
MATH 1030 Chapter 13

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Down-
loadable at http://linear.ups.edu/download.html .

The print version can be downloaded at http://linear.ups.edu/download/fcla-
3.50-print.pdf .

Reference.
Beezer, Ver 3.5 Section B (print version p233-238), Section D (print version

p245-253)
Exercise.

• Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-
3.50-solution-manual.pdf (Replace C by R)

Section B p.88-92 C10, C11, C12, M20 Section D p.92-96 C21, C23, C30,
C31, C35, C36, C37, M20, M21.

13.1 Basis
Definition 13.1. Let V be a vector space. Then a subset S of V is said to be a
basis for V if

1. S is linearly independent.

2. SpanS = V , i.e. S spans V .

Remark. Most of the time V is a subspace of Rm. Occasionally V is assumed to
be a subspace of Mmn or Pn. It does not hurt to assume V is a subspace of Rm.

Example 13.2. Let V = Rm, then B = {e1, . . . , em} is a basis for V . (recall all
the entries of ei is zero, except the i-th entry being 1).

It is called the standard basis: ObviouslyB is linearly independent. Also, for
any v ∈ V , v = [v]1e1 + · · ·+ [v]mem ∈ SpanB. So SpanB = V .
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Example 13.3. Math major only
Consider V =M22. Let:

B11 =

[
1 0
0 0

]
, B12 =

[
0 1
0 0

]
,

B21 =

[
0 0
1 0

]
, B22 =

[
0 0
0 1

]
,

Then B = {B11, B12, B21, B22} is a basis for V .
Check: Obviously B is linearly independent (exercise). Also for any A ∈ V ,

A =

[
a b
c d

]
= aB11 + bB12 + cB21 + dB22.

So SpanB =M22.

Exercise 13.4. Math major only
Let V =Mmn.
For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let Bij be the m × n matrix with (i, j)-th entry

equal to 1 and all other entries equal to 0.
Then {Bij|1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for V .

Example 13.5. Math major only
Let V = Pn. Then 1, x, x2, . . . , xn is a basis. It is easy to show that S =

{1, x, x2, . . . , xn} is linearly independent. Also any polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

is a linear combinations of S.

Example 13.6. A vector space can have different bases.
Consider the vector space V = R2.
Then,

S = {e1, e2}

is a basis for V , and:

S ′ =

{[
1
0

]
,

[
1
1

]}
is also a basis.
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13.2 Bases for Spans of Column vectors

13.2.1 Column Spaces and Systems of Equations
Definition 13.7 (Column Space of a Matrix). Suppose that A is an m× n matrix
with columns A1, A2, A3, . . . , An. Then the column space of A, written C (A),
is the subset of Rm consisting of all linear combinations of the columns of A,

C (A) = Span {A1, A2, A3, . . . , An}

Theorem 13.8 (Column Spaces and Consistent Systems). Suppose A is an m×n
matrix and b is a vector of size m. Then b ∈ C (A) if and only if Ax = b is
consistent.

Proof of Column Spaces and Consistent Systems. (⇒) Suppose b ∈ C (A). Then
we can write b as some linear combination of the columns ofA. Then by Theorem
5.18 (Recognizing Consistency of a Linear System) we can use the scalars from
this linear combination to form a solution to Ax = b, so this system is consistent.

(⇐) If Ax = b is consistent, there is a solution that may be used with The-
orem 5.18 (Recognizing Consistency of a Linear System) to write b as a linear
combination of the columns of A. This qualifies b for membership in C (A).

This theorem tells us that asking if the vector equation Ax = b has a solution
is exactly the same question as asking if b is in the column space of A.

Thus, an alternative (and popular) definition of the column space of an m× n
matrix A is

C (A) = {y ∈ Rm | y = Ax for some x ∈ Rn} = {Ax | x ∈ Rn} ⊆ Rm

Example 13.9. Consider the column space of the 3× 4 matrix A,

A =

 3 2 1 −4
−1 1 −2 3
2 −4 6 −8



Show that v =

18−6
12

 is in the column space of A, v ∈ C (A). The above theorem

says that we need to check the consistency of LS(A, v). From the augmented
matrix and row-reduce, 3 2 1 −4 18

−1 1 −2 3 −6
2 −4 6 −8 12

 RREF−−−→

 1 0 1 −2 6

0 1 −1 1 0
0 0 0 0 0


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Since the last column is not a pivot column, so the system is consistent and hence
v ∈ C (A). In fact, we have

v = 6A1.

