
MATH 1030 Chapter 12

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Down-
loadable at http://linear.ups.edu/download.html .

The print version can be downloaded at http://linear.ups.edu/download/fcla-
3.50-print.pdf .

Reference.

• Beezer, Ver 3.5 Section LDS (print version p105 - p113)

• Strang, Sect 2.3

Exercise

• Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-
3.50-solution-manual.pdf Section LI (p.48-51) (Replace C by R in the fol-
lowing questions) C20, C40, C50, C51, C52, C55, C70, M10, T40.

• Strang, Sect 2.3

12.1 Linearly Independent Sets of Vectors
Definition 12.1 (Relation of Linear Dependence). Given a set of vectors S =
{u1, u2, u3, . . . , un}, an equality of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this equality is formed in a trivial
fashion, i.e., αi = 0, 1 ≤ i ≤ n, then we say that it is the trivial relation of linear
dependence on S.

Definition 12.2 (Linear Independence). The set of vectors S = {u1, u2, u3, . . . , un}
is linearly dependent if there is a relation of linear dependence on S that is not
trivial. In the case where the only relation of linear dependence on S is the trivial
one, then S is a linearly independent set of vectors.
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Remark. In short, a set of vectors {u1, u2, u3, . . . , un} is linearly independent
if and only if the only solution to:

x1u1 + x2u2 + · · ·+ xnun = 0

is:
x1 = x2 = · · · = xn = 0.

Theorem 12.3 (Linearly Independent Vectors and Homogeneous Systems). Sup-
pose that S = {v1, v2, v3, . . . , vn} ⊆ Rm is a set of vectors and that A is the
m×nmatrix whose columns are the vectors in S. Then S is a linearly independent
set if and only if the homogeneous system LS(A,0) has a unique solution.

Proof of Linearly Independent Vectors and Homogeneous Systems. (⇐) Suppose
that LS(A,0) has a unique solution. Since it is a homogeneous system, this solu-
tion must be the trivial solution, x = 0. This means that the only relation of linear
dependence on S is the trivial one. So S is linearly independent.

(⇒) We will prove the contrapositive. Suppose that LS(A,0) does not have a
unique solution. Since it is a homogeneous system, it is consistent. And so must
have infinitely many solutions. One of these infinitely many solutions must be
nontrivial (in fact, almost all of them are); choose one. This nontrivial solution
will give a nontrivial relation of linear dependence on S. We therefore conclude
that S is a linearly dependent set.

Since the above theorem is an "if-and-only-if" statement, we can use it to
determine the linear independence or dependence of any set of column vectors,
just by creating a matrix and analyzing its row-reduced echelon form. Let us
illustrate this with two more examples.

Example 12.4. Linearly dependent set in R5

Consider the following set of n = 4 vectors in R5:

S =




2
−1
3
1
2

 ,


1
2
−1
5
2

 ,


2
1
−3
6
1

 ,

−6
7
−1
0
1




To determine linear independence, we first form an arbitrary relation of linear
dependence,

α1


2
−1
3
1
2

+ α2


1
2
−1
5
2

+ α3


2
1
−3
6
1

+ α4


−6
7
−1
0
1

 = 0
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We know that α1 = α2 = α3 = α4 = 0 is a solution to this equation, but that is
of no interest whatsoever. That is always the case, no matter what four vectors we
might have chosen. We are curious to know if there are other, nontrivial, solutions.

In other words, are there nontrivial solutions to the homogeneous linear system
LS(A,0), where the columns of A consist of the vectors in S.

Row-reducing the matrix A gives:

A =


2 1 2 −6
−1 2 1 7
3 −1 −3 −1
1 5 6 0
2 2 1 1

 RREF−−−→


1 0 0 −2
0 1 0 4

0 0 1 −3
0 0 0 0
0 0 0 0

 .
We could solve the corresponding homogeneous system completely, but for this
example all we need is one nontrivial solution. Setting the lone free variable to
any nonzero value, such as x4 = 1, yields the nontrivial solution:

x =


2
−4
3
1

 .
Hence,

2


2
−1
3
1
2

+ (−4)


1
2
−1
5
2

+ 3


2
1
−3
6
1

+ 1


−6
7
−1
0
1

 = 0.

