
MATH 2070A Week 1

Groups

1.1 Overview

• Groups

– How many ways are there to color a cube, such that each face is either
black or white?
Answer: 10. Why?

– How many ways are there to form a triangle with three sticks of equal
lengths, colored red, green and blue, respectively?

– What are the symmetries of an equilateral triangle?
Dihedral Group D3

IMAGE

• Rings

– Euclidean Algorithm.

– Chinese Remainder Theorem.

– Partial Fraction Decomposition.

– Algebraic Extension of Fields.
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1.2 Groups
Definition 1.1. A groupG is a set equipped with a binary operation ∗ : G×G −→
G (typically called group operation or "multiplication"), such that:

• Associativity
(a ∗ b) ∗ c = a ∗ (b ∗ c),

for all a, b, c ∈ G. In other words, the group operation is associative .

• Existence of an Identity Element
There is an element e ∈ G, called an identity element , such that:

g ∗ e = e ∗ g = g,

for all g ∈ G.

• Invertibility
Each element g ∈ G has an inverse g−1 ∈ G, such that:

g−1 ∗ g = g ∗ g−1 = e.

• Note that we do not require that a ∗ b = b ∗ a.

• We often write ab to denote a ∗ b.

Definition 1.2. If ab = ba for all a, b ∈ G. We say that the group operation is
commutative, and that G is an abelian group.

Example 1.3. The following sets are groups, with respect to the specified group
operations:

• G = Q\{0}, where the group operation is the usual multiplication for ra-
tional numbers. The identity is e = 1, and the inverse of a ∈ Q\{0} is
a−1 = 1

a
. The group G is abelian.

• G = Q, where the group operation is the usual addition + for rational
numbers. The identity is e = 0. The inverse of a ∈ Q with respect to +
is −a. Note that Q is NOT a group with respect to multiplication. For in
that case, we have e = 1, but 0 ∈ Q has no inverse 0−1 ∈ Q such that
0 · 0−1 = 1.

Exercise 1.4. Verify that the following sets are groups under the specified binary
operation:
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• (Z,+)

• (R,+)

• (R×, ·)

• (Um, ·), where m ∈ N,

Um = {1, ξm, ξ2m, . . . , ξm−1m },

and ξm = e2πi/m = cos(2π/m) + i sin(2π/m) ∈ C.

• The set of bijective functions f : R −→ R, where f ∗ g := f ◦ g (i.e.
composition of functions).

1.2.1 Cayley Table
* a b c
a a2 ab ac
b ba b2 bc
c ca cb c2

Cayley Table for D3

* r0 r1 r2 s0 s1 s2
r0 r0 r1 r2 s0 s1 s2
r1 r1 r2 r0 s1 s2 s0
r2 r2 r0 r1 s2 s0 s1
s0 s0 s2 s1 r0 r2 r1
s1 s1 s0 s2 r1 r0 r2
s2 s2 s1 s0 r2 r1 r0

1.2.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK
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5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

1.2.3 Matrix Groups
Example 1.5. The set G = GL(2,R) of real 2 × 2 matrices with nonzero deter-
minants is a group under matrix multiplication, with identity element:

e =

(
1 0
0 1

)
.

In the group G, we have:(
a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
Note that there are matrices A,B ∈ GL(2,R) such that AB 6= BA. Hence
GL(2,R) is not abelian.

The group GL(2,R) is called a General Linear Group.

Exercise 1.6. The set SL(2,R) of real 2×2 matrices with determinant 1 is a group
under matrix multiplication.

It is called a Special Linear Group.

1.2.4 Basic Properties
Claim 1.7. The identity element e of a group G is unique.

Proof. Suppose there is an element e′ ∈ G such that e′g = ge′ = g for all g ∈ G.
Then, in particular, we have:

e′e = e

But since e is an identity element, we also have e′e = e′. Hence, e′ = e.

Claim 1.8. Let G be a group. For all g ∈ G, its inverse g−1 is unique.
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Proof. Suppose there exists g′ ∈ G such that g′g = gg′ = e. By the associativity
of the group operation, we have:

g′ = g′e = g′(gg−1) = (g′g)g−1 = eg−1 = g−1.

Hence, g−1 is unique.

Let G be a group with identity element e. For g ∈ G, n ∈ N, let:

gn := g · g · · · g︸ ︷︷ ︸
n times

.

g−n := g−1 · g−1 · · · g−1︸ ︷︷ ︸
n times

g0 := e.

Claim 1.9. Let G be a group.

1. For all g ∈ G, we have:
(g−1)−1 = g.

2. For all a, b ∈ G, we have:

(ab)−1 = b−1a−1.

3. For all g ∈ G, n,m ∈ Z, we have:

gn · gm = gn+m.

Proof. Exercise.

Definition 1.10. Let G be a group, with identity element e. The order of G is the
number of elements in G. The order ord g of an g ∈ G is the smallest n ∈ N such
that gn = e. If no such n exists, we say that g has infinite order.

Theorem 1.11. Let G be a group with identity element e. Let g be an element of
G. If gn = e for some n ∈ N, then ord g divides n.

Proof. Shown in class.
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MATH 2070A Week 2

Groups

Definition 2.1. Let G be a group, with identity element e.
The order of G is the number of elements in G.
The order ord g of an element g ∈ G is the smallest n ∈ N such that gn = e.

If no such n exists, we say that g has infinite order.

Theorem 2.2. Let G be a group with identity element e. Let g be an element of
G. If gn = e for some n ∈ N, then ord g is finite, and moreover ord g divides n.

Proof. Shown in class.

Exercise 2.3. If G has finite order, then every element of G has finite order.

Definition 2.4. A group G is cyclic if there exists g ∈ G such that every element
of G is equal to gn for some integer n. In which case, we write: G = 〈g〉, and say
that g is a generator of G.

Note: The generator of of a cyclic group might not be unique.

Example 2.5. (Um, ·) is cyclic.

Exercise 2.6. A finite cyclic group G has order (i.e. size) n if and only if each of
its generators has order n.

Exercise 2.7. (Q,+) is not cyclic.
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2.1 Permutations
Definition 2.8. Let X be a set. A permutation of X is a bijective map σ : X −→
X .

Claim 2.9. The set SX of permutations of a set X is a group with respect to ◦, the
composition of maps.

Proof. • Let σ, γ be permutations ofX . By definition, they are bijective maps
from X to itself. It is clear that σ ◦ γ is a bijective map from X to itself,
hence σ ◦ γ is a permutation of X . So ◦ is a well-defined binary operation
on SX .

• For α, β, γ ∈ SX , it is clear that α ◦ (β ◦ γ) = (α ◦ β) ◦ γ.

• Define a map e : X −→ X as follows:

e(x) = x, for all x ∈ X.

It is clear that e ∈ SX , and that e ◦ σ = σ ◦ e = σ for all σ ∈ SX . Hence, e
is an identity element in SX .

• Let σ be any element of SX . Since σ : X −→ X is by assumption bijective,
there exists a bijective map σ−1 : X −→ X such that σ◦σ−1 = σ−1◦σ = e.
So σ−1 is an inverse of σ with respect to the operation ◦.

Terminology: We call SX the Symmetric Group on X .
Notation: If X = {1, 2, . . . , n}, where n ∈ N, we denote SX by Sn.
For n ∈ N, the group Sn has n! elements.
For n ∈ N, by definition an element of Sn is a bijective map σ : X −→ X ,

where X = {1, 2, . . . , n}. We often describe σ using the following notation:

σ =

(
1 2 · · · n

σ(1) σ(2) . . . σ(n)

)
Example 2.10. In S3,

σ =

(
1 2 3
3 2 1

)
is the permutation on {1, 2, 3} which sends 1 to 3, 2 to itself, and 3 to 1, i.e.
σ(1) = 3, σ(2) = 2, σ(3) = 1.

For α, β ∈ S3 given by:

α =

(
1 2 3
2 3 1

)
, β =

(
1 2 3
2 1 3

)
,
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we have:

αβ = α ◦ β =

(
1 2 3
2 3 1

)
◦
(

1 2 3
2 1 3

)
=

(
1 2 3
3 2 1

)
(since, for example, α ◦ β : 1

β7−→ 2
α7−→ 3.).

We also have:

βα = β ◦ α =

(
1 2 3
2 1 3

)
◦
(

1 2 3
2 3 1

)
=

(
1 2 3
1 3 2

)
Since αβ 6= βα, the group S3 is non-abelian.

In general, for n > 2, the group Sn is non-abelian ( Exercise: Why?).
For the same α ∈ S3 defined above, we have:

α2 = α ◦ α =

(
1 2 3
2 3 1

)
◦
(

1 2 3
2 3 1

)
=

(
1 2 3
3 1 2

)
and:

α3 = α · α2 =

(
1 2 3
2 3 1

)
◦
(

1 2 3
3 1 2

)
=

(
1 2 3
1 2 3

)
= e

Hence, the order of α is 3.

2.2 Dihedral Group
Consider the subset T of transformations of R2, consisting of all rotations by fixed
angles about the origin, and all reflections over lines through the origin.

Consider a regular polygon P with n sides in R2, centered at the origin. Iden-
tify the polygon with its n vertices, which form a subset P = {x1, x2, . . . , xn} of
R2. If τ(P ) = P for some τ ∈ T , we say that P is symmetric with respect to τ .

Intuitively, it is clear that P is symmetric with respect to n rotations {r0, r1, . . . , rn−1},
and n reflections {s1, s2, . . . , sn} in T .

IMAGE By Jim.belk - Own work , Public Domain, Link

Theorem 2.11. The set Dn := {r0, r1, . . . , rn−1, s1, s2, . . . , sn} is a group, with
respect to the group operation defined by τ ∗ γ = τ ◦ γ (composition of transfor-
mations).

Terminology: Dn is called a dihedral group .
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2.3 More on Sn
Consider the following element in S6:

σ =

(
1 2 3 4 5 6
5 4 3 6 1 2

)
We may describe the action of σ : {1, 2, . . . , 6} −→ {1, 2, . . . , 6} using the nota-
tion:

σ = (15)(246),

where (n1n2 · · ·nk) represents the permutation:

n1 7→ n2 . . . ni 7→ ni+1 · · · 7→ nk 7→ n1

Viewing permutations as bijective maps, the "multiplication" (15)(246) is by def-
inition the composition (15) ◦ (246).

We call (n1n2 · · ·nk) a k-cycle . Note that 3 is missing from (15)(246). This
corresponds to the fact that 3 is fixed by σ.

Exercise 2.12. In Sn, for any positive integer k ≤ n, every k-cycle has order k.

Claim 2.13. Every non-identity permutation in Sn is either a cycle or a product
of disjoint cycles.

Proof. Discussed in class.

Exercise 2.14. Disjoint cycles commute with each other.

A 2-cycle is often called a transposition, for it switches two elements with
each other.

Claim 2.15. Each element of Sn is a product of (not necessarily disjoint) trans-
positions.

Sketch of proof:
Show that each permutation not equal to the identity is a product of cycles,

and that each cycle is a product of transpositions:

(a1a2 . . . ak) = (a1ak)(a1ak−1) · · · (a1a3)(a1a2)
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Example 2.16. (
1 2 3 4 5 6
5 4 3 6 1 2

)
= (15)(246)

= (15)(26)(24)

= (15)(46)(26)

Note that a given element σ of Sn may be expressed as a product of transposi-
tions in different ways, but:

Claim 2.17. In every factorization of σ as a product of transpositions, the number
of factors is either always even or always odd.

Proof. Exercise. One approach: Show that there is a unique n × n matrix, with
either 0 or 1 as its coefficients, which sends each standard basis vector ~ei in Rn

to ~eσ(i). Then, use the fact that the determinant of the matrix corresponding to a
transposition is−1, and that the determinant function of matrices is multiplicative.

2.4 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK
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MATH 2070A Week 3

Zn, Subgroups, Left Cosets, Index

3.1 The Cyclic Group Zn
Definition 3.1. Fix an integer n > 0.

For any k ∈ Z, let k denote the remainder of the division of k by n.
Let Zn = {0, 1, 2, . . . , n − 1}. We define a binary operation +Zn on Zn as

follows:
k +Zn l = k + l.

Exercise 3.2. Zn = (Zn,+Zn) is a cyclic group, with identity element 0, and
j−1 = n− j for any nonzero j ∈ Zn.

3.1.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK
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10. WeBWorK

11. WeBWorK

12. WeBWorK

3.2 Subgroups
Definition 3.3. LetG be a group. A subsetH ofG is a subgroup ofG if it satisfies
the following properties:

• Closure If a, b ∈ H , then ab ∈ H .

• Identity The identity element of G lies in H .

• Inverses If a ∈ H , then a−1 ∈ H .

In particular, a subgroup H is a group with respect to the group operation on
G, and the identity element of H is the identity element of G.

Example 3.4. • For any n ∈ Z, nZ is a subgroup of (Z,+).

• Q\{0} is a subgroup of (R\{0}, ·).

• SL(2,R) is a subgroup of GL(2,R).

• The set of all rotations (including the trivial rotation) in a dihedral group
Dn is a subgroup of Dn.

• Let n ∈ N, n ≥ 2. We say that σ ∈ Sn is an even permutation if it is
equal to the product of an even number of transpositions. The subset An
of Sn consisting of even permutations is a subgroup of Sn. An is called an
alternating group.

Claim 3.5. A subset H of a group G is a subgroup of G if and only if H is
nonempty and, for all x, y ∈ H , we have xy−1 ∈ H .

Proof. Suppose H ⊆ G is a subgroup. Then, H is nonempty since eG ∈ H . For
all x, y ∈ H , we have y−1 ∈ H; hence, xy−1 ∈ H .

Conversely, suppose H is a nonempty subset of G, and xy−1 ∈ H for all
x, y ∈ H .

• Identity Let e be the identity element ofG. SinceH is nonempty, it contains
at least one element h. Since e = h · h−1, and by hypothesis h · h−1 ∈ H ,
the set H contains e.
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• Inverses Since e ∈ H , for all a ∈ H we have a−1 = e · a−1 ∈ H .

• Closure For all a, b ∈ H , we know that b−1 ∈ H . Hence, ab = a ·(b−1)−1 ∈
H .

Hence, H is a subgroup of G.

Claim 3.6. The intersection of two subgroups of a group G is a subgroup of G.

Proof. Exercise.

Theorem 3.7. Every subgroup of (Z,+) is cyclic.