Next we show that w =

 2
1
−3

 is not in the column space of A, w 6∈ C (A). The

above theorem says that we need to check the consistency of LS(A,w). From the
augmented matrix and row-reduce, 3 2 1 −4 2

−1 1 −2 3 1
2 −4 6 −8 −3

 RREF−−−→

 1 0 1 −2 0

0 1 −1 1 0

0 0 0 0 1


Since the final column is a pivot column, the system is inconsistent and therefore
w 6∈ C (A).

13.2.2 Column Space Spanned by Original Columns
Theorem 13.10 (Basis of the Column Space). Suppose that A is an m×n matrix
with columns A1, A2, A3, . . . , An, and B is a row-equivalent matrix in reduced
row-echelon form with r pivot columns. Let D = {d1, d2, d3, . . . , dr} be the set
of indices for the pivot columns ofB. Let T = {Ad1 , Ad2 , Ad3 , . . . , Adr}. Then:

1. T is a linearly independent set.

2. C (A) = SpanT .

Hence, T is a basis of C(A).

Lemma 13.11. If a matrix A is row-equivalent to B, then any matrix formed
with a subset of columns of A is row-equivalent to the matrix formed with the
corresponding subset of columns (i.e. with the same indices and conforming to
the same order) of B.

Proof of Lemma 13.11. Exercise.

Proof of Basis of the Column Space. Let:

A′ = [Ad1 |Ad2| · · · |Adr ],

B′ = [Bd1 |Bd2| · · · |Bdr ].

Then, A′ and B′ are row-equivalent by the previous lemma.
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1. Since d1, d2, · · · dr are the indices of the pivot columns of B, which is in
RREF, we have:

B′ =

[
Ir

O(m−r)×r

]
.

(If r = m, then B′ = Ir.)

Hence, B′x = 0 if and only if x = 0.

Since A′ is row-equivalent to B′, we have A′x = 0 if and only if x = 0,
which implies that the columns of A′, i.e. the elements of T , are linearly
independent.

2. Given any integer 1 ≤ j ≤ nwhich does not lie inD (i.e. the index of a non-
pivot column of B), consider the linear system LS(A′,Aj) (or equivalently
A′x = Aj).

By the previous lemma, the corresponding the augmented matrix [A′|Aj] is
row-equivalent to [B′|Bj], which has the form:



Ir

∗
∗
...
∗

O(m−r)×r

0
0
...
0


.

Hence, the linear system LS(A′,Aj) is consistent (in fact, with one unique
solution), which implies that Aj lies in the span of {Ad1 ,Ad2 , . . . ,Adr}.
This holds for all j /∈ D. Hence, by Theorem 11.11, we have:

C(A) = Span{A1,A2, . . . ,An} = Span{Ad1 ,Ad2 , . . . ,Adr} = SpanT.

Example 13.12. Consider the 5× 7 matrix A,
2 4 1 −1 1 4 4
1 2 1 0 2 4 7
0 0 1 4 1 8 7
1 2 −1 2 1 9 6
−2 −4 1 3 −1 −2 −2


5
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The column space of A is

C (A) = Span




2
1
0
1
−2

 ,


4
2
0
2
−4

 ,


1
1
1
−1
1

 ,

−1
0
4
2
3

 ,


1
2
1
1
−1

 ,


4
4
8
9
−2

 ,


4
7
7
6
−2




While this is a concise description of an infinite set, we might be able to describe
the span with fewer than seven vectors. Now we row-reduce,

2 4 1 −1 1 4 4
1 2 1 0 2 4 7
0 0 1 4 1 8 7
1 2 −1 2 1 9 6
−2 −4 1 3 −1 −2 −2

 RREF−−−→


1 2 0 0 0 3 1

0 0 1 0 0 −1 0

0 0 0 1 0 2 1

0 0 0 0 1 1 3
0 0 0 0 0 0 0


The pivot columns are D = {1, 3, 4, 5}, so we can create the set

T =




2
1
0
1
−2

 ,


1
1
1
−1
1

 ,

−1
0
4
2
3

 ,


1
2
1
1
−1




and know that C (A) = SpanT and T is a linearly independent set of columns
from the set of columns of A.

Hence, T is a basis of C(A).

Example 13.13. Let

A =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 ,
find C (A).

A
RREF−−−→ B =


1 4 0 0 2 1 −3
0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0

 .
The indices of the pivot columns are D = {1, 3, 4}. Hence {A1,A3,A4} is a
basis of C(A).

6



13.3 Bases and Nonsingular Matrices
Theorem 13.14 (Column Space of a Nonsingular Matrix). Suppose A is a square
matrix of size n. Then A is nonsingular if and only if C (A) = Rn.

Proof of Column Space of a Nonsingular Matrix. See Theorem 11.9.

