
MATH 1030 Chapter 7

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Down-
loadable at http://linear.ups.edu/download.html .

The print version can be downloaded at http://linear.ups.edu/download/fcla-
3.50-print.pdf .

Reference.
Beezer, Ver 3.5 Section HSE (print version p44 - p50)Section NM (print ver-

sion p51 - p56)
Exercise.
Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-

3.50-solution-manual.pdf

1. Section HSE (ex p.18-23) C21-C23, C25-C27, C30-C31, M50-M52, T10-
T12, T20

2. Section NM (ex p.23-27) C30-C33, C50, M30, M51-M52, T10, T12, T30,
T31, T90.

7.1 Solutions of Homogeneous Systems
Definition 7.1 (Homogeneous System). A system of linear equations, LS(A,b)
is homogeneous if the vector of constants is the zero vector, in other words, if
b = 0, i.e.

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0

Definition 7.2 (Homogeneous System corresponding to system of linear equa-
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tion). The homogeneous system corresponding to LS(A,b):

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

is LS(A,0):

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = 0

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = 0

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = 0

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = 0

Example 7.3. The following is a homogeneous system of linear equations:

x1 − 2x2 + 3x3 − 4x4 = 0

x2 − x4 = 0

x1 + 3x2 − 5x3 + 5x4 = 0

It is the homogeneous system of linear equations corresponding to

x1 − 2x2 + 3x3 − 4x4 = 1

x2 − x4 = 2

x1 + 3x2 − 5x3 + 5x4 = 3

Theorem 7.4 (Homogeneous Systems are Consistent). Suppose that a system of
linear equations is homogeneous. Then the system is consistent. In fact 0 is a
solution, i.e x1 = x2 = · · · = xn = 0 is a solution. Such solution is called a
trivial solution.

Proof of Homogeneous Systems are Consistent. Set each variable of the system to
zero. The left hand side of the all equations are zero, which are equal to the right
hand side.

Example 7.5. 1.

−7x1 − 6x2 − 12x3 = 0

5x1 + 5x2 + 7x3 = 0

x1 + 4x3 = 0
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The reduced row echelon form of the augmented matrix is 1 0 0 0

0 1 0 0

0 0 1 0


It has n− r = 3− 3 = 0 free variable. Hence it has only one solution.

2.

x1 − x2 + 2x3 = 0

2x1 + x2 + x3 = 0

x1 + x2 = 0

The reduced row echelon form of the augmented matrix is 1 0 1 0

0 1 −1 0
0 0 0 0


The system is consistent. It has n − r = 3 − 2 = 1 free variable. The
solution set is

S =


x1x2
x3

 ∣∣∣∣∣∣ x1 = −x3, x2 = x3

 =


−x3x3
x3

 ∣∣∣∣∣∣ x3 real number


Geometrically, these are points in three dimensions that lie on a line through
the origin.

3.

2x1 + x2 + 7x3 − 7x4 = 0

−3x1 + 4x2 − 5x3 − 6x4 = 0

x1 + x2 + 4x3 − 5x4 = 0

The reduced row echelon form of the augmented matrix is 1 0 3 −2 0

0 1 1 −3 0
0 0 0 0 0


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The system is consistent. It has n − r = 4 − 2 = 2 free variables. The
solution set is

S =



x1
x2
x3
x4


∣∣∣∣∣∣∣∣ x1 = −3x3 + 2x4, x2 = −x3 + 3x4



=



−3x3 + 2x4
−x3 + 3x4

x3
x4


∣∣∣∣∣∣∣∣ x3, x4 real numbers


Notice that when we do row operations on the augmented matrix of a homo-

geneous system of linear equations the last column of the matrix is all zeros. Any
one of the three allowable row operations will convert zeros to zeros and thus,
the final column of the matrix in reduced row-echelon form will also be all zeros.
So in this case, we may be as likely to reference only the coefficient matrix and
presume that we remember that the final column begins with zeros, and after any
number of row operations is still zero.