Proof. Let H be a subgroup of G = (Z,+). If H = {0}, then it is clearly cyclic.
Suppose |H| > 1. Consider the subset:

S = {h ∈ H : h > 0} ⊆ H

Since a subgroup is closed under inverse, and the inverse of any z ∈ Z with respect
to + is −z, the subgroup H must contain at least one positive element. Hence, S
is a non-empty subset of Z bounded from below.

It then follows from the Least Integer Axiom that exists a minimum element
h0 in S. That is h0 ≤ h for any h ∈ S.

Exercise. Show that H = 〈h0〉.
(Hint : The Division Theorem for Integers could be useful here.)

Exercise 3.8. Every subgroup of a cyclic group is cyclic.

3.3 Lagrange’s Theorem
Let G be a group, H a subgroup of G. We are interested in knowing how large H
is relative to G.

We define a relation ≡ on G as follows:

a ≡ b if b = ah for some h ∈ H,

or equivalently:
a ≡ b if a−1b ∈ H.

Exercise: ≡ is an equivalence relation.
We may therefore partition G into disjoint equivalence classes with respect to

≡. We call these equivalence classes the left cosets of H .
Each left coset of H has the form aH = {ah |h ∈ H}.
We could likewise define right cosets. These sets are of the form Hb, b ∈ G.

In general, the number of left cosets and right cosets, if finite, are equal to each
other
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Example 3.9. Let G = (Z,+). Let:

H = 3Z = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}

The set H is a subgroup of G. The left cosets of H in G are as follows:

3Z, 1 + 3Z, 2 + 3Z,

where i+ 3Z := {i+ 3k : k ∈ Z}.
In general, for n ∈ Z, the left cosets of nZ in Z are:

i+ nZ, i = 0, 1, 2, . . . , n− 1.

Definition 3.10. The number of left cosets of a subgroup H of G is called the
index of H in G. It is denoted by:

[G : H]

Example 3.11. Let n ∈ N, G = (Z,+), H = (nZ,+). Then,

[G : H] = n.

Example 3.12. Let G = GL(2,R). Let:

H = GL+(2,R) := {h ∈ G : deth > 0} .

(Exercise: H is a subgroup of G.)
Let:

s =

(
−1 0
0 1

)
∈ G

Note that det s = det s−1 = −1.
For any g ∈ G, either det g > 0 or det g < 0. If det g > 0, then g ∈ H . If

det g < 0, we write:
g = (ss−1)g = s(s−1g).

Since det s−1g = (det s−1)(det g) > 0, we have s−1g ∈ H . So, G = H t sH ,
and [G : H] = 2. Notice that both G and H are infinite groups, but the index of
H in G is finite.

Example 3.13. Let G = GL(2,R), H = SL(2,R). For each x ∈ R×, let:

sx =

(
x 0
0 1

)
∈ G

Note that det sx = x.
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For each g ∈ G, we have:

g = sdet g(s
−1
det gg) ∈ sdet gH

Moreover, for distinct x, y ∈ R×, we have:

det(s−1x sy) = y/x 6= 1.

This implies that s−1x sy /∈ H , hence syH and sxH are disjoint cosets. We have
therefore:

G =
⊔
x∈R×

sxH.

The index [G : H] in this case is infinite.
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MATH 2070A Week 4

Lagrange’s Theorem, Generators, Group Homomorphisms

4.1 Lagrange’s Theorem
Theorem 4.1 (Lagrange’s Theorem). Let G be a finite group. Let H be subgroup
of G, then |H| divides |G|. More precisely, |G| = [G : H] · |H|.

Proof. We already know that the left cosets of H partition G. That is:

G = a1H t a2H t . . . t a[G:H]H,

where aiH ∩ ajH = ∅ if i 6= j. Hence, |G| =
∑[G:H]

i=1 |aiH|.
The theorem follows if we show that the size of each left coset of H is equal

to |H|.
For each left coset S of H , pick an element a ∈ S, and define a map ψ :

H −→ S as follows:
ψ(h) = ah.

We want to show that ψ is bijective.
For any s ∈ S, by definition of a left coset (as an equivalence class) we have

s = ah for some h ∈ H . Hence, ψ is surjective.
If ψ(h′) = ah′ = ah = ψ(h) for some h′, h ∈ H , then h′ = a−1ah′ =

a−1ah = h. Hence, ψ is one-to-one.
So we have a bijection between two finite sets. Hence, |S| = |H|.

Corollary 4.2. Let G be a finite group. The order of every element of G divides
the order of G.

Since G is finite, any element of g ∈ G has finite order ord g. Since the order
of the subgroup:

H = 〈g〉 = {e, g, g2, . . . , g(ord g)−1}
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is equal to ord g, it follows from Lagrange’s Theorem that ord g = |H| divides
|G|.

Corollary 4.3. If the order of a group G is prime, then G is a cyclic group.
@refpf:primecyclic

Corollary 4.4. If a group G is finite, then for all g ∈ G we have:

g|G| = e.

@refpf:ghatordGeqe

Corollary 4.5. Let G be a finite group. Then a nonempty subset H of G is a
subgroup of G if and only if it is closed under the group operation of G (i.e.
ab ∈ H for all a, b ∈ H).

Proof. It is easy to see that if H is a subgroup, then it is closed under the group
operation. The other direction is left as an Exercise .

Example 4.6. Let n be an integer greater than 1. The group An of even permuta-

tions on a set of n elements (see Example 3.4) has order
n!

2
.

Proof. View An as a subgroup of Sn, which has order n!.
Exercise : Show that Sn = An t (12)An.
Hence, we have [Sn : An] = 2.
It now follows from Lagrange’s Theorem that:

|An| =
|Sn|

[Sn : An]
=
n!

2
.

4.1.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK
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4.2 Generators
Let G be a group, X a nonempty subset of G. The subset of G consisting of
elements of the form:

gm1
1 gm2

2 · · · gmn
n , where n ∈ N, gi ∈ X,mi ∈ Z,

is a subgroup of G. We say that it is the subgroup of G generated by X . If
X = {x1, x2, . . . , xl}, l ∈ N. We often write:

〈x1, x2, . . . , xl〉

to denote the subgroup generated by X .

Example 4.7. In Dn, {r0, r1, . . . , rn−1} = 〈r1〉.

If there exists a finite number of elements x1, x2, . . . , xl ∈ G such that G =
〈x1, x2, . . . , xl〉, we say that G is finitely generated .

For example, every cyclic group is finitely generated, for it is generated by one
element.

Every finite group is finitely generated, since we may take the finite generating
set X to be G itself.

Example 4.8. Consider G = D3, and its subgroup H = {r0, r1, r2} consisting
of its rotations. (We use the convention that rk is the anticlockwise rotation by an
angle of 2πk/3).

By Lagrange’s Theorem, the index of H in G is [G : H] = |G| / |H| = 2. This
implies that G = H t gH for some g ∈ G. Since gH = H if g ∈ H , we may
conclude that g /∈ H . So, g is a reflection.

Conversely, for any reflection s ∈ D3, the left coset sH is disjoint from H . We
have therefore G = Hts1H = Hts2H = Hts3H , which implies that s1H =
s2H = s3H .

In particular, for a fixed s = si, any element in G is either a rotation or equal
to sri for some rotation ri. Since H is a cyclic group, generated by the rotation
r1, we have D3 = 〈r1, s〉, where s is any reflection in D3.

4.3 Group Homomorphisms
Definition 4.9. Let G = (G, ∗), G′ = (G′, ∗′) be groups. A group homomor-
phism φ from G to G′ is a map φ : G −→ G′ which satisfies:

φ(a ∗ b) = φ(a) ∗′ φ(b),

for all a, b ∈ G.

18



Claim 4.10. If φ : G −→ G′ is a group homomorphism, then:

1. φ(eG) = eG′ .

2. φ(g−1) = φ(g)−1, for all g ∈ G.

3. φ(gn) = φ(g)n, for all g ∈ G, n ∈ Z.

Proof. We prove the first claim, and leave the rest as an exercise. Since eG is the
identity element of G, we have eG ∗ eG = eG. On the other hand, since φ is a
group homomorphism, we have:

φ(eG) = φ(eG ∗ eG) = φ(eG) ∗′ φ(eG).

Since G′ is a group, φ(eG)−1 exists in G′, hence:

φ(eG)−1 ∗′ φ(eG) = φ(eG)−1 ∗′ (φ(eG) ∗′ φ(eG))

The left-hand side is equal to eG′ , while by the associativity of ∗′ the right-hand
side is equal to φ(eG).

Let φ : G −→ G′ be a homomorphism of groups. The image of φ is defined
as:

imφ := φ(G) := {g′ ∈ G′ : g′ = φ(g) for some g ∈ G} ⊆ G′

The kernel of φ is defined as:

kerφ = {g ∈ G : φ(g) = eG′} ⊆ G.

Claim 4.11. The image of φ is a subgroup of G′. The kernel of φ is a subgroup of
G.

Claim 4.12. A group homomorphism φ : G −→ G′ is one-to-one if and only if
kerφ = {eG}. @refpf:kernelonetoone

Example 4.13 (Examples of Group Homomorphisms). • φ : Sn −→ ({±1}, ·),

φ(σ) =

{
1, σ is an even permutation.
−1, σ is an odd permutation.

kerφ = An.

• det : GL(n,R) −→ (R×, ·)
ker det = SL(n,R).

19



• Let G be the (additive) group of all real-valued continuous functions on
[0, 1].

φ : G −→ (R,+)

φ(f) =

∫ 1

0

f(x) dx.

• φ : (R,+) −→ (R×, ·).
φ(x) = ex.

Definition 4.14. Let G, G′ be groups. A map φ : G −→ G′ is a group isomor-
phism if it is a bijective group homomorphism.

Note that if a homomorphism φ is bijective, then φ−1 : G′ −→ G is also
a homomorphism, and consequently, φ−1 is an isomorphism. If there exists an
isomorphism between two groups G and G′, we say that the groups G and G′ are
isomorphic .

Example 4.15. Recall Definition 3.1 and Exercise 3.2.
Let n > 2. Let H = {r0, r1, r2, . . . , rn−1} be the subgroup of Dn consisting of

all rotations, where r1 denotes the anticlockwise rotation by the angle 2π/n, and
rk = rk1 . Then, H is isomorphic to Zn = (Zn,+Zn).

Proof. Define φ : H −→ Zn as follows:

φ(rk) = k, k ∈ {0, 1, 2, . . . , n− 1}.

For any k ∈ Z, let k ∈ {0, 1, 2, . . . , n − 1} denote the remainder of the division
of k by n. By the Division Theorem for Integers, we have:

k = nq + k

for some integer q ∈ Z.
It now follows from ord r1 = n that, for all ri, rj ∈ H , we have:

rirj = ri1r
j
1 = ri+j1

= rnq+i+j1

= (rn1 )q ri+j1

= ri+j.

Hence,

φ(rirj) = φ(ri+j)

= i+ j

= i+Zn j

= φ(ri) +Zn φ(rj).
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This shows that φ is a homomorphism. It is clear that φ is surjective, which
then implies that φ is one-to-one, for the two groups have the same size. Hence,
φ is a bijective homomorphism, i.e. an isomorphism.

21



MATH 2070A Week 5

Group Homomorphisms, Rings

Claim 5.1. Any cyclic group of finite order n is isomorphic to Zn.

Proof. Sketch of Proof:
By definition, a cyclic group G is equal to 〈g〉 for some g ∈ G. Moreover,

ord g = ordG.
Define a map φ : G −→ Zn as follows:

φ(gk) = k, k ∈ {0, 1, 2, . . . , n− 1}.

Show that φ is a group isomorphism.
(For reference, see the discussion of Example 4.15.)

Corollary 5.2. If G and G′ are two finite cyclic groups of the same order, then G
is isomorphic to G′.

Exercise 5.3. An infinite cyclic group is isomorphic to (Z,+).

Exercise 5.4. Let G be a cyclic group, then any group which is isomorphic to G
is also cyclic.

5.1 Product Group
Let (A, ∗A), (B, ∗B) be groups. The direct product:

A×B := {(a, b) | a ∈ A, b ∈ B}

has a natural group structure where the group operation ∗ is defined as follows:

(a, b) ∗ (a′, b′) = (a ∗A a′, b ∗B b′), (a, b), (a′, b′) ∈ A×B.
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The identity element of A × B is e = (eA, eB), where eA, eB are the identity
elements of A and B, respectively.

For any (a, b) ∈ A×B, we have (a, b)−1 = (a−1, b−1), where a−1, b−1 are the
inverses of a, b in the groups A, B, respectively.

For any collection of groups A1, A2, . . . , An, we may similarly define a group
operation ∗ on:

A1 × A2 × · · · × An := {(a1, a2, . . . , an) | ai ∈ Ai, i = 1, 2, . . . n}.

That is:

(a1, a2, . . . , an) ∗ (a′1, a
′
2, . . . , a

′
n) = (a1 ∗A1 a

′
1, a2 ∗A2 a

′
2, . . . , an ∗An a

′
n)

The identity element of A1 × A2 × · · · × An is:

e = (eA1 , eA2 , . . . , eAn).

For any (a1, a2, . . . , an) ∈ A1 × A2 × · · · × An, its inverse is:

(a1, a2, . . . , an)−1 = (a−11 , a−12 , . . . , a−1n ).

Exercise 5.5. Z6 is isomorphic to Z2 × Z3.

Proof. Hint:
Show that Z2 × Z3 is a cyclic group generated by (1, 1).

Example 5.6. The cyclic group Z4 is not isomorphic to Z2 × Z2.

Proof. Each element of G = Z2 × Z2 is of order at most 2. Since |G| = 4, G
cannot be generated by a single element. Hence, G is not cyclic, so it cannot be
isomorphic to the cyclic group Z4.

Exercise 5.7. Let G be an abelian group, then any group which is isomorphic to
G is abelian.

Example 5.8. The group D6 has 12 elements. We have seen that D6 = 〈r1, s〉,
where r1 is a rotation of order 6, and s is a reflection, which has order 2. So, it is
reasonable to ask if D6 is isomorphic to Z6 × Z2. The answer is no. For Z6 × Z2

is abelian, but D6 is not.

Claim 5.9. The dihedral group D3 is isomorphic to the symmetric group S3.