Hence, we may rephrase Theorem 12.17 (Nonsingular Matrix Equivalences,
Round 2) as follows:

Theorem 13.15 (Nonsingular Matrix Equivalences). Suppose that A is an m×m
square matrix. The following are equivalent:

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A,b) has a unique solution for every possible choice
of b.

5. A is invertible.

6. The columns of A form a linearly independent set.

7. The columns space C(A) is equal to Rm.

8. The columns of A form a basis for Rm.

Example 13.16. Consider S ′ =
{
v1 =

[
1
0

]
,v2 =

[
1
1

]}
.

Let

A = [v1|v2] =

[
1 1
0 1

]
Exercise. The matrix A is nonsingular.

Hence, S ′ is a basis for R2.

Example 13.17.

A =

−7 −6 −125 5 7
1 0 4

 .
It may be shown that A is row equivalent to the 3× 3 identity matrix.

Hence A is nonsingular, so the columns of A form a basis for R3.
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Example 13.18. Let

A =


0 1 2 3
−1 1 2 1
0 1 0 2
1 1 1 4

 .
We can show that A is nonsingular as A RREF−−−→ I4. So C (A) = R4.

13.4 Row Space of a Matrix
Definition 13.19 (Row Space of a Matrix). Suppose A is an m × n matrix. The
row space of A,R(A) is column space C (At) of At.

Informally, the row space is the set of all linear combinations of the rows of
A. However, we write the rows as column vectors, thus the necessity of using
the transpose to make the rows into columns. Additionally, with the row space
defined in terms of the column space, all of the previous results of this section can
be applied to row spaces.

Notice that if A is a rectangular m × n matrix, then C (A) ⊆ Rm, while
R(A) ⊆ Rn and the two sets are not comparable since they do not even hold
objects of the same type. However, when A is square of size n, both C (A) and
R(A) are subsets of Rn, though usually the sets will not be equal.

Example 13.20. FindR(A) for

A =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .
To build the row space, we transpose the matrix,

At =



1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37


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Then the columns of this matrix are used in a span to build the row space,

R(A) = C
(
At
)
= Span





1
4
0
−1
0
7
−9


,



2
8
−1
3
9
−13
7


,



0
0
2
−3
−4
12
−8


,



−1
−4
2
4
8
−31
37




.

First, row-reduce At, 

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Since the pivot columns have indices D = {1, 2, 3}, the column space of At can
be spanned by just the first three columns of At,

R(A) = C
(
At
)
= Span





1
4
0
−1
0
7
−9


,



2
8
−1
3
9
−13
7


,



0
0
2
−3
−4
12
−8




.

Theorem 13.21 (Row-Equivalent Matrices have Equal Row Spaces). Suppose A
and B are row-equivalent matrices. ThenR(A) = R(B).

Proof of Row-Equivalent Matrices have Equal Row Spaces. Observe that if B is
obtained from A via a row operation of the type Ri ↔ Rj , then the rows of B are
the same as the rows of A, and hence the columns of Bt are still the same as the
columns of At, only with the order changed. Hence,

R(B) = C
(
Bt
)
= C

(
At
)
= R(A).

If B is obtained from A via a row operation of the type αRi (α 6= 0), then the
i-th column of Bt is equal to α times the i-th column of At, and the other columns
remain the same as those of At with the corresponding indices.
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In paricular, the i-th column of Bt is a linear combination of the columns of
At.

Hence, the columns of Bt all lie in C(At), which in turn implies that:

R(B) = C
(
Bt
)
⊆ C

(
At
)
= R(A).

On the other hand, if B is obtained from A via αRi, then A is obtained from B
via
(
1
α

)
Ri. So, by the same argument as before we have:

R(A) = C
(
At
)
⊆ C

(
Bt
)
= R(B).

Hence,R(B) = R(A).
If B is obtained from A via a row operation of the type αRi +Rj , then:[

Bt
]
j
= α

[
At
]
i
+
[
At
]
j
,

and the other columns ofBt remain the same as those ofAt with the corresponding
indices.

In paricular, the i-th column of Bt is a linear combination of the columns of
At.

Hence, the columns of Bt all lie in C(At), which in turn implies that:

R(B) = C
(
Bt
)
⊆ C

(
At
)
= R(A).

On the other hand, if B is obtained from A via αRi+Rj , then A is obtained from
B via (−α)Ri +Rj . So, by the same argument as before we have:

R(A) = C
(
At
)
⊆ C(Bt) = R(B).

Hence,R(B) = R(A).
We now see that the row space of a matrix remains unchanged after any appli-

cation of a row operation.
Hence, R(B) = R(A) if B is row-equivalent to A, since by the definition of

row-equivalence (Definition 4.15 (Row-Equivalent Matrices)) B is obtained by A
via a series of row operations.