Theorem 7.6. Suppose that a homogeneous system of linear equations has m
equations and n variables with n > m. Then the system has infinitely many
solutions.

Proof of Theorem 7.6. The system is homogeneous, by theorem Theorem 7.4 (Ho-
mogeneous Systems are Consistent) it is consistent. Then the hypothesis that
n > m, together with Theorem 5.25 (Consistent, More Variables than Equations,
Infinite solutions), gives infinitely many solutions.

If n = m, then we can have a unique solution or infinitely many solutions (see
the above examples).

7.2 Null Space of a Matrix
Definition 7.7. The null space of a an m× n matrix A, denoted by N (A), is the
set of vectors x ∈ Rn such that:

Ax = 0.
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Equivalently, it is the set of all the vectors which are solutions to the homogeneous
system LS(A,0). That is, if:

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n

...
am1 am2 am3 . . . amn


then N (A) is the solution set of

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = 0

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = 0

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = 0

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = 0

Example 7.8. Suppose

A =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37


Then

x =



3
0
−5
−6
0
0
1


y =



−4
1
−3
−2
1
1
1


are in N (A) as Ax = 0, Ay = 0.

However, the vector

z =



1
0
0
0
0
0
2


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is not in N (A) as

Az =


−17
16
−16
73

 6= 0.

Example 7.9. Let us compute the null space of

A =

2 −1 7 −3 −8
1 0 2 4 9
2 2 −2 −1 8


which we write as N (A). Translating Definition 7.7, we simply desire to solve
the homogeneous system LS(A,0). So we row-reduce the augmented matrix to
obtain:  1 0 2 0 1 0

0 1 −3 0 4 0

0 0 0 1 2 0


The variables (of the homogeneous system) x3 and x5 are free (since columns 1,
2 and 4 are pivot columns), so we arrange the equations represented by the matrix
in reduced row-echelon form to:

x1 = −2x3 − x5
x2 = 3x3 − 4x5

x4 = −2x5

So we can write the infinite solution set as sets using column vectors,

N (A) =




−2x3 − x5
3x3 − 4x5

x3
−2x5
x5


∣∣∣∣∣∣∣∣∣∣
x3, x5 real numbers

 .

Example 7.10. Let us compute the null space of

C =


−4 6 1
−1 4 1
5 6 7
4 7 1


6

https://www.math.cuhk.edu.hk/~pschan/cranach/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec7.xml&slide=9&item=7.7


which we write as N (C). Translating definition Definition 7.7, we simply desire
to solve the homogeneous system LS(C,0). So we row-reduce the augmented
matrix to obtain 

1 0 0 0

0 1 0 0

0 0 1 0
0 0 0 0


There are no free variables in the homogeneous system represented by the row-
reduced matrix, so there is only the trivial solution, the zero vector, 0. So we can
write the (trivial) solution set as

N (C) = {0} =


00
0

 .

7.3 Particular Solutions, Homogeneous Solutions
The next theorem tells us that in order to find all of the solutions to a linear system
of equations, it is sufficient to find just one solution, and then find all of the solu-
tions to the corresponding homogeneous system. This explains part of our interest
in the null space, the set of all solutions to a homogeneous system.

Theorem 7.11 (Particular Solution Plus Homogeneous Solutions). Suppose that
w is one solution to the linear system of equations LS(A,b). Then y is a solution
to LS(A,b) if and only if y = w + z for some vector z ∈ N (A), i.e.

1. If y is a solution to Ax = b, then y −w ∈ N (A)

2. If z ∈ N (A), then w + z is a solution of Ax = b

In other words, there is a one-to-one correspondence between

solution set of Ax = b←→ N (A) ,

through
y→ y −w,

w + z← z.

Proof of Particular Solution Plus Homogeneous Solutions. Because w is one so-
lution to the linear system of equations LS(A,b), Aw = b.