Proof. We have seen that D3 = 〈r, s〉, where r = r1 and s is any fixed reflection,
with:

ord r = 3, ord s = 2, srs = r−1.
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In particular , any element in D3 may be expressed as risj , with i ∈ {0, 1, 2},
j ∈ {0, 1}.

We have also seen that S3 = 〈a, b〉, where:

a = (123), b = (12), ord a = 3, ord b = 2, bab = a−1.

Hence, any element in S3 may be expressed as aibj , with i ∈ {0, 1, 2}, j ∈ {0, 1}.
Define map φ : D3 −→ S3 as follows:

φ(risj) = aibj, i, j ∈ Z

We first show that φ is well-defined: That is, whenever risj = ri
′
sj
′ , we want

to show that:
φ(risj) = φ(ri

′
sj
′
).

The condition risj = ri
′
sj
′ implies that:

ri−i
′
= sj

′−j

This holds only if ri−i′ = sj
′−j = e, since no rotation is a reflection.

Since ord r = 3 and ord s = 2, we have:

3|(i− i′), 2|(j′ − j),

by Theorem 2.2.
Hence,

φ(risj)φ(ri
′
sj
′
)−1 = (aibj)(ai

′
bj
′
)−1

= aibjb−j
′
a−i

′

= aibj−j
′
a−i

′

= ai−i
′

since ord b = 2.

= e since ord a = 3.

This implies that φ(risj) = φ(ri
′
sj
′
). We conclude that φ is well-defined.

We now show that φ is a group homomorphism:
Given µ, µ′ ∈ {0, 1, 2}, ν, ν ′ ∈ {0, 1}, we have:

φ(rµsν · rµ′sν′) =

{
φ(rµ+µ

′
sν
′
), if ν = 0;

φ(rµ−µ
′
sν+ν

′
), if ν = 1.

=

{
aµ+µ

′
bν
′
, if ν = 0;

aµ−µ
′
bν+ν

′
= aµbνaµ

′
bν
′
, if ν = 1.
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= φ(rµsν)φ(rµ
′
sν
′
).

This shows that φ is a group homomorphism.
To show that φ is a group isomorphism, it remains to show that it is surjective

and one-to-one.
It is clear that φ is surjective. We leave it as an exercise to show that φ is

one-to-one.

Example 5.10. The group:

G =

{
g ∈ GL(2,R)

∣∣∣∣ g =

(
cos θ − sin θ
sin θ cos θ

)
for some θ ∈ R

}
is isomorphic to

G′ = {z ∈ C : |z| = 1}.

Here, the group operation on G is matrix multiplication, and the group operation
on G′ is the multiplication of complex numbers.

Each element in G′ is equal to eiθ for some θ ∈ R. Define a map φ : G −→ G′

as follows:

φ

((
cos θ − sin θ
sin θ cos θ

))
= eiθ.

Exercise: Show that φ is a well-defined map. Then, show that it is a bijective
group homomorphism.

5.1.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK
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5.2 Rings

5.2.1 Basic Results in Elementary Number Theory
Theorem 5.11 (Division Theorem). Let a, b ∈ Z, a 6= 0, then there exist unique
q (called the quotient), and r (remainder) in Z, satisfying 0 ≤ r < |a|, such that
b = aq + r.

Proof. We will prove the case a > 0, b ≥ 0. The other cases are left as exercises.
Fix a > 0. First, we prove the existence of the quotient q and remainder r for

any b ≥ 0, using mathematical induction.
The base step corresponds to the case 0 ≤ b < a. In this case, if we let q = 0

and r = b, then indeed b = qa+ r, where 0 ≤ r = b < a. Hence, q and r exist.
The inductive step of the proof of the existence of q and r is as follows:

Suppose the existence of the quotient and remainder holds for all non-negative
b′ < b, we want to show that it must also hold for b.

First, we may assume that b ≥ a, since the case b < a has already been
proved. Let b′ = b− a. Then, 0 ≤ b′ < b, so by the inductive hypothesis we have
b′ = q′a+ r′ for some q′, r′ ∈ Z such that 0 ≤ r′ < a.

This implies that b = b′ + a = (q′ + 1)a+ r′.
So, if we let q = q′ + 1 and r = r′, then b = qa + r, where 0 ≤ r < a.

This establishes the existence of q, r for b. Hence, by mathematical induction, the
existence of q, r holds for all b ≥ 0.

Now we prove the uniqueness of q and r. Suppose b = qa + r = q′a + r′,
where q, q′, r, r′ ∈ Z, with 0 ≤ r, r′ < a.

Then, qa + r = q′a + r′ implies that r − r′ = (q′ − q)a. Since 0 ≤ r, r′ < a,
we have:

a > |r − r′| = |q′ − q| a.
Since q′ − q is an integer, the above inequality implies that q′ − q = 0, i.e.

q′ = q, which then also implies that r′ = r. We have therefore established the
uniqueness of q and r.

The proof of the theorem, for the case a > 0, b ≥ 0, is now complete.

Another Proof of the Division Theorem.

Proof. We consider here the special case b ≥ 0. Consider the set:

S = {s ∈ Z≥0 : s = b− aq for some q ∈ Z.}

Since b = b− a · 0 ≥ 0, we have b ∈ S. So, S is a nonempty subset of Z bounded
below by 0. By the Least Integer Axiom, there exists a minimum element r ∈ S.
We claim that r < |a|:
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Suppose not, that is, r ≥ |a|. By assumption: r = b− aq for some q ∈ Z.
Consider the element r′ = r − |a|. Then, 0 ≤ r′ and moreover:

r′ = (b− aq)− |a| = b− (q ± 1)a,

depending on whether a > 0 or a < 0. So, r′ ∈ S. On the other hand, by
construction we have r′ < r, which contradicts the minimality of r. We conclude
that r < |a|. This establishes the existence of the remainder r.

The existence of q in the theorem is now also clear. We leave the proof of the
uniqueness of r and q as an exercise.

Theorem 5.12. Every subgroup of Z is cyclic.

Proof. First, we note that the group operation ∗ on Z is integer addition, with
eZ = 0, and z∗−1 = −z for any z ∈ Z.

Let H be a nontrivial (i.e. contains more than one element) subgroup of Z.
Since for any h ∈ H we also have −h ∈ H , H contains at least one positive
element.

Let d be the least positive integer in H . It exists because of the Least Integer
Axiom.

We claim that H = 〈d〉:
For any h ∈ H , by the Division Theorem for Integers we have h = dq + r for

some r, q ∈ Z, such that 0 ≤ r < d. Then,

r = h− dq = h− (d+ d+ . . .+ d︸ ︷︷ ︸
q times

)

if q ≥ 0, or
r = h− dq = h− ((−d) + (−d) + . . .+ (−d)︸ ︷︷ ︸

q times

)

if q < 0.
In either case, since H is a subgroup we have r ∈ H . If r > 0, then we

have a positive element in H which is strictly less than d, which contradicts the
minimality of d. Hence, r = 0, from which it follows that any h ∈ H is equal to
dq = d∗q for some q ∈ Z. This shows that H = 〈d〉.

Exercise 5.13. Let n be a positive integer. Every subgroup of Zn is cyclic.

Corollary 5.14. Every subgroup of a cyclic group is cyclic.
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MATH 2070A Week 6

Elementary Number Theory, Euclid’s Lemma, Congru-
ences, Chinese Remainder Theorem

6.1 Further Results in Elementary Number Theory
Definition 6.1. The Greatest Common Divisor gcd(a, b) of a, b ∈ Z is the largest
positive integer d which divides both a and b (Notation: d|a and d|b).

Note. If a 6= 0, then gcd(a, 0) = |a|. gcd(0, 0) is undefined.

6.1.1 Euclidean Algorithm
Lemma 6.2. If b = aq + r (a, b, q, r ∈ Z), then gcd(b, a) = gcd(a, r).

Proof. If d|a and d|b, then d|r = b− aq. Conversely, if d|a and d|r, then d|a and
d|b = qa + r. So, the set of common divisors of a, b is the same as the set of
the common divisors of a, r. If two finite sets of integers are the same, then their
largest elements are clearly the same. In other words:

gcd(b, a) = gcd(a, r).

Suppose |b| ≥ |a|. Let b0 = b, a0 = a. Write b0 = a0q0 + r0, where
0 ≤ r0 < |a0|.

For n > 0, let bn = an−1 and an = rn−1, where rn is the remainder of the
division of bn by an. That is,

bn = anqn + rn, 0 ≤ rn < |an| .

If r0 = 0, then that means that a|b, and gcd(a, b) = |a|. Now, suppose r0 > 0.
Since rn is a non-negative integer and 0 ≤ rn < rn−1, eventually, rn = 0 for some
n ∈ N.
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Claim 6.3. gcd(b, a) = |an|.

Proof. By the previous lemma,

gcd(b, a) = gcd(b0, a0)

= gcd(a0, r0) = gcd(b1, a1)

= gcd(a1, r1) = gcd(b2, a2)

= . . .

= gcd(an, rn) = gcd(an, 0) = |an| .

Example 6.4. Find gcd(285, 255).

285︸︷︷︸
b0

= 255︸︷︷︸
a0

1︸︷︷︸
q0

+ 30︸︷︷︸
r0

255︸︷︷︸
b1=a0

= 30︸︷︷︸
a1=r0

8︸︷︷︸
q1

+ 15︸︷︷︸
r1

30︸︷︷︸
b2

= 15︸︷︷︸
a2

2︸︷︷︸
q2

+ 0︸︷︷︸
r2

So, gcd(285, 255) = r1 = 15.

Claim 6.5 (Bézout’s Lemma). Let a, b be nonzero integers. There exist x, y ∈ Z
such that gcd(a, b) = ax+ by.

Proof. Sketch of Proof:

Approach 1. Recall the notation used in Section 6.1.1 () . We saw that if rn = 0,
then gcd(a, b) = rn−1.

We may prove Bézout’s Lemma via mathematical induction as follows:
First, for integers 0 ≤ l < min(n− 1, 2), show that there exist xl, yl ∈ Z such

that rl = axl + byl. This is the base step of the induction proof.
We now carry out the inductive step. Suppose n − 1 ≥ 2. For any integer

2 ≤ k ≤ n− 1, suppose rl = axl + byl for some xl, yl ∈ Z, for all 0 ≤ l < k.
Show that:

rk = bk︸︷︷︸
ak−1=rk−2

−qk ak︸︷︷︸
rk−1

also has the form rk = axk + byk for some xk, yk ∈ Z.
The desired identity gcd(a, b) = rn−1 = axn−1 + byn−1 then follows by math-

emtical induction.
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Approach 2. Consider the set:

S = {n ∈ Z>0|n = ax+ by for some x, y ∈ Z}.

Show that the the minimum element d ∈ S is the greatest common divisor of a
and b.

Exercise 6.6. Find x, y ∈ Z such that:

gcd(285, 255) = 285x+ 255y.

Exercise 6.7. For any nonzero a, b in the group G = (Z,+), we have:

〈a, b〉 = 〈gcd(a, b)〉.

Definition 6.8. Two integers a, b ∈ Z are relatively prime if gcd(a, b) = 1.

Claim 6.9. Two integers a, b ∈ Z are relatively prime if and only if there exist
x, y ∈ Z such that ax+ by = 1.

Proof. If a, b are relatively prime, then by definition gcd(a, b) = 1. So, by Bé-
zout’s Lemma there exist x, y ∈ Z such that:

ax+ by = gcd(a, b) = 1.

Conversely, suppose ax + by = 1 for some x, y ∈ Z. Then, any common divisor
of a and bmust also be a divisor of 1. Since 1 is only divisible by±1, we conclude
that gcd(a, b) = 1.

Definition 6.10. An integer p ≥ 2 is prime if its only proper divisors (i.e. divisors
different from ±p) are ±1.

Lemma 6.11 (Euclid’s Lemma). Let a, b be integers. If p is prime and p|ab, then
p divides at least one of a and b.

Proof. Suppose p does not divide b (Notation: p - b), then gcd(p, b) = 1, which
implies that 1 = px + by for some x, y ∈ Z. Since p|apx and p|aby, we have
p|a = a (px+ by)︸ ︷︷ ︸

=1

.

More generally,
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Claim 6.12. If a, b are relatively prime and a|bc, then a|c.

Proof. Exercise.

Claim 6.13. If a, b are relatively prime and:

a|c, b|c,

then:
ab|c.

Proof. By assumption, there are s, t ∈ Z such that:

c = as = bt.

So, a|as = bt, which by Claim 6.12 implies that a|t, since gcd(a, b) = 1.
Hence, t = au for some u ∈ Z, and we have c = bt = abu. It follows that

ab|c.

Theorem 6.14 (The Fundamental Theorem of Arithmetic). Let a be a positive
integer ≥ 2. Then,

1. The integer a is either a prime or a product of primes.

2. Unique Factorization The integer a may be written uniquely as

a = pn1
1 p

n2
2 · · · p

nl
l ,

where p1, p2, · · · , pl are distinct prime numbers, and n1, n2, . . . , nl ∈ N.

Proof. We prove Part 1 of the theorem by contradiction.
Suppose there exist positive integers ≥ 2 which are neither primes nor prod-

ucts of primes.
Let m be the smallest such integer. Since m is not prime, there are positive

integers a, b 6= 1 such that m = ab.
In particular, a, b < m. So, a and b must be either primes or products of

primes, which implies that m is itself a product of primes, a contradiction.

We now prove Part 2 ( Unique Factorization ) of the theorem by induction.
The base step corresponds to the case l = 1.
Suppose:

a = pn1
1 = qm1

1 qm2
2 · · · q

mk
k ,

where p1 is prime, and the qi’s are distinct primes, and n1,mi ∈ N.
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Then, p1 divides the right-hand side, so by Euclid’s Lemma p1 divides one of
the qi’s.

Since the qi’s are prime, we may assume (reindexing if necessary) that p1 = q1.
Suppose k > 1. If n1 > m1, then pn1−m1

1 = qm2
2 · · · q

mk
k , which implies that

p1 = q1 is one of q2, . . . , qk, a contradiction, since the qi’s are distinct.
If n1 ≤ m1, then 1 = pm1−n1

1 qm2
2 · · · q

mk
k , which is impossible. We conclude

that k = 1, and p1 = q1, n1 = m1.
Now we establish the inductive step: Suppose unique factorization is true for

all positive integers a′ which may be written as a′ = pn1
1 p

n2
2 · · · p

nl′
l′ , for any l′ < l.