This is a relation of linear dependence on S that is not trivial, so we conclude that
S is linearly dependent .

Example 12.5. Linearly independent set in R5

Consider the following set of n = 4 vectors in R5:

T =




2
−1
3
1
2

 ,


1
2
−1
5
2

 ,


2
1
−3
6
1

 ,

−6
7
−1
1
1


 .
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To determine linear independence we first form an arbitrary relation of linear de-
pendence,

α1


2
−1
3
1
2

+ α2


1
2
−1
5
2

+ α3


2
1
−3
6
1

+ α4


−6
7
−1
1
1

 = 0.

We want to know if there are solutions to the equation above besides the trivial
one: α1 = α2 = α3 = α4 = 0.

Row-reducing the associated matrix gives:

B =


2 1 2 −6
−1 2 1 7
3 −1 −3 −1
1 5 6 1
2 2 1 1

 RREF−−−→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0

 .

From the form of this matrix, we see that there are no free variables. Hence the
associated homogeneous linear system has only the trivial solution. So we now
know that there is but one way to combine the four vectors of T into a relation of
linear dependence, and that this one way is the easy and obvious way. Hence, the
set T is linearly independent .

12.1.1 More Examples
Example 12.6. Linearly independent

Is the set of vectors:

S =




2
−1
3
4
2

 ,


6
2
−1
3
4

 ,


4
3
−4
5
1




linearly independent or linearly dependent?

Solution. The above theorem suggests that we study the matrixA whose columns
are the vectors in S. Specifically, we are interested in the size of the solution set
of the homogeneous system LS(A,0). Row-reducing A gives:
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A =


2 6 4
−1 2 3
3 −1 −4
4 3 5
2 4 1

 RREF−−−→


1 0 0

0 1 0

0 0 1
0 0 0
0 0 0

 .
We have r = 3, so there are n − r = 3 − 3 = 0 free variables. Hence LS(A,0)
has a unique solution. By the above theorem, the set S is linearly independent.

Example 12.7. Linearly dependent
Is the set of vectors:

S =




2
−1
3
4
2

 ,


6
2
−1
3
4

 ,


4
3
−4
−1
2




linearly independent or linearly dependent?

Solution. Theorem Theorem 12.3 (Linearly Independent Vectors and Homoge-
neous Systems) suggests that we study the matrix A whose columns are the vec-
tors in S. Specifically, we are interested in the size of the solution set of the
homogeneous system LS(A,0). Row-reducing A gives

A =


2 6 4
−1 2 3
3 −1 −4
4 3 −1
2 4 2

 RREF−−−→


1 0 −1
0 1 1
0 0 0
0 0 0
0 0 0

 .
We have r = 2, so there are n − r = 3 − 2 = 1 free variables. Hence LS(A,0)
has infinitely many solutions. By Theorem Theorem 12.3 (Linearly Independent
Vectors and Homogeneous Systems), the set S is linearly dependent.

Theorem Theorem 12.3 (Linearly Independent Vectors and Homogeneous Sys-
tems) gives us a straightforward way to determine if a set of vectors is linearly
independent or dependent.

Review the previous two examples. They are very similar, differing only in the
last two slots of the third vector. This resulted in slightly different matrices when
row-reduced, and different values of r, the number of nonzero rows. Notice, too,
that we are less interested in the actual solution set, and more interested in its form
or size. These observations allow us to make a slight improvement on Theorem
Theorem 12.3 (Linearly Independent Vectors and Homogeneous Systems).
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12.2 Linearly Dependent Sets and Spans
If we use a linearly dependent set to construct a span, then we can always create
the same infinite set by starting with a set that is one vector smaller in size. We
will illustrate this behaviour in Example 12.9. However, this will not be possible
if we build a span from a linearly independent set. So, in a certain sense, using a
linearly independent set to formulate a span is the best possible way – there are
no any extra vectors being used to build up all the necessary linear combinations.
OK, here is the theorem, and then the example.