1. If y is a solution toAx = b, thenAy = b. HenceA(y−w) = Ay−Aw =
b− b = 0. So y −w ∈ N (A).
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2. Suppose z ∈ N (A), Az = 0. So A(w + z) = Aw + Az = b + 0 = b.
Hence w + z is a solution of Ax = b.

Example 7.12.

2x1 + x2 + 7x3 − 7x4 = 8

−3x1 + 4x2 − 5x3 − 6x4 = −12
x1 + x2 + 4x3 − 5x4 = 4

is a consistent system of equations with a nontrivial null space. Let A denote the
coefficient matrix of this system.

Consider the following three solutions to the system:

y1 =


0
1
2
1

 y2 =


4
0
0
0

 y3 =


7
8
1
3


Let w = y1. Then,

y2 −w =


4
−1
−2
−1

 , y3 −w =


7
7
−1
2


are indeed elements in N (A) (check!).

To find all the solutions, we may first work out (using Gaussian elimination
on [A|0], for example) that:

N (A) =

x3

−3
−1
1
0

+ x4


2
3
0
1


∣∣∣∣∣∣∣∣ x3, x4 ∈ R


By the theorem, the solution set to the linear system is:

w +N (A) =



0
1
2
1

+ x3


−3
−1
1
0

+ x4


2
3
0
1


∣∣∣∣∣∣∣∣ x3, x4 ∈ R


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7.4 Augmented matrix vs Coefficient Matrix
The augmented matrix for the homogeneous of system of linear equationsLS(A,0)
is [A|0]. Any row operators on [A|0] will not change the last zero columns. If

A
row operations−−−−−−−→ B

then
[A|0] same row operations−−−−−−−−−−→ [B|0].

Therefore, for the homogeneous system of linear equations, we can replace the
augmented matrix by the coefficient matrix. Just remember there is actually a
zero column as the last column. For example:

2x1 + x2 + 7x3 − 7x4 = 0

−3x1 + 4x2 − 5x3 − 6x4 = 0

x1 + x2 + 4x3 − 5x4 = 0

We can start with coefficient matrix:

A =

 2 1 6 −7
−3 4 −5 −6
1 1 4 −5


The RREF is:  1 0 3 −2

0 1 1 −3
0 0 0 0


The corresponding augmented matrix is: 1 0 3 −2 0

0 1 1 −3 0
0 0 0 0 0


The system is consistent. It has n − r = 4 − 2 = 2 free variables. The solution
set is:
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S =



x1
x2
x3
x4


∣∣∣∣∣∣∣∣ x1 = −3x3 + 2x4, x2 = −x3 + 3x4


=



−3x3 + 2x4
−x3 + 3x4

x3
x4


∣∣∣∣∣∣∣∣ x3, x4 real numbers


7.5 Nonsingular Matrices
In this section we specialize further and consider matrices with equal numbers of
rows and columns, which when considered as coefficient matrices lead to systems
with equal numbers of equations and variables.

Definition 7.13 (Square Matrix). A matrix with m rows and n columns is square
if m = n. In this case, we say the matrix has size n. To emphasize the situation
when a matrix is not square, we will call it rectangular.

Definition 7.14 (Nonsingular Matrix). SupposeA is a square matrix. Suppose fur-
ther that the solution set to the homogeneous linear system of equations LS(A,0)
is {0}, in other words, the system has only the trivial solution. Then we say that
A is a nonsingular matrix. Otherwise we say A is a singular matrix.

Equivalently, a matrix A is nonsingular if and only if its null space N (A)
consists only of the zero vector 0.

Example 7.15. 1. Let

A =

1 −1 2
2 1 1
1 1 0

 .
The system of linear equations LS(A,0) has nontrivial solutions. Hence A
is singular.