We want to show that it is also true for any integer a which may be written as
a = pn1

1 p
n2
2 · · · p

nl
l .

In other words, suppose

a = pn1
1 p

n2
2 · · · p

nl
l = qm1

1 · · · q
mk
k ,

where pi, qi are prime and ni,mi ∈ N. We want to show that k = l, and pi = qi,
ni = mi, for i = 1, 2, . . . , l.

If k < l, then by the inductive hypothesis applied to l′ = k < l, we have k = l,
a contradiction. So, we may assume that k ≥ l.

By Euclid’s Lemma, pl divides, and hence must be equal to, one of the qi’s.
Reindexing if necessary, we may assume that pl = qk. Cancelling pl and qk

from both sides of the equation, it is also clear that nl = mk. Hence, we have:

pn1
1 p

n2
2 · · · p

nl−1

l−1 = qm1
1 · · · q

mk−1

k−1 .

Since l−1 < l, we may now apply the inductive hypothesis to the integer which is
equal to the left-hand side of the above equation, and conclude that l− 1 = k− 1,
pi = qi, ni = mi, for 1 ≤ i ≤ l − 1.

Since we already know that pnl
l matches qmk

k , we have l = k, and pi = qi,
ni = mi, for 1 ≤ i ≤ l. This establishes the inductive step, and completes the
proof.

6.1.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK
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6.2 Modular Arithmetic
Definition 6.15. Let m be a positive integer, then a, b ∈ Z are said to be:

congruent modulo m
a ≡ b mod m,

if m|(a− b).

Claim 6.16. The congruence relation ≡ is an equivalence relation . In other
words, it is:

• Reflexive:

a ≡ a mod m;

• Symmetric:

a ≡ b mod m implies that b ≡ a mod m;

• Transitive:

a ≡ b mod m, b ≡ c mod m, imply that a ≡ c mod m.

Proof. • Reflexivity Since m|0 = (a− a), we have a ≡ a mod m.

• Symmetry If a ≡ b mod m, then by definition m divides a − b. But if m
divides a−b, it must also divide−(a−b) = b−a, which implies that b ≡ a
mod m.

• Transitivity Ifm|(a−b) andm|(b−c), thenm|((a−b)+(b−c)) = (a−c),
which implies that a ≡ c mod m.

Note. a ≡ 0 mod m if and only if m|a.

Claim 6.17. 1. If a = qm+ r, then a ≡ r mod m.

2. If 0 ≤ r < r′ < m, then r 6≡ r′ mod m.

Proof. Exercise.

Corollary 6.18. Given integer m ≥ 2, every a ∈ Z is congruent modulo m to
exactly one of {0, 1, 2, . . . ,m− 1}.

Proof. By Part 1 of the claim, a is congruent mod m to the remainder r of the
division of a by m.

By definition, the remainder r lies in {0, 1, 2, . . . ,m− 1}. If a ≡ r′ mod m,
for some r′ ∈ {0, 1, 2, . . . ,m− 1}, then by transitivity, we have r′ ≡ r mod m.

By Part 2 of the claim, we have r = r′.

33



Theorem 6.19. Congruence is compatible with addition and multiplication in the
following sense:

• Addition If a ≡ a′ mod m, and b ≡ b′ mod m, then a + b ≡ a′ + b′

mod m.

• Multiplication If a ≡ a′ mod m and b ≡ b′ mod m, then ab ≡ a′b′

mod m.

Proof. • Addition If m|(a− a′) and m|(b− b′), then:

m|(a− a′) + (b− b′) = (a+ b)− (a′ + b′).

So, a+ b ≡ a′ + b′ mod m.

• Multiplication If m|(a− a′) and m|(b− b′), then:

m|(a− a′)b+ a′(b− b′) = (ab− a′b′).

So, ab ≡ a′b′ mod m.

Example 6.20. For a ∈ Z, a2 ≡ 0, 1, or 4 mod 8.

Proof. By Corollary 6.18 , any a ∈ Z is congruent modulo 8 to exactly one ele-
ment in {0, 1, 2, . . . , 7}. So, by Theorem 6.19 , a2 is congruent modulo 8 to one
of:

{02, 12, 22, 32, 42, 52, 62, 72} = {0, 1, 4, 9, 16, 25, 36, 49}.
The numbers above a congruent modulo 8 to 0, 1, or 4. The claim follows.

Theorem 6.21. If a and m are relatively prime, then there exists x ∈ Z such that
ax ≡ 1 mod m.

Proof. Since a and m are relatively prime, by Bézout’s Lemma there exist x, y ∈
Z such that:

ax+my = 1.

This implies that m divides my = 1 − ax. So, by definition, we have ax ≡ 1
mod m.

Theorem 6.22 (Chinese Remainder Theorem). Ifm1 andm2 are relatively prime,
then the system of congruence relations:

x ≡ r1 mod m1

x ≡ r2 mod m2

has a solution x0 ∈ Z. Moreover, any two solutions are congruent modulo m1m2,
and any integer which is congruent to x0 modulo m1m2 is also a solution.
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Remark. In other words, the system of two congruence relations is equivalent to
a single congruence relation:

x ≡ r mod m1m2

for some r ∈ Z.
Applying this process repeatedly, a system of congruence relations of the form:

x ≡ r1 mod m1

x ≡ r2 mod m2

...
x ≡ rl mod ml

where themi’s are pairwise coprime, is equivalent to a single relation of the form:

x ≡ r mod m1m2 · · ·ml

for some r ∈ Z.

Proof. Since m1 and m2 are relatively prime, by Theorem 6.21 there exists n ∈ Z
such that m1n ≡ 1 mod m2. Let x = m1n(r2 − r1) + r1.

Since:
m1n(r2 − r1) ≡ 0 mod m1,

we have:
x ≡ r1 mod m1.

Moreover, since m1n ≡ 1 mod m2, we have:

x = m1n(r2 − r1) + r1 ≡ r2 − r1 + r1 ≡ r2 mod m2.

This shows that the system of congruence relations has at least one solution.
If x′ is another solution to the system, then:

x− x′ ≡ r1 − r1 ≡ 0 mod m1,

x− x′ ≡ r2 − r2 ≡ 0 mod m2.

So, m1|(x−x′) andm2|(x−x′). Since, m1,m2 are relatively prime, by a previous
result we conclude that m1m2|(x− x′). In other words, x ≡ x′ mod m1m2.

Conversely, for any integer k, it is clear x′ = x + m1m2k is also a solution
provided that x is a solution.

Hence, the solution set to the system of congruence relations may be described
by:

x ≡ x0 mod m1m2,

where x0 is any particular solution to the system.
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Note. The proof of the Chinese Remainder Theorem as written above is com-
plete. However, it is worthwhile to explain how we come up with the solution
x = m1n(r2 − r1) + r1 in the first place.

Heuristically, the solution may be arrived at as follows: For any q ∈ Z, x =
m1q+ r1 is a solution to the first congruence relation. We want to find q such that
m1q + r1 is also a solution to the second congruence relation, that is:

m1q + r1 ≡ r2 mod m2

or, equivalently,
m1q ≡ r2 − r1 mod m2. (∗)

Noting that there exists an n ∈ Z such that m1n ≡ 1 mod m2, the congruence
relation (∗) is equivalent to:

q ≡ n(r2 − r1) mod m2.

Hence, x = m1q + r1 is a solution to the system of congruence relations if and
only if q is of the form m2l + n(r2 − r1), where l ∈ Z. In particular, l = 0 gives
q = n(r2 − r1). Hence, x = m1n(r2 − r1) + r1 is a solution.

Example 6.23. Solve the following system of congruence relations:

x ≡ 3 mod 34 (6.1)
x ≡ −1 mod 27 (6.2)

The relation (6.1) holds if and only if:

x = 34s+ 3

for some s ∈ Z.
For any such x, the relation (6.2) holds if and only if:

34s+ 3 ≡ −1 mod 27,

or equivalently:
34s ≡ −4 mod 27. (6.3)

Since gcd(34, 27) = 1, by Theorem 6.21 there exists a ∈ Z such that a · 34 ≡ 1
mod 27. To find a, we perform the Euclidean Algorithm on 34 and 27:

34 = 27 · 1 + 7

27 = 7 · 3 + 6

7 = 6 · 1 + 1

6 = 1 · 6 + 0
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Working backwards from the last equation, we see that:

1 = 34(4) + 27(−5)

Hence:
27|(1− 34 · 4)

That is, 34 · 4 ≡ 1 mod 27. So, we may take a = 4.
Multiplying both sides of (6.3) by a = 4, we see that (6.3) holds if and only if:

s ≡ −16 mod 27,

which is equivalent to:
s ≡ 11 mod 27.

Since the relation above holds if and only if s = 27t + 11 for some t ∈ Z, we
conclude that x ∈ Z is a solution to our system of congruence relations if and
only if:

x = 34s+ 3 = 34(27t+ 11) + 3 = (34)(27)t+ 377

for some t ∈ Z. More concisely, the solution set to the system of congruence
relations is represented by the single relation:

x ≡ 377 mod 34 · 27

Exercise 6.24. 1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

10. WeBWorK

11. WeBWorK

12. WeBWorK

13. WeBWorK

14. WeBWorK
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MATH 2070A Week 7

Polynomials, Rings

7.1 Polynomials with Rational Coefficients
Notation:

Q = Set of rational numbers

Q[x] = Set of polynomials with rational coefficients
= {a0 + a1x+ · · ·+ anx

n|n ∈ Z≥0, ai ∈ Q}

Theorem 7.1 (Division Theorem for Polynomials with Rational Coefficients). For
all f, g ∈ Q[x], such that f 6= 0, there exist unique q, r ∈ Q[x], satisfying deg r <
deg f , such that g = fq + r.

Proof. We first prove the existence of q and r, via induction on the degree of g.
The base step corresponds to the case deg g < deg f . In this case, the choice
q = 0, r = g works, since g = f · 0 + g, and deg r = deg g < deg f .

Now, we establish the inductive step. Let f be fixed. Given g, suppose for
all g′ with deg g′ < deg g, there exist q′, r′ ∈ Q[x] such that g′ = fq′ + r′, with
deg r′ < deg f . We want to show that there exist q, r such that g = fq + r, with
deg r < deg f .

Suppose g = a0 + a1x + · · · + amx
m and f = b0 + b1x + · · · + bnx

n, where
am, bn 6= 0. We may assume that m ≥ n, since the case m < n (i.e. deg g <
deg f ) has already been proved.

Consider the polynomial:

g′ = g − am
bn
xm−nf.

Then, deg g′ < deg g, and by the induction hypothesis we have:

g′ = fq′ + r′
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for some q′, r′ ∈ Q[x] such that deg r′ < deg f .
Hence,

g − am
bn
xm−nf = g′ = fq′ + r′,

which implies that:

g = f

(
q′ +

am
bn
xm−n

)
+ r′

This establishes the existence of the quotient q = q′ + am
bn
xm−n and the remainder

r = r′.
Now, we prove the uniqueness of q and r. Suppose g = fq + r = fq′ + r′,

where q, q′, r, r′ ∈ Q[x], with deg r, deg r′ < deg f . We have:

fq + r = fq′ + r′,

which implies that:

deg f(q − q′) = deg(r′ − r) < deg f.

The above inequality can hold only if q = q′, which in turn implies that r′ = r. It
follows that the quotient q and the remainder r are unique.

Definition 7.2. Given f, g ∈ Q[x], a Greatest Common Divisor d of f and g is
a polynomial in Q[x] which satisfies the following two properties:

1. d divides both f and g.

2. For any e ∈ Q[x] which divides both f and g, we have deg e ≤ deg d.

Claim 7.3. If g = fq+ r, and d is a GCD of g and f , then d is a GCD of f and r.

Proof. See the proof of Lemma 6.2 .

Corollary 7.4. The Euclidean Algorithm applies to Q[x].
Namely: Suppose deg g ≥ deg f . let g0 = g, f0 = f , and let r0 be the unique

polynomial in Q[x] such that:

g0 = f0q0 + r0, deg r0 < deg f0,

for some q0 ∈ Q[x].
For k > 0, let:

gk = fk−1, fk = rk−1.

Let rk be the remainder such that:

gk = fkqk + rk,
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for some qk ∈ Q[x].
Since deg rk < deg fk = deg rk−1, we have:

deg r0 > deg r1 > deg r2 > · · · ≥ −∞

(where by convention we let deg 0 = −∞).
Eventually, rn = 0 for some n, and it follows from the previous claim and

arguments similar to those used in the case of Z that rn−1 is a GCD of f and g.

Example 7.5. 1. Find a GCD of x5 + 1 and x3 + 1 in Q[x].

x5 + 1=
(
x3 + 1

) (
x2
)

+
(
−x2 + 1

)
x3 + 1=

(
−x2 + 1

)
(−x) + (x+ 1)

−x2 + 1= (x+ 1) (−x+ 1) + (0)

So, a GCD is x+ 1.

2. Find a GCD of x3 − x2 − x+ 1 and x3 + 4x2 + x− 6 in Q[x].

x3 − x2 − x+ 1=
(
x3 + 4x2 + x− 6

)
(1) +

(
−5x2 − 2x+ 7

)
x3 + 4x2 + x− 6=

(
−5x2 − 2x+ 7

)(
−1

5
x− 18

25

)
+

(
24

25
x− 24

25

)
−5x2 − 2x+ 7=

(
24

25
x− 24

25

)(
−125

24
x− 175

24

)
+ (0)

So, a GCD is 24
25
x− 24

25
, and so is x− 1.

Corollary 7.6 (Bézout’s Identity for Polynomials). For any f, g ∈ Q[x] which are
not both zero, and d a GCD of f and g, there exist u, v ∈ Q[x] such that:

d = fu+ gv.

Example 7.7. In Example 7.5, we have:

(x+ 1) =
(
x3 + 1

)
−
(
−x2 + 1

)
(−x)

=
(
x3 + 1

)
−
((
x5 + 1

)
−
(
x3 + 1

) (
x2
))

(−x)

=

(
x

)(
x5 + 1

)
+

(
− x3 + 1

)(
x3 + 1

)
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7.2 Factorization of Polynomials
Definition 7.8. A polynomial p in Q[x] is irreducible if it satisfies the following
conditions:

1. deg p > 0,

2. if p = ab for some a, b ∈ Q[x], then either a or b is a constant.

Claim 7.9. If p ∈ Q[x] is irreducible and p|f1f2, where f1, f2 ∈ Q[x], then p|f1
or p|f2.