Theorem 12.8 (Dependency in Linearly Dependent Sets). Suppose that S =
{u1, u2, u3, . . . , un} is a set of vectors. Then S is a linearly dependent set if
and only if there is an index t, 1 ≤ t ≤ n, such that ut is a linear combination of
the vectors u1, u2, u3, . . . , ut−1, ut+1, . . . , un.

Proof of Dependency in Linearly Dependent Sets. (⇒) Suppose that S is linearly
dependent. Then there exists a nontrivial relation of linear dependence (Definition
12.1 (Relation of Linear Dependence)). That is, there are scalars, αi, 1 ≤ i ≤ n,
not all of which are zero, such that

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0.

Suppose that αt is nonzero. Then,

ut =
−1
αt

(−αtut)

=
−1
αt

(α1u1 + · · ·+ αt−1ut−1 + αt+1ut+1 + · · ·+ αnun)

=
−α1

αt
u1 + · · ·+

−αt−1
αt

ut−1 +
−αt+1

αt
ut+1 + · · ·+

−αn
αt

un.

Since αi

αt
is again a scalar, we have expressed ut as a linear combination of the

other elements of S.
(⇐) Assume that the vector ut is a linear combination of the other vectors in

S. Write such a linear combination as

ut = β1u1 + β2u2 + · · ·+ βt−1ut−1 + βt+1ut+1 + · · ·+ βnun.

Then we have

β1u1 + · · ·+ βt−1ut−1 + (−1)ut + βt+1ut+1 + · · ·+ βnun

= ut + (−1)ut
= (1 + (−1))ut
= 0ut

= 0.
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So the scalars β1, β2, β3, . . . , βt−1, βt = −1, βt+1, . . . , βn provide a nontrivial
relation of linear dependence of the vectors in S, thus establishing that S is a
linearly dependent set.

This theorem can be used, sometimes repeatedly, to whittle down the size of
a set of vectors used in a span construction. In the next example we will examine
some of the subtleties.

Example 12.9. Reducing the generating set of a span in R5

Consider the following set of n = 4 vectors in R5,

R = {v1, v2, v3, v4} =




1
2
−1
3
2

 ,

2
1
3
1
2

 ,


0
−7
6
−11
−2

 ,

4
1
2
1
6


 .

Define V = SpanR.
We form a 5 × 4 matrix, D, and row-reduce it to understand the solutions to

the homogeneous system LS(D,0):

D =


1 2 0 4
2 1 −7 1
−1 3 6 2
3 1 −11 1
2 2 −2 6

 RREF−−−→


1 0 0 4

0 1 0 0

0 0 1 1
0 0 0 0
0 0 0 0

 .

We can find infinitely many solutions to the system LS(D,0), most of which are
nontrivial. Choose any nontrivial solution to build a nontrivial relation of linear
dependence on R. Let us begin with x4 = 1, to find the solution

−4
0
−1
1

 .
The corresponding relation of linear dependence is

(−4)v1 + 0v2 + (−1)v3 + 1v4 = 0.

The theorem above guarantees that we can solve this relation of linear dependence
for some vector in R, but the choice of which one is up to us. Notice however that
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v2 has a zero coefficient. In this case, we cannot choose to solve for v2. Maybe
some other relation of linear dependence would produce a nonzero coefficient for
v2 if we just had to solve for this vector. Unfortunately, this example has been
engineered to always produce a zero coefficient here, as you can see from solving
the homogeneous system. Every solution has x2 = 0!

