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(b) This sequence is not convergent.
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(d) This sequence is not convergent.
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(g) Applying the formula (a — b)(a® 4 ab + b?) = a® — b?, letting a = V/n2 + 1,b = V/n2, we have
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Since (V/n2 + 1) + (V/n2 + 1)(V/n2) + (V/n?)? tends to infinity as n tends to infinity,
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(a) Assume that
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(a) We use the mathematical induction method. As

207 =0=2(1) — 1+ (-1)*

and we assume that 2a, =2n — 14 (=1)",
then 2a,41 =2(2n —a,) =4n —2n+2 - 2(=1)" =2(n+1) — 1 4 (=1)" .
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(a) Tt is obvious that it holds for n = 1. Using the mathematical induction, we assume that it
holds for £k =1,2,--- ,n, then

20p41 =40 —2a, =4n —2n+1— (=1)" =2n+ 14+ (-1)"M =2(n+1) — 1 4 (1)



(b) By (a), 1)
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By Sandwich Theorem,

(a) It is obvious that it holds for n = 2. Using the mathematical induction, we assume that it
holds for k =2,3,--- ,n, then
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(a) i. Using the mathematical induction, as z1 = 2 > 1, and we assume xy > k, for k < n, then

xn+1:xi_xn+1:(xn_%)2+z >(n—%)2+22n2—n+1.
Asn>2n?—-n+1>n+1,thus z,. 1 >n+1.
ii. Also using the indution method:
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thus it holds for k = 1, then we assume that it holds for & < n.
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(b) As s, is monotomic increasing, and s,, < 1, thus lim,,_, s, exists and < 1.

(a) For n > 1, to prove &,41 > Yn41, it is equivalent to prove
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which obviously holds.
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which implies ¥, increasing.
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Then taking x, + y, = 22,41 into yp4+1 =

Lo Ynt1
- )

Tn+1 Yn

by vy, increasing, we have that x,, decreasing.

(¢) As z,, > 0 and x,, decreasing, we have that lim,,_,, x, exists, which is denoted by x.
While x,, — ¥, > 0 and is decreasing, thus lim,, o (2, — y,) exists, denoted by z > 0. Thus,

Yn = Tp — (Ty, — yp) has limit y =z — 2.

, we have that = 2¥¥ jex =y.
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