Proof. Suppose p does not divide f2, then the only common divisors of p and f2
are constant polynomials. In particular, 1 is a GCD of p and f2. Then, by Bézout’s
Identity for Polynomials , there exist u, v,Q[x] such that 1 = pu+ f2v. We have:

f1 = puf1 + f1f2v.

Since p divides the right-hand side of the above equation, it must divide f1.

Theorem 7.10. A polynomial in Q[x] of degree greater than zero is either irre-
ducible or a product of irreducibles.

Proof. Suppose there is a nonempty set of polynomials of degree > 0 which are
neither irreducible nor products of irreducibles. Let p be an element of this set
which has the least degree. Since p is not irreducible, there are a, b ∈ Q[x] of
degrees > 0 such that p = ab. But, a, b, having degrees strictly less than deg p,
must be either irreducible or products of irreducibles. This implies that p is a
product of irreducibles, a contradiction.

Remark: Compare this proof with that of Part 1 of the Fundamental Theorem
of Arithmetic (The Fundamental Theorem of Arithmetic).

Theorem 7.11 (Unique Factorization for Polynomials). For any p ∈ Q[x] of de-
gree > 0, if:

p = f1f2 · · · fn = g1g2 · · · gm,
where fi, gj are irreducible polynomials in Q[x], then n = m, and the gj’s may be
reindexed so that fi = λigi for some λi ∈ Q, for i = 1, 2, . . . , n.

Proof. Exercise . See the proof of Part 2 of The Fundamental Theorem of Arith-
metic ).

41

https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math2070/devel/week7.xml&slide=8#item7.6
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math2070/devel/week7.xml&slide=8#item7.6
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math2070/devel/week6.xml&slide=11#item6.14
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math2070/devel/week6.xml&slide=11#item6.14
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math2070/devel/week6.xml&slide=11#item6.14


7.3 Rings

7.3.1 Definition of a Ring
Definition 7.12. A ring R (or (R,+,×)) is a set equipped with two operations:

×,+ : R×R→ R

which satisfy the following properties:

1. Properties of +:

(a) Commutativity: a+ b = b+ a, ∀a, b ∈ R.

(b) Associativity: a+ (b+ c) = (a+ b) + c.

(c) There is an element 0 ∈ R (called the additive identity element ),
such that a+ 0 = a for all a ∈ R.

(d) Every element of R has an additive inverse; namely: For all a ∈ R,
there exists an element ofR, usually denoted−a, such that a+(−a) =
0.

2. Properties of ×:

(a) Associativity: a(bc) = (ab)c.

(b) There is an element 1 ∈ R (called the multiplicative identity element
), such that 1× a = a× 1 = a for all a ∈ R.

3. Distributativity:

(a) a× (b+ c) = a× b+ a× c, for all a, b, c ∈ R.

(b) (a+ b)× c = a× c+ b× c, for all a, b, c ∈ R.

Note:

1. For convenience’s sake, we often write ab for a× b.

2. In the definition, commutativity is required of addition, but not of multipli-
cation.

3. Every element has an additive inverse, but not necessarily a multiplicative
inverse. That is, there may be an element a ∈ R such that ab 6= 1 for all
b ∈ R.

Example 7.13. The following sets, equipped with the usual operations of addition
and multiplication, are rings:
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1. Z, Q, R

2. Z[x], Q[x], R[x] (Polynomials with integer, rational, real coefficients, re-
spectively.)

3.

Q[
√

2] = {
n∑
k=0

ak(
√

2)k | ak ∈ Q, n ∈ Z≥0}

= {a+ b
√

2 | a, b ∈ Q}.

4. Mn(R), the set of n× n real matrices, n ∈ N.

5. For a fixed n, the set of n× n matrices with integer coefficients.

6. C[0, 1] = {f : [0, 1]→ R | f is continuous.}

The following sets, under the usual operations of addition and multiplication,
are not rings:

1. N, no additive identity element, i.e. no 0.

2. N ∪ {0}, nonzero elements have no additive inverses.

3. GL(n,R), the set of n× n invertible real matrices, n ∈ N.

Claim 7.14. In a ring R, there is a unique additive identity element and a unique
multiplicative identity element.

Proof. Suppose there is an element 0′ ∈ R such that 0′+ r = r for all r ∈ R, then
in particular 0′ + 0 = 0.

Since 0 is an additive identity, we have 0′ + 0 = 0′. So, 0′ = 0.
Suppose there is an element 1′ ∈ R such that 1′r = r or all r ∈ R,
then in particular 1′ · 1 = 1.
But 1′ · 1 = 1′ since 1 is a multiplicative identity element, so 1′ = 1.

Exercise 7.15. Prove that: For any r in a ringR, its additive inverse−r is unique.
That is, if r + r′ = r + r′′ = 0, then r′ = r′′.
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7.3.2 WeBWorK
1. WeBWorK

2. WeBWorK

Claim 7.16. For all elements r in a ring R, we have 0r = r0 = 0.

Proof. By distributativity,

0r = (0 + 0)r = 0r + 0r.

Adding −0r (additive inverse of 0r) to both sides, we have:

0 = (0r + 0r) + (−0r) = 0r + (0r + (−0r)) = 0r + 0 = 0r.

The proof of r0 = 0 is similar and we leave it as an exercise .

Claim 7.17. For all elements r in a ring, we have (−1)(−r) = (−r)(−1) = r.

Proof. We have:

0 = 0(−r) = (1 + (−1))(−r) = −r + (−1)(−r).

Adding r to both sides, we obtain

r = r + (−r + (−1)(−r)) = (r +−r) + (−1)(−r) = (−1)(−r).

We leave it as an exercise to show that (−r)(−1) = r.

Exercise 7.18. Show that: For all r in a ring R, we have:

(−1)r = r(−1) = −r.

Exercise 7.19. Show that: If R is a ring in which 1 = 0, then R = {0}. That is,
it has only one element.

(We call such an R the zero ring .)
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MATH 2070A Week 8

Rings, Integral Domains, Fields

8.1 Integral Domains, Units
Definition 8.1. A ring R is said to be commutative if ab = ba for all a, b ∈ R.

Example 8.2. For a fixed natural number n > 1, the ring of n× n matrices with
integer coefficients, under the usual operations of addition and multiplication, is
not commutative.

Example 8.3. Letm be a natural number greater than 1. Let Zm = {0, 1, 2, . . . ,m−
1}. Recall that for any integer n ∈ Z, there exists a unique n ∈ Zm, such that
n ≡ n mod m. More precisely, n is the remainder of the division of of n by m:
n = mq + r. We equip Zm with addition +m and multiplication ×m defined as
follows: For a, b ∈ Zm, let:

a+m b = a+ b,

a×m b = a · b,

where the addition and multiplication on the right are the usual addition and
multiplication for integers.

Claim 8.4. With addition and multiplication thus defined, Zm is a commutative
ring.

Proof. 1. For a, b ∈ Zm, we have a +m b = a+ b = b+ a = b +m a, since
addition for integers is commutative. So, +m is commutative.

2. For any r1, r2 ∈ Z, by Claim 6.17 and Theorem 6.19 , we have

r1 ≡ r1 mod m, r2 ≡ r2 mod m,
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and:
r1 + r2 ≡ r1 + r2 ≡ r1 + r2 ≡ r1 + r2 mod m.

For a, b, c ∈ Zm, we have:

a+m (b+m c) = a+m b+ c

= a+ b+ c

= a+ b+ c

= a+ (b+ c)

But a+(b+c) is equal to (a+b)+c, since addition for integers is associative.
Hence, the above expression is equal to:

(a+ b) + c = (a+ b) + c

= a+ b+ c

= (a+m b) + c

= (a+m b) +m c.

We conclude that +m is associative.

3. Exercise: We can take 0 to be the additive identity element.

4. For each nonzero element a ∈ Zm, we can take the additive inverse of a to
be m− a. Indeed, a+m (−a) = a+ (m− a) = m = 0.

5. By the same reasoning used in the case of addition, for r1, r2 ∈ Z, we have

r1r2 ≡ r1r2 ≡ r1 · r2 ≡ r1 · r2 mod m.

For a, b, c ∈ Zm, we have:

a×m (b×m c) = a×m bc = a · bc = a(bc),

which by the associativity of multiplication for integers is equal to:

(ab)c = ab · c = ab×m c = (a×m b)×m c.

So, ×m is associative.
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6. Exercise: We can take 1 to be the multiplicative identity.

7. For a, b ∈ Zm, a×m b = a · b = b · a = b×m a. So ×m is commutative.

8. Lastly, we need to prove distributativity. For a, b, c ∈ Zm, we have:

a×m (b+m c) = a · b+ c

= a · (b+ c)

= ab+ ac

= ab+ ac

= a×m b+m a×m c.

It now follows from the distributativity from the left, proven above, and the
commutativity of ×m, that distributativity from the right also holds:

(a+m b)×m c = a×m c+ b×m c.

Definition 8.5. A nonzero commutative ring R is an integral domain if the prod-
uct of two nonzero elements is always nonzero.

Definition 8.6. A nonzero element r in a ring R is called a zero divisor if there
exists nonzero s ∈ R such that rs = 0 or sr = 0.

Note. A nonzero commutative ring R is an integral domain if and only if it
has no zero divisors.

Example 8.7. Since 2, 3 6= 0 in Z6, but 2 ×6 3 = 6̄ = 0, the ring Z6 is not an
integral domain.

Claim 8.8. A commutative ring R is an integral domain if and only if the cancel-
lation law holds for multiplication. That is: Whenever ca = cb and c 6= 0, we
have a = b.

Proof. Suppose R is an integral domain.
If ca = cb, then by distributativity c(a− b) = c(a+−b) = 0.
Since R is an integral domain, we have either c = 0 or a− b = 0.
So, if c 6= 0, we must have a = b.
Conversely, suppose cancellation law holds. It suffices to show that whenever

we have a, b ∈ R such that ab = 0 and a 6= 0, then we must have b = 0.
By a previous result we know that 0 = a0. So, ab = a0, which by the cancel-

lation law implies that b = 0.
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Note. If every nonzero element of a commutative ring has a multiplicative
inverse, then that ring is an integral domain:

ca = cb =⇒ c−1ca = c−1cb =⇒ a = b.

However, a nonzero element of an integral domain does not necessarily have a
multiplicative inverse.

Example 8.9. The ring Z is an integral domain, for the product of two nonzero
integers is nonzero. So, the cancellation law holds for Z, but the only nonzero
elements in Z which have multiplicative inverses are ±1.

Example 8.10. The ring Q[x] is an integral domain.

Exercise 8.11. Show that: For m > 1, Zm is an integral domain if and only if m
is a prime.

Example 8.12. Consider R = C[−1, 1], the ring of all continuous functions on
[−1, 1], equipped with the usual operations of addition and multiplication for
functions.

Let:

f(x) =

{
−x, −1 ≤ x ≤ 0,

0, 0 < x ≤ 1.
, g(x) =

{
0, −1 ≤ x ≤ 0,

x, 0 < x ≤ 1.

Then f and g are nonzero elements of R, but fg = 0.
So R is not an integral domain.

Definition 8.13. We say that an element r ∈ R is a unit if it has a multiplicative
inverse; i.e. there is an element r−1 ∈ R such that rr−1 = r−1r = 1.

Example 8.14. Consider 4 ∈ Z25. Since 4 · 19 = 76 ≡ 1 mod 25, we have
4−1 = 19 in Z25. So, 4 is a unit in Z25.

On the other hand, consider 10 ∈ Z25. Since 10 · 5 = 50 ≡ 0 mod 25, we
have 10 · 5 = 0 in Z25. If 10−1 exists, then by the associativity of multiplication,
we would have:

5 = (10−1 · 10) · 5 = 10−1 · (10 · 5) = 10−1 · 0 = 0,

a contradiction. So, 10 is not a unit in Z25.

Claim 8.15. Let m ∈ N be greater than one. Then, r ∈ Zm is a unit if and only if
r and m are relatively prime; i.e. gcd(r,m) = 1.
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Proof. Suppose r ∈ {0, 1, 2, . . . ,m − 1} is a unit in Zm, then there exists r−1 ∈
Zm such that r · r−1 ≡ 1 mod m.

In other words, there exists x ∈ Z such that r ·r−1−1 = mx, or r ·r−1−mx =
1. This implies that if there is an integer d such that d|r and d|m, then d must also
divide 1. Hence, the GCD of r and m is 1.

Conversely, if gcd(r,m) = 1, then there exists x, y ∈ Z such that rx+my = 1.
It follows that r−1 = x is a multiplicative inverse of r. Here, x ∈ Zm is the

remainder of the division of x by m.

Corollary 8.16. For p prime, every nonzero element of Zp is a unit.

Example 8.17. The only units of Z are ±1.

Example 8.18. Let R be the ring of all real-valued functions on R. Then, any
function f ∈ R satisfying f(x) 6= 0, ∀x, is a unit.

@eg@newcol Let R be the ring of all continuous real-valued functions on R,
then f ∈ R is a unit if and only if it is either strictly positive or strictly negative.
@endcol@end

Claim 8.19. The only units of Q[x] are nonzero constants.

Proof. Given any f ∈ Q[x] such that deg f > 0, for all nonzero g ∈ Q[x] we
have

deg fg ≥ deg f > 0 = deg 1;

hence, fg 6= 1. If g = 0, then fg = 0 6= 1. So, f has no multiplicative inverse.
If f is a nonzero constant, then f−1 = 1

f
is a constant polynomial in Q[x], and

f · 1
f

= 1
f
· f = 1. So, f is a unit.

Finally, if f = 0, then fg = 0 6= 1 for all g ∈ Q[x], so the zero polynomial
has no multiplicative inverse.

8.1.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK
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8.2 Fields
Definition 8.20. A field is a commutative ring, with 1 6= 0, in which every nonzero
element is a unit.

In other words, a nonzero commutative ring F is a field if and only if every
nonzero element r ∈ F has a multiplicative inverse r−1, i.e. rr−1 = r−1r = 1.

Since every nonzero element of a field is a unit, a field is necessarily an integral
domain, but an integral domain is not necessarily a field. For example Z is an
integral domain which is not a field.

Example 8.21. 1. Q, R are fields.

2. For m ∈ N, it follows from a previous result that Zm is a field if and only if
m is prime.

Notation For p prime, we often denote the field Zp by Fp.