2. Let

A =

−7 −6 −125 5 7
1 0 4

 .
The system of linear equations LS(A,0) has only trivial solutions. So it is
nonsingular.
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Recall:

Definition 7.16 (Identity Matrix). The m×m identity matrix, Im, is defined by

[Im]ij =

{
1 i = j

0 i 6= j
1 ≤ i, j ≤ m

i.e.

Im =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 .
Example 7.17. The 4× 4 identity matrix is:

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
Notice that an identity matrix is square, and in reduced row-echelon form.

Also, every column is a pivot column, and every possible pivot column appears
once.

Theorem 7.18 (Nonsingular Matrices Row Reduce to the Identity Matrix). Sup-
pose that A is a square matrix and B is a row-equivalent matrix in reduced row-
echelon form. Then A is nonsingular if and only if B is the identity matrix.

Proof of Nonsingular Matrices Row Reduce to the Identity Matrix. (⇐) Suppose
B is the identity matrix. When the augmented matrix [A|0] is row-reduced, the
result is [B|0] = [In|0]. The number of nonzero rows is equal to the number of
variables in the linear system of equations LS(A,0), so n = r and has n− r = 0
free variables. Thus, the homogeneous system LS(A,0) has just one solution,
which must be the trivial solution. This is exactly the definition of a nonsingular
matrix.

(⇒) If A is nonsingular, then the homogeneous system LS(A,0) has a unique
solution, and has no free variables in the description of the solution set. The
homogeneous system is consistent, by Lecture 4 Theorem 4, the homogeneous
system has n− r free variables. Thus, n− r = 0, and so n = r. So B has n pivot
columns among its total of n columns. This is enough to force B to be the n× n
identity matrix In (why?).
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Example 7.19.

A =

1 −1 2
2 1 1
1 1 0


is row equivalent to the reduced row echelon form

B =

1 0 1
0 1 −1
0 0 0

 .
Since B is not the 3 × 3 identity matrix, the above theorem tells us that A is a
singular matrix.

Example 7.20.

A =

−7 −6 −125 5 7
1 0 4

 .
It is row-equivalent to the reduced row echelon form

B =

1 0 0
0 1 0
0 0 1


Since B is the 3 × 3 identity matrix, A is a nonsingular matrix by the above
theorem.

7.6 Nonsingular Matrices are Invertible
For α, β ∈ R, then αβ 6= 0 if and only if α 6= 0 and β 6= 0. We have a similar
result for nonsingular matrix

Theorem 7.21 (Nonsingular Product has Nonsingular Terms). Suppose that A
and B are square matrices of size n. The product AB is nonsingular if and only
if A and B are both nonsingular.

Proof of Nonsingular Product has Nonsingular Terms. (⇒) For this portion of the
proof we will form the logically-equivalent contrapositive and prove that state-
ment using two cases.

AB is nonsingular implies A and B are both nonsingular.

becomes:
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A or B is singular implies AB is singular.

Case 1. Suppose B is singular. Then there is a nonzero vector z that is a
solution to Bx = 0. So

(AB)z = A(Bz)

= A0

= 0

Then z is a nonzero solution to ABx = 0. Thus AB is singular as desired.
Case 2. Suppose A is singular, and B is not singular. Because A is singular,

there is a nonzero vector y that is a solution to Ax = 0. Now consider the linear
system Bx = y. Since B is nonsingular, the system has a unique solution, which
we will denote as w. We first claim w is not the zero vector either. Assuming the
opposite, suppose that w = 0. Then:

y = Bw

= B0

= 0

This contradicts y 6= 0. Hence, w 6= 0.
Moreover:

(AB)w = A(Bw)

= Ay

= 0

So w is a nonzero solution to ABx = 0. Thus AB is singular as desired. And
this conclusion holds for both cases.