OK, if we are convinced that we cannot solve for v2, let us instead solve for
v3:

v3 = (−4)v1 + 0v2 + 1v4 = (−4)v1 + 1v4

We claim that this particular equation will allow us to write

V = SpanR = Span {v1, v2, v3, v4} = Span {v1, v2, v4} ,

in essence declaring v3 as surplus for the task of building V as a span of R. This
claim is an equality of two sets. Let R′ = {v1, v2, v4} and V ′ = SpanR′. We
want to show that V = V ′.

First show that V ′ ⊆ V . Since every vector of R′ is in R, any vector we can
construct in V ′ as a linear combination of vectors from R′ can also be constructed
as a vector in V by the same linear combination of the same vectors in R. That
was easy, now turn it around.

Next show that V ⊆ V ′. Choose any v from V . So there are scalars α1, α2, α3, α4

such that

v = α1v1 + α2v2 + α3v3 + α4v4

= α1v1 + α2v2 + α3 ((−4)v1 + 1v4) + α4v4

= α1v1 + α2v2 + ((−4α3)v1 + α3v4) + α4v4

= (α1 − 4α3)v1 + α2v2 + (α3 + α4)v4.

This equation says that v can be written as a linear combination of the vectors in
R′ and hence qualifies for membership in V ′. So V ⊆ V ′ and we have established
that V = V ′.

If R′ was also linearly dependent (in fact, it is not), we could reduce the set R′

even further. Notice that we could have chosen to eliminate any one of v1, v3 or
v4, but somehow v2 is essential to the creation of V since it cannot be replaced by
any linear combination of v1, v3 or v4.

12.3 Relation between Linear Independence and the
Number of Pivot Columns

Theorem 12.10 (Linearly Independent Vectors r and n). Suppose that

S = {v1, v2, v3, . . . , vn} ⊆ Rm
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is a set of vectors and that A is the m×n matrix whose columns are the vectors in
S. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and
let r denote the number of pivot columns in B. Then S is linearly independent if
and only if n = r.

Proof of Linearly Independent Vectors, r and n. Theorem Theorem 12.3 (Linearly
Independent Vectors and Homogeneous Systems) says the linear independence of
S is equivalent to the homogeneous linear system LS(A,0) having a unique solu-
tion. Since the zero vector is a solution of LS(A,0), LS(A,0) is consistent. We
can therefore can apply Theorem 5.21 (Consistent Systems, r and n) to see that
the solution is unique exactly when n = r.

Here is an example of the most straightforward way to determine if a set of
column vectors is linearly independent or linearly dependent. While this method
can be quick and easy, do not forget the logical progression from the definition
of linear independence through homogeneous system of equations which makes
it possible.

Example 12.11. Linear dependence, r and n
Is the set of vectors:

S =




2
−1
3
1
0
3

 ,


9
−6
−2
3
2
1

 ,

1
1
1
0
0
1

 ,

−3
1
4
2
1
2

 ,


6
−2
1
4
3
2




linearly independent or linearly dependent?

Solution. Theorem Theorem 12.10 (Linearly Independent Vectors, r and n) sug-
gests that we take the vectors of S as the columns of a matrix and then analyze its
reduced row-echelon form:

2 9 1 −3 6
−1 −6 1 1 −2
3 −2 1 4 1
1 3 0 2 4
0 2 0 1 3
3 1 1 2 2


RREF−−−→



1 0 0 0 −1
0 1 0 0 1

0 0 1 0 2

0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

 .

Now we need only compute that r = 4 < 5 = n to recognize, via Theorem Theo-
rem 12.10 (Linearly Independent Vectors, r and n), that S is a linearly dependent
set. Boom!
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Example 12.12. Large linearly dependent set in R4

Consider the set of n = 9 vectors from R4,

R =



−1
3
1
2

 ,


7
1
−3
6

 ,


1
2
−1
−2

 ,

0
4
2
9

 ,


5
−2
4
3

 ,


2
1
−6
4

 ,


3
0
−3
1

 ,

1
1
5
3

 ,

−6
−1
1
1


 .