Claim 8.22. Equipped with the usual operations of addition and multiplications
for real numbers, F = Q[

√
2] := {a+ b

√
2|a, b ∈ Q} is a field.

Proof. Observe that: (a + b
√

2) + (c + d
√

2) = (a + c) + (b + d)
√

2 lies in F ,
and (a+ b

√
2)(c+ d

√
2) = (ac+ 2bd) + (ad+ bc)

√
2 ∈ F . Hence, addition and

multiplication for real numbers are well-defined operations on F . As operations
on R, they are commutative, associative, and satisfy distributativity; therefore, as
F is a subset of R, they also satisfy these properties as operations on F .

It is clear that 0 and 1 are the additive and multiplicative identities of F . Given
a + b

√
2 ∈ F , where a, b ∈ Q, it is clear that its additive inverse −a − b

√
2 also

lies in F . Hence, F is a commutative ring.
To show that F is a field, for every nonzero a+ b

√
2 in F , we need to find its

multiplicative inverse. As an element of the field R, the multiplicative inverse of
a+ b

√
2 is:

(a+ b
√

2)−1 =
1

a+ b
√

2
.

It remains to show that this number lies in F . Observe that:

(a+ b
√

2)(a− b
√

2) = a2 − 2b2.

We claim that a2 − 2b2 6= 0.
Suppose a2 − 2b2 = 0, then either (i) a = b = 0, or (ii) b 6= 0,

√
2 = |a/b|.

Since we have assumed that a+ b
√

2 is nonzero, case (i) cannot hold.
But case (ii) also cannot hold because

√
2 is known to be irrational. Hence

a2 − 2b2 6= 0, and:

1

a+ b
√

2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2,
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which lies in F .

Claim 8.23. All finite integral domains are fields.

Proof. Let R be an integral domain with n elements, where n is finite. Write
R = {a1, a2, . . . , an}.

We want to show that for any nonzero element a 6= 0 in R, there exists i,
1 ≤ i ≤ n, such that ai is the multiplicative inverse of a.

Consider the set S = {aa1, aa2, . . . , aan}. Since R is an integral domain, the
cancellation law holds. In particular, since a 6= 0, we have aai = aaj if and only
if i = j.

The set S is therefore a subset of R with n distinct elements, which implies
that S = R.

In particular, 1 = aai for some i. This ai is the multiplicative inverse of a.

8.2.1 Field of Fractions
An integral domain fails to be a field precisely when there is a nonzero element
with no multiplicative inverse. The ring Z is such an example, for 2 ∈ Z has no
multiplicative inverse.

But any nonzero n ∈ Z has a multiplicative inverse 1
n

in Q, which is a field.
So, a question one could ask is, can we "enlarge" a given integral domain to a

field, by formally adding multiplicative inverses to the ring?

An Equivalence Relation

Given an integral domain R (commutative, with 1 6= 0). We consider the set:
R × R6=0 := {(a, b) : a, b ∈ R, b 6= 0}. We define a relation ≡ on R × R6=0 as
follows:

(a, b) ≡ (c, d) if ad = bc.

Lemma 8.24. The relation ≡ is an equivalence relation.
In other words, the relation ≡ is:

1. Reflexive: (a, b) ≡ (a, b) for all (a, b) ∈ R×R6=0

2. Symmetric: If (a, b) ≡ (c, d), then (c, d) ≡ (a, b).

3. Transitive: If (a, b) ≡ (c, d) and (c, d) ≡ (e, f), then (a, b) ≡ (e, f).

Proof. Exercise.
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Due to the properties (reflexive, symmetric, transitive), of an equivalence re-
lation, the equivalent classes form a partition of S. Namely, equivalent classes of
non-equivalent elements are disjoint:

[s] ∩ [t] = ∅

if s 6∼ t; and the union of all equivalent classes is equal to S:⋃
s∈S

[s] = S.

Definition 8.25. Given an equivalence relation ∼ on a set S, the quotient set
S/ ∼ is the set of all equivalence classes of S, with respect to ∼.

We now return to our specific situation of R × R6=0, with ≡ defined as above.
We define addition + and multiplication · on R×R6=0 as follows:

(a, b) + (c, d) := (ad+ bc, bd)

(a, b) · (c, d) := (ac, bd)

Claim 8.26. Suppose (a, b) ≡ (a′, b′) and (c, d) ≡ (c′, d′), then:

1. (a, b) + (c, d) ≡ (a′, b′) + (c′, d′).

2. (a, b) · (c, d) ≡ (a′, b′) · (c′, d′).

Proof. By definition, (a, b) + (c, d) = (ad + bc, bd), and (a′, b′) + (c′, d′) =
(a′d′ + b′c′, b′d′). Since by assumption ab′ = a′b and cd′ = c′d,

we have:

(ad+ bc)b′d′ = adb′d′ + bcb′d′ = a′bdd′ + c′dbb′ = (a′d′ + b′c′)bd;

hence, (a, b) + (c, d) ≡ (a′, b′) + (c′, d′).
For multiplication, by definition we have (a, b) · (c, d) = (ac, bd) and (a′, b′) ·

(c′, d′) = (a′c′, b′d′).
Since

acb′d′ = ab′cd′ = a′bc′d = a′c′bd,

we have (a, b) · (c, d) ≡ (a′, b′) · (c′, d′).

Let:
Frac(R) := (R×R6=0)/ ≡,

and define + and · on Frac(R) as follows:

[(a, b)] + [(c, d)] = [(ad+ bc, bd)]

[(a, b)] · [(c, d)] = [(ac, bd)]
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Corollary 8.27. + and · thus defined are well-defined binary operations on Frac(R).
In other words, we get the same output in Frac(R) regardless of the choice of

representatives of the equivalence classes.

Claim 8.28. The set Frac(R), equipped with + and · defined as above, forms a
field, with additive identity 0 = [(0, 1)] and multiplicative identity 1 = [(1, 1)].
The multiplicative inverse of a nonzero element [(a, b)] ∈ Frac(R) is [(b, a)].

Proof. Exercise.

Definition 8.29. Frac(R) is called the Fraction Field of R.

Note. Frac(Z) = Q, if we identify a/b ∈ Q, a, b ∈ Z, with [(a, b)] ∈ Frac(Z).

8.2.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

10. WeBWorK
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MATH 2070A Week 9

Ring Homomorphisms

9.1 Homomorphisms
Definition 9.1. Let (A,+A, ·A), (B,+B, ·B) be rings. A ring homomorphism
from A to B is a map φ : A→ B with the following properties:

1. φ(1A) = 1B.

2. φ(a1 +A a2) = φ(a1) +B φ(a2), for all a1, a2 ∈ A.

3. φ(a1 ·A a2) = φ(a1) ·B φ(a2), for all a1, a2 ∈ A.

Note that if φ : A→ B is a homomorphism, then:

1.
1 = φ(1) = φ(1 + 0) = φ(1) + φ(0) = 1 + φ(0),

which implies that φ(0) = 0.

2. For all a ∈ A, 0 = φ(0) = φ(−a+ a) = φ(−a) + φ(a), which implies that
φ(−a) = −φ(a).

3. If u is a unit in A, then 1 = φ(u ·u−1) = φ(u)φ(u−1), and 1 = φ(u−1 ·u) =
φ(u−1)φ(u); which implies that φ(u) is a unit, with φ(u)−1 = φ(u−1).

Example 9.2. The map φ : Z→ Q defined by:

φ(n) =
n

1
, n ∈ Z,

is a homomorphism, since:

1. φ(1) = 1
1

= 1Q,
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2. φ(n+Z m) = m+n
1

= n
1

+Q
m
1

= φ(n) +Q φ(m).

3. φ(n ·Z m) = mn
1

= n
1
·Q m

1
= φ(n) ·Q φ(m).

Example 9.3. Fix an integer m which is larger than 1. For n ∈ Z, let n denote
the remainder of the division of n by m. That is:

n = mq + n̄, 0 ≤ n̄ < m

Recall that Zm = {0, 1, 2, . . . ,m− 1} is a ring, with the addition law defined by:

s+m t = s+ t,

and the multiplication law defined by:

s×m t = s · t,

for all s, t ∈ Zm. Here, + and · are the usual addition and multiplication for
integers.

Define a map φ : Z→ Zm as follows:

φ(n) = n, ∀n ∈ Z.

Then, φ is a homomorphism.

Proof. 1. φ(1) = 1 = 1,

2. φ(s+ t) = s+ t = s+ t = s+m t = φ(s) +m φ(t).

3. φ(s · t) = s · t = s · t = s×m t = φ(s)×m φ(t).

Example 9.4. For any ring R, define a map φ : Z→ R as follows:

φ(0) = 0;

For n ∈ N,
φ(n) = n · 1R := 1R + 1R + · · ·+ 1R︸ ︷︷ ︸

n times

;

φ(−n) = −n · 1R := n · (−1R) = (−1R) + (−1R) + · · ·+ (−1R)︸ ︷︷ ︸
n times

.

The map φ is a homomorphism.

Proof. Exercise.
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Example 9.5. Let R be a commutative ring. For each element r ∈ R, we may
define the evaluation map φr : R[x]→ R as follows:

φr

(
n∑
k=0

akx
k

)
=

n∑
k=0

akr
k

The map φr is a ring homomorphism.

Proof. Discussed in class.

Definition 9.6. If a ring homomorphism φ : A → B is a bijective map, we say
that φ is an isomorphism, and that A and B are isomorphic as rings.

Notation If A and B are isomorphic, we write A ∼= B.

Claim 9.7. If φ : A → B is an isomorphism, then φ−1 : B → A is an isomor-
phism.

Proof. Since φ is bijective, φ−1 is clearly bijective. It remains to show that φ−1 is
a homomorphism:

1. Since φ(1A) = 1B, we have φ−1(1B) = φ−1(φ(1A)) = 1A.

2. For all b1, b2 ∈ B, we have

φ−1(b1 + b2) = φ−1(φ(φ−1(b1)) + φ(φ−1(b2)))

= φ−1(φ(φ−1(b1) + φ−1(b2))) = φ−1(b1) + φ−1(b2)

3. For all b1, b2 ∈ B, we have

φ−1(b1 · b2) = φ−1(φ(φ−1(b1)) · φ(φ−1(b2)))

= φ−1(φ(φ−1(b1) · φ−1(b2))) = φ−1(b1) · φ−1(b2)

This shows that φ−1 is a bijective homomorphism.
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10.1 Ring Homomorphisms - continued
An isomorphism is more than simply a bijective map, for it must preserve alge-
braic structure.

For example, there is a bijective map f : Z → Q , but the two are clearly not
isomorphic as rings:

Suppose φ : Z→ Q is an isomorphism. Then, both φ and φ−1 must send units
to units.

Consider 2 ∈ Q. Since Q is a field, the nonzero element 2 is a unit. So φ−1(2)
must be a unit of Z.

But the only units of Z are±1. Since φ is an homomorphism, we have φ(1) =
1 6= 2.

So, we are left with the case φ(−1) = 2. This cannot hold either, since:

1 = φ((−1)(−1)) = φ(−1)φ(−1)

implies that φ(−1) could only be ±1 6= 2.
So, Z and Q cannot be isomorphic.

Theorem 10.1. The fields Q and Frac(Z) are isomorphic.

Proof. Define a map φ : Q→ Frac(Z) as follows:

φ(a/b) = [(a, b)], ∀ a/b ∈ Q, a, b ∈ Z, b 6= 0.

We first need to show that φ is well-defined. Namely, suppose a/b = c/d in Q,
we need to show that φ(a/b) = [(a, b)] is equal to φ(c/d) = [(c, d)].

This is clear, since a/b = c/d implies that ad = bc, which by definition of
Frac(Z) implies that [(a, b)] = [(c, d)].

We now show that φ is a homomorphism:
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1. φ(1) = φ(1/1) = [(1, 1)], which is indeed the multiplicative identity of
Frac(Z).

2. For a, b, c, d ∈ Z, b, d 6= 0, we have:

φ(a/b+ c/d) = φ((ad+ bc)/(bd)) = [(ad+ bc, bd)]

= [(a, b)] + [(c, d)] = φ(a/b) + φ(c/d)

3. For a, b, c, d ∈ Z, b, d 6= 0, we have:

φ((a/b)(c/d)) = φ((ac)/(bd)) = [(ac, bd)]

= [(a, b)] · [(c, d)] = φ(a/b)φ(c/d)

Finally, we need to show that φ is one-to-one and onto.
Suppose there are a, b, c, d ∈ Z such that φ(a/b) = φ(c/d). Then, by defini-

tion of φ we have [(a, b)] = [(c, d)], which implies that ad = bc, from which it
follows that a/b = c/d as elements of Q. So, φ is one-to-one.

Given [(a, b)] ∈ Frac(Z), a, b ∈ Z, b 6= 0, it is clear that a/b belongs to Q, and
φ(a/b) = [(a, b)]. So φ is onto.

Hence, φ is a bijective homomorphism. In other words, it is an isomorphism.

Theorem 10.2. If F is a field, then Frac(F ) ∼= F .

Proof. Define a map φ : F → Frac(F ) as follows:

φ(s) = [(s, 1)], ∀s ∈ F.

Exercise:

1. Show that φ is a homomorphism.

2. Show that φ is bijective.

Definition 10.3. The kernel of a ring homomorphism φ : A→ B is the set:

kerφ := {a ∈ A : φ(a) = 0}

The image of φ is the set:

imφ := {b ∈ B : b = φ(a) for some a ∈ A}.
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Claim 10.4. A ring homomorphism φ : A → B is one-to-one if and only if
kerφ = {0}.

Proof. Suppose φ is one-to-one. For any a ∈ kerφ, we have φ(0) = φ(a) = 0,
which implies that a = 0 since φ is one-to-one. Hence, kerφ = {0}.

Suppose kerφ = {0}. If φ(a) = φ(a′), then 0 = φ(a) − φ(a′) = φ(a − a′),
which implies that a − a′ ∈ kerφ = {0}. So, a − a′ = 0, which implies that
a = a′. Hence, φ is one-to-one.

Definition 10.5. An ideal I in a commutative ring R is a subset of R which satis-
fies the following properties:

1. 0 ∈ I;

2. If a, b ∈ I , then a+ b ∈ I .

3. For all a ∈ I , we have ar ∈ I for all r ∈ R.

If an ideal I is a proper subset of R, we say it is a proper ideal .