(⇐) Now assume that both A and B are nonsingular. Suppose that x ∈ Rn is
a solution to ABx = 0. Then

0 = (AB)x

= A (Bx)

So Bx is a solution to Ax = 0, and by the definition of a nonsingular matrix, we
conclude that Bx = 0. Now, by an entirely similar argument, the nonsingularity
of B forces us to conclude that x = 0. So the only solution to ABx = 0 is the
zero vector and we conclude that AB is nonsingular.
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The contrapositive of this entire result is equally interesting. It says that A or
B (or both) is a singular matrix if and only if the product AB is singular.

Theorem 7.22 (Nonsingularity is Invertibility). Suppose thatA is a square matrix.
Then A is nonsingular if and only if A is invertible.

Proof of Nonsingularity is Invertibility. (⇐) SupposeA is invertible. Then,Ax =
0 if and only if :

A−1Ax︸ ︷︷ ︸
x

= A−10 = 0.

This implies that the homogeneous linear systemLS(A,0) only exactly one unique
solution x = 0. Hence, A is nonsingular.

(⇒) Suppose A is a nonsingular n × n matrix. Then, A is row-equivalent to
In, which means there are elementary matrices J1, J2, . . . , Jk such that:

Jk · · · J2J1A = In

(Exercise: Every elementary matrix J is invertible.)
Hence,

A = J−11 J−12 · · · J−1k

Since, A is a product of invertible matrices, it is itself invertible, with:

A−1 = Jk · · · J2J1.

(Check: AA−1 = A−1A = In.)

Remark. So for a square matrix, the properties of having an inverse and of having
a trivial null space are one and the same. Cannot have one without the other.

Corollary 7.23 (One-Sided Inverse is Sufficient). Suppose A and B are square
matrices of size n such that AB = In. Then BA = In.

Proof of One-Sided Inverse is Sufficient. Exercise.

Theorem 7.24 (Nonsingular Matrices and Unique Solutions). Suppose that A is
a square matrix. A is a nonsingular matrix if and only if the system LS(A,b) has
a unique solution for every choice of the constant vector b.

Proof of Nonsingular Matrices and Unique Solutions. (⇒) The hypothesis for this
half of the proof is that the systemLS(A,b) has a unique solution for every choice
of the constant vector b. We will make a very specific choice for b: b = 0. Then
we know that the system LS(A,0) has a unique solution. But this is precisely the
definition of what it means for A to be nonsingular.
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(⇐) We assume that A is nonsingular of size n× n, so we know there is a se-
quence of row operations that will convert A into the identity matrix In (Theorem
Theorem 7.18 (Nonsingular Matrices Row Reduce to the Identity Matrix)). Form
the augmented matrix A′ = [A|b] and apply this same sequence of row operations
to A′. The result will be the matrix B′ = [In|c], which is in reduced row-echelon
form with r = n. Then the augmented matrix B′ represents the (extremely sim-
ple) system of equations xi = [c]i, 1 ≤ i ≤ n. The vector c is clearly a solution,
so the system is consistent. With a consistent system, we use Lecture 4 Theorem
4 to count free variables. We find that there are n− r = n− n = 0 free variables,
and so we therefore know that the solution is unique.

Alternatively,

Proof of Nonsingular Matrices and Unique Solutions. SupposeAx = b has a unique
solution for every vector b. Then, in particular, the only solution to Ax = 0 is
x = 0. This implies by definition that A is nonsingular.

Conversely, if A is nonsingular, then A−1 exists. So, Ax = b implies that the
unique solution is x = A−1b.

Theorem 7.25 (Nonsingular Matrix Equivalences). Suppose that A is a square
matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system Ax = b has a unique solution for every possible choice
of b.

5. A is invertible.

Proof of Nonsingular Matrix Equivalences. The statement that A is nonsingular
is equivalent to each of the subsequent statements by, in turn, theorems Theo-
rem 7.18 (Nonsingular Matrices Row Reduce to the Identity Matrix), Definition
7.14 (Nonsingular Matrix), Theorem 7.24 (Nonsingular Matrices and Unique So-
lutions), Theorem 7.22 (Nonsingularity is Invertibility).
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