Example 13.22. Row spaces of two row-equivalent matrices
The matrices

A =

2 −1 3 4
5 2 −2 3
1 1 0 6

 B =

1 1 0 6
3 0 −2 −9
2 −1 3 4


are row-equivalent via a sequence of two row operations.
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Hence by the above theorem

R(A) = Span




2
−1
3
4

 ,


5
2
−2
3

 ,

1
1
0
6


 = Span



1
1
0
6

 ,


3
0
−2
−9

 ,


2
−1
3
4


 = R(B)

Theorem 13.23 (Basis for the Row Space). Suppose that A is a matrix and B is
a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero
columns of Bt. Then

1. R(A) = SpanS.

2. S is a linearly independent set.

Proof of Basis for the Row Space. From Theorem Theorem 13.21 (Row-Equivalent
Matrices have Equal Row Spaces). we know that R(A) = R(B). If B has any
zero rows, these are columns of Bt that are the zero vector. We can safely toss out
the zero vector in the span construction, since it can be recreated from the nonzero
vectors by a linear combination where all the scalars are zero. SoR(A) = SpanS.

Suppose B has r nonzero rows and let D = {d1, d2, d3, . . . , dr} denote the
indices of the pivot columns of B. Denote the r column vectors of Bt, the vectors
in S, as B1, B2, B3, . . . , Br. To show that S is linearly independent, start with a
relation of linear dependence

α1B1 + α2B2 + α3B3 + · · ·+ αrBr = 0

Now consider this vector equality in location di. Since B is in reduced row-
echelon form, the entries of column di of B are all zero, except for a leading 1
in row i. Thus, in Bt, row di is all zeros, excepting a 1 in column i. So, for
1 ≤ i ≤ r,

0 = [0]di
= [α1B1 + α2B2 + α3B3 + · · ·+ αrBr]di
= [α1B1]di + [α2B2]di + [α3B3]di + · · ·+ [αrBr]di
= α1 [B1]di + α2 [B2]di + α3 [B3]di + · · ·+ αr [Br]di
= α1(0) + α2(0) + α3(0) + · · ·+ αi(1) + · · ·+ αr(0)

= αi

So we conclude that αi = 0 for all 1 ≤ i ≤ r, establishing the linear independence
of S.
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Theorem 13.24 (Column Space Row Space Transpose). Suppose A is a matrix.
Then C (A) = R(At).
Proof of Column Space, Row Space, Transpose.

C (A) = C
((
At
)t)

= R
(
At
)

Example 13.25. Column space from row operations
Let

S =

v1 =


1
2
0
−1

 ,v2 =


4
8
0
−4

 ,v3 =


0
−1
2
2

 ,v4 =


−1
3
−3
4

 ,v5 =


0
9
−4
8

 ,v6 =


7
−13
12
−31

 ,v7 =


−9
7
−8
37


 .

Find a basis for SpanS.

A = [v1| · · · |v7] =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .
Method 1

A
RREF−−−→


1 4 0 0 2 1 −3
0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0


Let

T = {v1,v3,v4} =




1
2
0
−1

 ,


0
−1
2
2

 ,

−1
3
−3
4


 .

Then T is a basis for SpanS = C (A).
Method 2 The transpose of A is

1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37


.
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Row-reduced this becomes,

D =



1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Then we can take

T =




1
0
0
−31

7

 ,

0
1
0
12
7

 ,

0
0
1
13
7


 .

T is a basis for C (A) = SpanS.

Remark. Both methods describe algorithms to find bases (i.e., linear independent
set the generate the column space) for the column space. Here are the differences.

1. In method 1, we find a subset of columns that forms a basis. However in
method 2, the basis is not a subset of columns.

2. Given a vector b ∈ C (A), it is easier to express it as a linear combination
of the basis given by method 2.

Theorem 13.26. Let S be a finite subset of Rm. Then, a basis for SpanS exists.
In fact, there exists a subset T of S such that T is a basis for SpanS (see

Theorem 13.10 (Basis of the Column Space)).

13.5 Bases of Null Spaces
In this section, we will find a linearly independent set that spans a null space.
Recall that, by Theorem 11.12, there exists a particular set of n − r vectors that
could be used to span the null space of a matrix.

Example 13.27. Linear independence of null space basis
Suppose that we are interested in the null space of a 3 × 7 matrix A which

row-reduces to

B =

 1 0 −2 4 0 3 9

0 1 5 6 0 7 1

0 0 0 0 1 8 −5

 .
13
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Then F = {3, 4, 6, 7} is the set of indices for our four free variables that would
be used in a description of the solution set for the homogeneous system LS(A,0).
Applying Theorem 7.6, we can begin to construct a set of four vectors whose span
is the null space of A, a set of vectors we will refer to as T .