Note. If an ideal I contains 1, then r = 1 · r ∈ I for all r ∈ R, which implies
that I = R.

Remark. There is a definition of an ideal in the more general case where the
ring is not necessarily commutative. It is similar to the definition above, except
for one extra condition: ra belongs to I for all a ∈ I , r ∈ R.

Clearly, this general definition coincides with the one above in the special case
that the ring is commutative. In this introductory course, unless otherwise noted,
we will always discuss ideals in the context of commutative rings.

Example 10.6. For any commutative ring R, the set {0} is an ideal, since 0+0 =
0, and 0 · r = 0 for all r ∈ R.

Example 10.7. For all m ∈ Z, the set I = mZ := {mn : n ∈ Z} is an ideal:

1. 0 = m · 0 ∈ I;

2. mn1 +mn2 = m(n1 + n2) ∈ I .

3. Given mn ∈ I , for all l ∈ Z, we have mn · l = m · nl ∈ I .

Example 10.8. Recall the homomorphism φ : Z→ Zm defined by φ(n) = n. We
claim that the kernel of φ is:

kerφ = mZ.
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Proof. If φ(n) = n = 0, then n = mq + 0 = mq for some q ∈ Z. So, n ∈ mZ.
Hence, kerφ ⊆ mZ.

Given mn ∈ mZ, where n ∈ Z, the remainder mn of the division of mn by
m is clearly 0, so φ(mn) = 0, which implies that mZ ⊆ kerφ.

Hence, kerφ = mZ.

Claim 10.9. LetA be a commutative ring. If φ : A→ B is a ring homomorphism,
then kerφ is an ideal of A.

Proof. 1. Since φ is a homomorphism, we have φ(0) = 0. Hence, 0 ∈ kerφ.

2. If a, b ∈ kerφ, then φ(a + b) = φ(a) + φ(b) = 0 + 0 = 0. Hence,
a+ b ∈ kerφ.

3. Given any a ∈ kerφ, for all r ∈ R we have φ(ar) = φ(a)φ(r) = 0 · φ(r) =
0. Hence, ar ∈ kerφ for all r ∈ R.

Remark.
The claim still holds if we remove the requirement that A be commutative,

and "ideal" is defined using the more general definition mentioned earlier.

Claim 10.10. A nonzero commutative ring R is a field if and only if its only ideals
are {0} and R.

Proof. Suppose a nonzero commutative ring R is a field. If an ideal I of R is
nonzero, it contains at least one nonzero element a of R.

Since R is a field, a has a multiplicative inverse a−1 in R. Since I is an ideal,
and a ∈ I , we have 1 = a−1a ∈ I .

So, I is an ideal which contains 1, hence it must be the whole field R.
Conversely, let R be a nonzero commutative ring whose only ideals are {0}

and R.
Given any nonzero element a ∈ R, the principal ideal (a) := {ar : r ∈ R}

generated by a is nonzero because it contains a 6= 0.
Hence, by hypothesis the ideal (a) is necessarily the whole ring R. In particu-

lar, the element 1 lies in (a), which means that there is an r ∈ R such that ar = 1.
This shows that any nonzero element of R is a unit. Hence, R is a field.

Claim 10.11. Let k be a field, and R a nonzero ring. Any ring homomorphism
φ : k → R is necessarily one-to-one.

Proof. Since R is not a zero ring, it contains 1 6= 0. So, φ(1) = 1 6= 0, which
implies that kerφ is a proper ideal of k. Since k is a field, we have kerφ = {0}.
It now follows from a previous claim that φ is one-to-one.
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Example 10.12. For any natural number m > 1, there can be no ring homomor-
phisms from Q to Zm.

The reason is as follows:
By the previous claim, any ring homomorphism from the field Q to Zm must

be one-to-one, but there can be no one-to-one map from the infinite set Q to the
finite set Zm.

10.1.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

10.2 Principal Ideal Domains
For a fixed finite set of elements a1, a2, . . . , an in a commutative ring R, let
(a1, a2, . . . , an) denote the subset:

{r1a1 + r2a2 + · · ·+ rnan : ri ∈ R}.

Claim 10.13. The set I = (a1, a2, . . . , an) is an ideal of R.

Proof. 1. 0 = 0 · a1 + 0 · a2 + · · ·+ 0 · an ∈ I .

2. For
∑

i riai and
∑

i r
′
iai in I , we have

∑
i riai +

∑
i r
′
iai =

∑
i(ri + r′i)ai ∈

I .

3. Given any
∑

i riai ∈ I , for any r ∈ R we have r
∑

i riai =
∑

i(rri)ai ∈ I .

We call (a1, a2, . . . , an) the ideal generated by a1, a2, . . . , an. An ideal (a) =
{ar : r ∈ R} generated by one element a ∈ R is called a principal ideal .

Note that R = (1) and {0} = (0) are both principal ideals.

Claim 10.14. Given a, b in a commutative ring R. If b = au for some unit u ∈ R,
then (a) = (b).

If R is an integral domain and (a) = (b), then b = au for some unit u ∈ R.

Proof. We leave the first part of the claim as an exercise.
We now prove the second part. Suppose (a) = (b). If b = 0, then a is

necessarily zero. So, b = 0 = 0 · 1 = a · 1, and we are done.
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Now suppose b 6= 0. The condition (a) = (b) implies that there exist u, v ∈ R
such that b = au and a = bv.

Putting the two together, we have:

b = buv,

which implies that b(1− uv) = 0.
Since R is by assumption an integral domain, and b 6= 0, we have 1− uv = 0,

which implies that uv = 1. This shows that u is unit.

Definition 10.15. If R is an integral domain in which every ideal is principal, we
say that R is a Principal Ideal Domain (abbrev. PID).

Theorem 10.16. The ring Z is a principal ideal domain.

Proof. Let I be an ideal of Z. We already know that the zero ideal {0} = (0) is
principal.

So, we may assume that I contains a nonzero element a. Since −1 ∈ Z and I
is an ideal, we have −a = (−1) · a ∈ I . Hence, if I is nonzero, it contains at least
one positive integer.

By the Least Integer Axiom, the ideal I contains a positive integer d which is
smaller than all other positive elements of I . We claim that I = (d).

By the division theorem, for every a ∈ I , we have a = dq + r for some
q, r ∈ Z such that 0 ≤ r < d. But this implies that r = a− dq lies in I , since I is
an ideal.

Since 0 ≤ r < d and d is the minimal positive integer in I , r must necessarily
be zero. This implies that a = dq. Hence, I ⊆ (d).

Conversely, since d ∈ I and I is an ideal, we have dr ∈ I for all r ∈ Z, which
implies that (d) ⊆ I .

Hence, I = (d). In other words, I is a principal ideal generated by d.

We claim that for any field k, the ring of polynomials k[x] is also a PID.
To prove this we first establish the following theorem:

Theorem 10.17 (Division Theorem for Polynomials with Unit Leading Coeffi-
cients). Let R be a commutative ring. For all d, f ∈ R[x], such that the leading
coefficient of d is a unit in R, there exist q, r ∈ R[x] such that:

f = qd+ r,

with deg r < deg d.
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Proof. The proof is essentially the same as that of the division theorem for Q[x].
We prove by induction:

The base case corresponds to the case where deg f < deg d; and the inductive
step corresponds to showing that, for any fixed d, the claim holds for f if it holds
for all f ′ with deg f ′ < deg f .

Base case: If deg f < deg d, we take r = f . Then, indeed f = 0 · d+ r, with
deg r < deg d.

Inductive step: Let d =
∑n

i=0 aix
i ∈ R[x] be fixed, where an is a unit in R.

For any given f =
∑m

i=0 bix
i ∈ R[x], m ≥ n, suppose the claim holds for all f ′

with deg f ′ < deg f .
Let:

f ′ = f − a−1n bmx
m−nd.

Then, deg f ′ < deg f , hence by hypothesis there exist q′, r′ ∈ R[x], with deg r′ <
deg d, such that:

f − a−1n bmx
m−nd = f ′ = q′d+ r′,

which implies that:
f = (q′ + a−1n bmx

m−n)d+ r′.

So, f = qd+ r′, where q = q′ + a−1n bmx
m−n ∈ R[x], and deg r′ < deg d.

Theorem 10.18. Let k be a field. Then, k[x] is a PID.

Proof. Since k is a field, the previous claim holds for all d, f ∈ k[x] such that
d 6= 0.

Let I be an ideal of k[x].
If I = {0} then, it is principal, since {0} = (0).
Suppose I is nonzero. Let d be the polynomial in I with the least degree

among all nonzero polynomials in I . Since the degree of any nonzero polynomial
is a nonnegative integer, such an element d exists by the Least Integer Axiom. It
is clear that (d) ⊆ I . It remains to show that I ⊆ (d).

For all f ∈ I , by the previous claim we have:

f = qd+ r,

for some q, r ∈ k[x] such that deg r < deg d.
Observe that r = f − qd = f + (−1)qd lies in I . Since d is a nonzero element

of I with the least degree, the element r must necessarily be zero.
In order words f = qd, which implies that f ∈ (d). Hence, I ⊆ (d), and we

may now conclude that I = (d).
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10.3 Quotient Rings
Let R be a commutative ring. Let I be an ideal of R. We define a relation ∼ on R
as follows:

a ∼ b, if a− b ∈ I.

Notation/Terminology: If a ∼ b, we say that a is congruent modulo I to b,
and write:

a ≡ b mod I.

Claim 10.19. Congruence modulo I is an equivalence relation .

Proof. • Reflexivity a−a = 0 ∈ I , since I is an ideal; hence, a ≡ a mod I .

• Symmetry If a − b ∈ I , then b − a = −1(a − b) ∈ I , since I is an ideal
and −1 ∈ R. Hence, a ≡ b mod I implies that b ≡ a mod I .

• Transitivity If a− b ∈ I and b− c ∈ I , then a− c = a + (−b + b)− c =
(a − b) + (b − c) ∈ I , since I , being an ideal, is closed under addition.
Hence, a ≡ b, b ≡ c mod I implies that a ≡ c mod I .

Let R/I be the set of equivalence classes of R with respect to the relation ∼.
Each element of R/I has the form:

r = r + I = {r + a : a ∈ I}, r ∈ R.

Terminology.
We call r the residue of r in R/I .
Note that if r ∈ I , then r̄ = 0̄, since r − 0 = r ∈ I .
Observe that: for all r, r′ ∈ R, and a, a′ ∈ I ,

(r + a) + (r′ + a′) = (r + r′) + (a+ a′) ∈ (r + r′) + I = r + r′,

(r + a) · (r′ + a′) = rr′ + ra′ + r′a+ aa′ ∈ rr′ + I = rr′.

Hence, we may define binary operations +, · on R/I as follows:

r + r′ = r + r′,

r · r′ = rr′,

for all r, r′ ∈ R/I .

Claim 10.20. The set R/I , equipped with the addition + and multiplication ·
defined above, is a commutative ring.
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Proof. We note here only that the additive identity element of R/I is 0 = 0 + I ,
the multiplicative identity element of R/I is 1 = 1 + I , and that −r = −r for all
r ∈ R.

We leave the rest of the proof (additive and multiplicative associativity, com-
mutativity, distributativity) as an Exercise.

Claim 10.21. The map π : R→ R/I , defined by

π(r) = r, ∀r ∈ R.

is a surjective ring homomorphism with kernel kerπ = I .

Proof. Exercise.

Let m be a natural number. The set:

mZ = {mn : n ∈ Z}

is an ideal of Z.

Claim 10.22. The quotient ring Z/mZ is isomorphic to Zm.

Proof. For r ∈ Z, let rm denote the remainder of the division of r by m.
Exercise: We have r = rm in Z/mZ, where r̄ is the residue of r in Z/mZ.
Define a map φ : Zm −→ Z/mZ as follows:

φ(r) = r̄, ∀ r ∈ Zm.

We claim that φ is a homomorphism:

• φ(1) = 1̄ = 1Z/mZ.

•

φ(r +Zm r
′) = r +Zm r

′ = (r +Z r′)m

= r +Z r′ = r + r′ = φ(r) + φ(r′)

•

φ(r ·Zm r
′) = r ·Zm r

′ = (r ·Z r′)m
= r ·Z r′ = r · r′ = φ(r) · φ(r′)
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Hence, φ is a homomorphism.
Next, we show that φ is bijective:
For all r̄ ∈ Z/mZ, we have φ(rm) = rm = r. Hence, φ is onto.
Suppose r is an element in Zm such that φ(r) = r = 0 in Z/mZ. By definition,

this means that r ∈ mZ, or equivalently, that m|r. Since 0 ≤ r < m, we must
have r = 0. Hence, kerφ = {0}. It now follows from Claim 10.4 that φ is one-to
one.

We conclude that φ : Zm −→ Z/mZ is an isomorphism.

Claim 10.23. Let φ : R −→ R′ be a ring homomorphism. Then, the image of φ:

imφ = {r′ ∈ R′ : r′ = φ(r) for some r ∈ R}

is a ring under the addition and multiplication operations of R′. (In fact, it is a
subring of R′.)

Proof. Exercise.

Theorem 10.24 (First Isomorphism Theorem). Let R be a commutative ring. Let
φ : R −→ R′ be a ring homomorphism. Then:

R/ kerφ ∼= imφ,

(i.e. R/ kerφ is isomorphic to imφ.)

Proof. We define a map φ : R/ kerφ −→ imφ as follows:

φ(r) = φ(r), ∀ r ∈ R,

where r is the residue of r in R/ kerφ.
We first need to check that φ is well-defined. Suppose r = r′, then r′ − r ∈

kerφ. We have:
φ(r′)− φ(r) = φ(r′ − r) = 0.

Hence, φ(r′) = φ(r). So, φ is well-defined.
Next, we show that φ is a homomorphism:

• φ(1) = φ(1) = 1;

• φ(a+ b) = φ(a+ b) = φ(a+ b) = φ(a) + φ(b) = φ(a) + φ(b);

• φ(a · b) = φ(ab) = φ(ab) = φ(a)φ(b) = φ(a)φ(b).
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Finally, we show that φ is a bijection, i.e. one-to-one and onto.
For any r′ ∈ imφ, there exists r ∈ R such that φ(r) = r′. Since φ(r) =

φ(r) = r′, the map φ is onto.
Let r be an element in R such that φ(r) = φ(r) = 0. We have r ∈ kerφ,

which implies that r = 0 in R/ kerφ. Hence, kerφ = {0}, and it follows from
Claim 10.4 that φ is one-to-one.

