘IV’.)

The argument for every other statement, apart from Statement (H), in this handout is a ‘direct proof’. (Statement
(H) is the ‘conjunction’ of several ‘simpler’ statements, the argument for each of them is a ‘direct proof’.)
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