To employ Theorem Theorem 12.3 (Linearly Independent Vectors and Homoge-
neous Systems), we form a 4 × 9 matrix C whose columns are the vectors in
R:

C =


−1 7 1 0 5 2 3 1 −6
3 1 2 4 −2 1 0 1 −1
1 −3 −1 2 4 −6 −3 5 1
2 6 −2 9 3 4 1 3 1

 .
To determine if the homogeneous system LS(C,0) has a unique solution or not,
we would normally row-reduce this matrix. But in this particular example, we can
do better:

Since the system is homogeneous with n = 9 variables in m = 4 equations,
and n > m, there are infinitely many solutions. Since there is not a unique so-
lution, Theorem Theorem 12.3 (Linearly Independent Vectors and Homogeneous
Systems) says the set R is linearly dependent.

The following theorem generalizes the previous example.

Theorem 12.13 (More Vectors than Size implies Linear Dependence). Suppose
that S = {u1, u2, u3, . . . , un} ⊆ Rm and n > m. Then S is a linearly depen-
dent set.

Proof of More Vectors than Size implies Linear Dependence. Form them×nma-
trix A whose columns are ui, 1 ≤ i ≤ n. Consider the homogeneous system
LS(A,0). By Theorem 7.6 this system has infinitely many solutions. Since the
system does not have a unique solution, Theorem Theorem 12.3 (Linearly In-
dependent Vectors and Homogeneous Systems) says the columns of A form a
linearly dependent set, as desired.

12.4 Linear Independence and Nonsingular Matri-
ces

We will now specialize to sets of n vectors in Rn.
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Example 12.14. Linearly dependent columns
Do the columns of the matrix 1 −1 2

2 1 1
1 1 0


form a linearly independent or dependent set?

Solution. We can show that A is singular. According to the definition of nonsin-
gular matrices, the homogeneous system LS(A,0) has infinitely many solutions.
So, by Theorem Theorem 12.3 (Linearly Independent Vectors and Homogeneous
Systems), the columns of A form a linearly dependent set.

Example 12.15. Linearly independent columns
Do the columns of this matrix

B =

−7 −6 −125 5 7
1 0 4


form a linearly independent or dependent set?

Solution. We can show that B is nonsingular. According to the definition of
nonsingular matrices, the homogeneous system LS(A,0) has a unique solution.
So, by Theorem Theorem 12.3 (Linearly Independent Vectors and Homogeneous
Systems), the columns of B form a linearly independent set.

That the previous two examples have opposite properties for the columns of
their coefficient matrices is no accident. Here is the theorem, and then we will
update our equivalences for nonsingular matrices.

Theorem 12.16 (Nonsingular Matrices have Linearly Independent Columns). Sup-
pose that A is a square matrix. Then A is nonsingular if and only if the columns
of A form a linearly independent set.

Proof of Nonsingular Matrices have Linearly Independent Columns. This is a proof
where we can chain together equivalences, rather than proving the two halves sep-
arately.

A nonsingular ⇐⇒ LS(A,0) has a unique solution

⇐⇒ A~x = ~0 has a unique solution ~x
⇐⇒ columns of A are linearly independent
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Here is the update to Theorem 7.25 (Nonsingular Matrix Equivalences)

Theorem 12.17 (Nonsingular Matrix Equivalences Round 2). Suppose that A is
a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A,b) has a unique solution for every possible choice
of b.

5. A is invertible.

6. The columns of A form a linearly independent set.

Proof of Nonsingular Matrix Equivalences, Round 2. This follows directly from
Theorem 12.16 (Nonsingular Matrices have Linearly Independent Columns) and
Theorem 7.25 (Nonsingular Matrix Equivalences).