N (A) = SpanT = Span {z1, z2, z3, z4}

= Span




1
0

0
0


,


0
1

0
0


,


0
0

1
0


,


0
0

0
1




So far, we have constructed as much of these individual vectors as we can, based
just on the knowledge of the contents of the set F . This has allowed us to deter-
mine the entries in slots 3, 4, 6 and 7, while we have left slots 1, 2 and 5 blank.
Without doing any more, let us ask if T is linearly independent? Begin with a
relation of linear dependence on T , and see what we can learn about the scalars.

0 = α1z1 + α2z2 + α3z3 + α4z4

0
0
0
0
0
0
0


= α1


1
0

0
0


+ α2


0
1

0
0


+ α3


0
0

1
0


+ α4


0
0

0
1



=


α1

0

0
0


+


0
α2

0
0


+


0
0

α3

0


+


0
0

0
α4


=


α1

α2

α3

α4


Applying the equalities of vectors, we see that α1 = α2 = α3 = α4 = 0. So the
only relation of linear dependence on the set T is the trivial one. By the definition
of linear independence, the set T is linearly independent. The important feature
of this example is how the pattern of zeros and ones in the four vectors led to the
conclusion of linear independence.
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Theorem 13.28 (Basis for Null Spaces). Suppose thatA is anm×nmatrix, andB
is a row-equivalent matrix in reduced row-echelon form with r pivot columns. Let
D = {d1, d2, d3, . . . , dr} and F = {f1, f2, f3, . . . , fn−r} be the sets of column
indices of B which are and are not, respectively, pivot columns. Construct the
n− r vectors zj , 1 ≤ j ≤ n− r of size n as

[zj]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

(In fact zj corresponding to the solution xfj = 1 and xfk = 0 for k 6= j.) Define
the set S = {z1, z2, z3, . . . , zn−r}. Then

1. N (A) = SpanS.

2. S is a linearly independent set.

Proof of Basis for Null Spaces. Study the above example. You can skip the proof
for now. Notice first that the vectors zj , 1 ≤ j ≤ n− r, are the same as the n− r
vectors defined in Theorem 11.12. Also, the hypotheses of Theorem 11.12 are
the same as the hypotheses of the theorem we are currently proving. So Theorem
11.12 tells us that N (A) = SpanS. That was the easy half, but the second part
is not much harder. What is new here is the claim that S is a linearly independent
set.

To prove the linear independence of a set, we need to start with a relation of
linear dependence and somehow conclude that the scalars involved must all be
zero, i.e., that the relation of linear dependence is trivial. So, we start with and
equation of the form

α1z1 + α2z2 + α3z3 + · · ·+ αn−rzn−r = 0.

For each j, 1 ≤ j ≤ n − r, consider the equality of the individual entries of the
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vectors on both sides of this equality in position fj:

0 = [0]fj

= [α1z1 + α2z2 + α3z3 + · · ·+ αn−rzn−r]fj

= [α1z1]fj + [α2z2]fj + [α3z3]fj + · · ·+ [αn−rzn−r]fj

= α1 [z1]fj + α2 [z2]fj + α3 [z3]fj + · · ·+
αj−1 [zj−1]fj + αj [zj]fj + αj+1 [zj+1]fj + · · ·+
αn−r [zn−r]fj

= α1(0) + α2(0) + α3(0) + · · ·+
αj−1(0) + αj(1) + αj+1(0) + · · ·+ αn−r(0) definition of zj

= αj

So for all j, 1 ≤ j ≤ n − r, we have αj = 0. Hence, the only relation of linear
dependence on S = {z1, z2, z3, . . . , zn−r} is the trivial one. By the definition of
linear independence, the set is linearly independent, as desired.

Example 13.29. Find the null space of the matrix

A =


−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6

 .
Solution. The RREF of A is:

B =


1 0 0 1 −2
0 1 0 −2 2

0 0 1 2 −1
0 0 0 0 0
0 0 0 0 0

 .
The free variables are x4 and x5.

Setting x4 = 1 and x5 = 0 gives:

z1 =


−1
2
−2
1
0

 .
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Setting instead x4 = 0 and x5 = 1 gives

z2 =


2
−2
1
0
1

 .
Hence

N (A) = Span




−1
2
−2
1
0

 ,


2
−2
1
0
1


 .

Note that the spanning set on the right is linearly independent. So, it forms a basis
for N (A).
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