12.5 Uniqueness of RREF
Math Major only. You can skip this section. Similar concept appears in the
classworks.

Example 12.18. Entries of RREF B gives relationship of columns of A
Let

A =

1 2 1 8 1 17
1 2 2 13 3 37
1 2 0 3 −2 −10

 .
Then A can be row reduced to

B =

1 2 0 3 0 4
0 0 1 5 0 6
0 0 0 0 1 7

 .
Let Ai (resp. Bi) be the i-th column of A (resp. B) for i = 1, . . . , 6. By the
equivalence of system of linear equation LS(A,0) and LS(B,0), we have

x1A1 + x2A2 + · · ·+ x6A6 = 0 (12.1)
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if and only if

x1B1 + x2B2 + · · ·+ x6B6 = 0. (12.2)

Step 1 First of all, if (x1, x2, x3, x4, x5, x6) = (x1, 0, 0, 0, 0, 0) is a solution of
(12.2), then

x1B1 = 0.

So x1 is zero. This is equivalent to

x1A1 = 0.

It has only the trivial solution, i.e. {A1} is linearly independent. Hence d1 = 1 is
a pivot column.

Step 2 Let’s move to x2. Suppose that (x1, x2, x3, x4, x5, x6) = (x1, x2, 0, 0, 0, 0).
Then

x1B1 + x2B1 = 0

has nontrivial solution. Say (x1, x2) = (−2, 1).
These can also be seen as

−2A1 +A2 = 0

or equivalently

A2 = 2A1.

Step 3 Consider x3. Let (x1, x2, x3, x4, x5, x6) = (x1, 0, x3, 0, 0, 0). Then

x1B1 + x3B3 = 0

has only trivial solution. Equivalently {A1,A3} is linearly independent.Column
3 of B is a pivot column.

Step 4 Consder

B4 = 3B1 + 5B3,

or equivalently

A4 = 3A1 + 5A3.

The relation of columns of A gives the entries of the column 4 of B.
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Step 5 B5 is not in span of B1 and B3. Equivalently A5 is not in span of A1

and A3. Column 5 of B is a pivot column.
Step 6 Consider

B6 = 4B1 + 6B3 + 7B5.

Equivalently

A6 = 4A1 + 6A3 + 7A5.

The relation of columns of A gives the entries of the column 6 of B.

Example 12.19. Relationship of columns of A determine entries of B
Row reduce

A =


1 1 3 1 0 0 4
2 1 5 1 1 2 7
1 −1 1 2 1 −3 10
1 3 5 1 −1 1 1


to a RREF B by the above technique. Let Ai (resp. Bi) be the i-th column of A
(resp. B) for i = 1, . . . , 7.

Step 1 A1 is nonzero column. So the index d1 = 1 corresponds to a pivot
column. We have

B1 =


1
0
0
0

 .
Step 2 A2 is not in Span {Ad1}. So the index d2 = 2 corresponds to a pivot

column. We have

B2 =


0
1
0
0

 .
Step 3 Consider

A3 = 2Ad1 +Ad2 .

So we have

B3 = 2Bd1 +Bd2 =


2
1
0
0

 .
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Step 4 A4 is not in Span {Ad1 ,Ad2}.
So the index d3 = 4 corresponds to a pivot column. We have

B4 =


0
0
1
0

 .
Step 5 A5 is not in Span {Ad1 ,Ad3 ,Ad3}.
So the index d4 = 5 corresponds to a pivot column. We have

B5 =


0
0
0
1

 .
Step 6 Consider

A6 = Ad1 +Ad2 − 2Ad3 +Ad4 .

So, we have

B6 = Bd1 +Bd2 − 2Bd3 +Bd4 =


1
1
−2
1


Step 7 Consider

A7 = 2Ad1 −Ad2 + 3Ad3 +Ad4 .

So, we have

B7 = Bd1 +Bd2 − 2Bd3 +Bd4 =


2
−1
3
1


Hence the RREF of A is 

1 0 2 0 0 1 2
0 1 1 0 0 1 −1
0 0 0 1 0 −2 3
0 0 0 0 1 1 1

 .
Important remark: from the above computation, the entries ofB are uniquely

determined by A.
So the RREF B is unique.
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