Corollary 10.25. If a ring homomorphism φ : R −→ R′ is surjective, then:

R′ ∼= R/ kerφ
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MATH 2070A Week 11

Quotient Rings, Polynomials over a Field

11.1 Quotient Rings - continued
Example 11.1. Let m be a natural number. Consider the map φ : Z −→ Zm
defined by:

φ(n) = nm, ∀n ∈ Z,

where nm is the remainder of the division of n by m.
Exercise: φ is a homomorphism.
It is clear that φ is surjective, and that kerφ = mZ. So, it follows from the

First Isomorphism Theorem that:

Zm ∼= Z/mZ.

Definition 11.2 (Gaussian Integers). Let:

Z[i] = {z ∈ C : z = a+ bi for some a, b ∈ Z},

where i =
√
−1.

Exercise 11.3. Show that the set Z[i] is a ring under the usual addition + and
multiplication × operations on C.

Moreover, we have 0Z[i] = 0, 1Z[i] = 1, and:

−(a+ bi) = (−a) + (−b)i

for any a, b ∈ Z.

Example 11.4. The ring Z[i]/(1 + 3i) is isomorphic to Z/10Z.
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Proof. Define a map φ : Z −→ Z[i]/(1 + 3i) as follows:

φ(n) = n, ∀n ∈ Z,

where n is the residue of n ∈ Z[i] modulo (1 + 3i).
It is clear that φ is a homomorphism ( Exercise ).
Observe that in Z[i], we have:

1 + 3i ≡ 0 mod (1 + 3i),

which implies that:

1≡ −3i mod (1 + 3i)

i · 1≡ i · (−3i) mod (1 + 3i)

i≡ 3 mod (1 + 3i).

Hence, for all a, b ∈ Z,

a+ bi = a+ 3b = φ(a+ 3b)

in Z[i]/(1 + 3i). Hence, φ is surjective.
Suppose n is an element of Z such that φ(n) = n = 0. Then, by the definition

of the quotient ring we have:
n ∈ (1 + 3i).

This means that there exist a, b ∈ Z such that:

n = (a+ bi)(1 + 3i) = (a− 3b) + (3a+ b)i,

which implies that 3a+ b = 0, or equivalently, b = −3a. Hence:

n = a− 3b = a− 3(−3a) = 10a,

which implies that kerφ ⊆ 10Z. Conversely, for all m ∈ Z, we have:

φ(10m) = 10m = (1 + 3i)(1− 3i)m = 0

in Z[i]/(1 + 3i).
This shows that 10Z ⊆ kerφ. Hence, kerφ = 10Z.
It now follows from the First Isomorphism Theorem that:

Z/10Z ∼= Z[i]/(1 + 3i).
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11.2 Polynomials over a Field
Let k be a field. For f ∈ k[x] and a ∈ k, let:

f(a) = φa(f),

where φa is the evaluation homomorphism defined in Example 9.5. That is:

φa

(
n∑
i=0

cix
i

)
=

n∑
i=0

cia
i.

Definition 11.5. Let f =
∑n

i=0 cix
i be a polynomial in k[x]. An element a ∈ k is

a root of f if:
f(a) = 0

in k.

Lemma 11.6. For all f ∈ k[x], a ∈ k, there exists q ∈ k[x] such that:

f = q(x− a) + f(a)

Proof. By the Division Theorem for Polynomials with Unit Leading Coefficients,
there exist q, r ∈ k[x] such that:

f = q(x− a) + r, deg r < deg(x− a) = 1.

This implies that r is a constant polynomial.
Applying the evaluation homomorphism φa to both sides of the above equa-

tion, we have:

f(a) = φa(q(x− a) + r)

= φa(q) · φa(x− a) + φa(r)

= q(a)(a− a) + r

= r.

Claim 11.7 (Root Theorem). Let k be a field, f a polynomial in k[x]. Then, a ∈ k
is a root of f if and only if (x− a) divides f in k[x].

Proof. If a ∈ k is a root of f , then by the previous lemma there exists q ∈ k[x]
such that:

f = q(x− a) + f(a)︸︷︷︸
=0

= q(x− a),

so (x− a) divides f in k[x].
Conversely, if f = q(x− a) for some q ∈ k[x], then f(a) = q(a)(a− a) = 0.

Hence, a is a root of f .
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Theorem 11.8. Let k be a field, f a nonzero polynomial in k[x].

1. If f has degree n, then it has at most n roots in k.

2. If f has degree n > 0 and a1, a2, . . . , an ∈ k are distinct roots of f , then:

f = c · Πn
i=1(x− ai) := c(x− a1)(x− a2) · · · (x− an)

for some c ∈ k.

Proof. 1. We prove Part 1 of the claim by induction. If f has degree 0, then f
is a nonzero constant, which implies that it has no roots. So, in this case the
claim holds.

Let f be a polynomial with degree n > 0. Suppose the claim holds for all
nonzero polynomials with degrees strictly less than n. We want to show that
the claim also holds for f . If f has no roots in k, then the claim holds for f
since 0 < n. If f has a root a ∈ k, then by the previous claim there exists
q ∈ k[x] such that:

f = q(x− a).

For any other root b ∈ k of f which is different from a, we have:

0 = f(b) = q(b)(b− a).

Since k is a field, it has no zero divisors; so, it follows from b− a 6= 0 that
q(b) = 0. In other words, b is a root of q. Since deg q < n, by the induction
hypothesis q has at most n− 1 roots. So, f has at most n− 1 roots different
from a. This shows that f has at most n roots.

2. Let f be a polynomial in k[x] which has n = deg f distinct roots a1, a2, . . . , an ∈
k.

If n = 1, then f = c0 + c1x for some ci ∈ k, with c1 6= 0. We have:

0 = f(a1) = c0 + c1a1,

which implies that: c0 = −c1a1. Hence,

f = −c1a1 + c1x = c1(x− a1).

Suppose n > 1. Suppose for all n′ ∈ N, such that 1 ≤ n′ < n, the claim
holds for any polynomial of degree n′ which has n′ distinct roots in k. By
the previous claim, there exists q ∈ k[x] such that:

f = q(x− an).
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Note that deg q = n− 1.

For 1 ≤ i < n, we have

0 = f(ai) = q(ai) (ai − an)︸ ︷︷ ︸
6=0

.

Since k is a field, this implies that q(ai) = 0 for 1 ≤ i < n. So, a1, a2, . . . , an−1
are n− 1 distinct roots of q. By the induction hypothesis there exists c ∈ k
such that:

q = c(x− a1)(x− a2) · · · (x− an−1).

Hence, f = q(x− an) = c(x− a1)(x− a2) · · · (x− an−1)(x− an).

Corollary 11.9. Let k be a field. Let f, g be nonzero polynomials in k[x]. Let
n = max{deg f, deg g}. If f(a) = g(a) for n+ 1 distinct a ∈ k. Then, f = g.

Proof. Let h = f − g, then deg h ≤ n. By hypothesis, there are n + 1 distinct
elements a ∈ k such that h(a) = f(a) − g(a) = 0. If h 6= 0, then it is a nonzero
polynomial with degree ≤ n which has n + 1 distinct roots, which contradicts
the previous theorem. Hence, h must necessarily be the zero polynomial, which
implies that f = g.

Definition 11.10. A polynomial in k[x] is called a monic polynomial if its leading
coefficient is 1.

Corollary 11.11. Let k be a field. Let f, g be nonzero polynomials in k[x]. There
exists a unique monic polynomial d ∈ k[x] with the following property:

1. (f, g) = (d)

Moreover, this d also satisfies the following properties:

2. d divides both f and g, i.e., there exists a, b ∈ k[x] such that f = ad, g = bd.

3. There are polynomials p, q ∈ k[x] such that d = pf + qg.

4. If h ∈ k[x] is a divisor of f and g, then h divides d.

Terminology.

• The unique monic d ∈ k[x] which satisfies property 1 is called the Greatest
Common Divisor (abbrev. GCD) of f and g.

• We say that f and g are relatively prime if their GCD is 1.
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Proof. 1. By Theorem 10.18 , there exists d =
∑n

i=0 aix
i ∈ k[x] such that

(d) = (f, g). Replacing d by a−1n d if necessary, we may assume that d is a
monic polynomial. It remains to show that d is unique.

Suppose (d) = (d′), where both d and d′ are monic polynomials. Then,
there exist nonzero p, q ∈ k[x] such that:

d′ = pd, d = qd′.

Examining the degrees of the polynomials, we have:

deg d′ = deg d+ deg p,

and:
deg d = deg q + deg d′ = deg p+ deg q + deg d.

This implies that deg p+deg q = 0. Hence, p and q must both have degree 0;
in other words, they are constant polynomials. Moreover, we have deg d =
deg d′. Comparing the leading coefficients of d′ and pd, we have p = 1.
Hence, d = d′.

2. Clear.

3. Clear.

4. By Part 3 of the corollary, there are p, q ∈ k[x] such that d = pf + qg. It is
then clear that if h divides both f and g, then h must divide d.

Definition 11.12. Let R be a commutative ring. A nonzero element p ∈ R which
is not a unit is said to be irreducible if p = ab implies that either a or b is a unit.

Example 11.13. The set of irreducible elements in the ring Z is {±p : p a prime number}.

Let k be a field.

Lemma 11.14. A polynomial f ∈ k[x] is a unit if and only if it is a nonzero
constant polynomial.

Proof. Exercise.

Claim 11.15. A nonzero nonconstant polynomial p ∈ k[x] is irreducible if and
only if there is no f, g ∈ k[x], with deg f, deg g < deg p, such that fg = p.
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Proof. Suppose p is irreducible, and p = fg for some f, g ∈ k[x] such that
deg f, deg g < deg p. Then p = fg implies that deg f and deg g are both positive.
By the previous lemma, both f and g are non-units, which is a contradiction, since
the irreducibility of p implies that either f or g must be a unit.

Conversely, suppose p is a nonzero non-unit in k[x], which is not equal to fg
for any f, g ∈ k[x] with deg f, deg g < deg p. Then, p = ab, a, b ∈ k[x], implies
that either a or b must have the same degree as p, and the other factor must be a
nonzero constant, in other words a unit in k[x]. Hence, p is irreducible.

Lemma 11.16 (Euclid’s Lemma). Let k be a field. Let f, g be polynomials in k[x].
Let p be an irreducible polynomial in k[x]. If p|fg in k[x], then p|f or p|g.

Proof. Suppose p - f . Then, any common divisor of p and f must have degree
strictly less than deg p. Since p is irreducible, this implies that any common divi-
sor of p and f is a nonzero constant. Hence, the GCD of p and f is 1. By Corollary
11.11 , there exist a, b ∈ k[x] such that:

ap+ bf = 1.

Multiplying both sides of the above equation by g, we have:

apg + bfg = g.

Since p divides the left-hand side of the above equation, it must also divide the
right-hand side, which is the polynomial g.

Claim 11.17. If f, g ∈ k[x] are relatively prime, and both divide h ∈ k[x], then
fg|h.

Proof. Exercise.

Theorem 11.18 (Unique Factorization). Let k be a field. Every nonconstant poly-
nomial f ∈ k[x] may be written as:

f = cp1 · · · pn,

where c is a nonzero constant, and each pi is a monic irreducible polynomial in
k[x]. The factorization is unique up to the ordering of the factors.

Proof. Exercise. One possible approach is very similar to the proof of unique
factorization for Z. See: The Fundamental Theorem of Arithmetic .

Exercise 11.19. 1. WeBWorK

Theorem 11.20. Let k be a field. Let p be a polynomial in k[x]. The following
statements are equivalent:

74

https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math2070/devel/week11.xml&slide=12#item11.11
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math2070/devel/week11.xml&slide=12#item11.11
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math2070/devel/week6.xml&slide=11#item6.14
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math2070/devel/weeks1-13.xml&slide=171


1. k[x]/(p) is a field.

2. k[x]/(p) is an integral domain.

3. p is irreducible in k[x].

Remark. Compare this result with Exercise 8.11 and Corollary 8.16 .

Proof. 1. 1⇒ 2: Clear, since every field is an integral domain.

2. 2 ⇒ 3: If p is not irreducible, there exist f, g ∈ k[x], with degrees strictly
less than that of p, such that p = fg. Since deg f, deg g < deg p, the
polynomial p does not divide f or g in k[x]. Consequently, the congruence
classes f and g of f and g, respectively, modulo (p) is not equal to zero
in k[x]/(p). On the other hand, f · g = fg = p = 0 in k[x]/(p). This
implies that k[x]/(p) is not an integral domain, a contradiction. Hence, p is
irreducible if k[x]/(p) is an integral domain.

3. 3 ⇒ 1: By definition, the multiplicative identity element 1 of a field is
different from the additive identity element 0. So we need to check that the
congruence class of 1 ∈ k[x] in k[x]/(p) is not 0. Since p is irreducible,
by definition we have deg p > 0. Hence, 1 /∈ (p), for a polynomial of
degree > 0 cannot divide a polynomial of degree 0 in k[x]. We conclude
that 1 + (p) 6= 0 + (p) in k[x]/(p).

Next, we need to prove the existence of the multiplicative inverse of any
nonzero element in k[x]/(p). Given any f ∈ k[x] whose congruence class f
modulo (p) is nonzero in k[x]/(p), we want to find its multiplicative inverse
f
−1

. If f 6= 0 in k[x]/(p), then by definition f − 0 /∈ (p), which means that
p does not divide f . Since p is irreducible, this implies thatGCD(p, f) = 1.
By Corollary 11.11 there exist g, h ∈ k[x] such that fg + hp = 1. It is then
clear that g = f

−1
, since fg − 1 = −hp implies that fg − 1 ∈ (p), which

by definition means that f · g = fg = 1 in k[x]/(p).

Example 11.21. The rings R[x]/(x2 + 1) and C are isomorphic.

Proof. Define a map φ : R[x] −→ C as follows:

φ(
n∑
k=0

akx
k) =

n∑
k=0

aki
k.

Exercise: φ is a homomorphism.
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For all a+ bi (a, b ∈ R) in C, we have:

φ(a+ bx) = a+ bi.

Hence, φ is surjective.
We now find kerφ. Since R[x] is a PID (see Definition 10.15). There exists

p ∈ R[x] such that kerφ = (p).
Observe that φ(x2 + 1) = 0. So, x2 + 1 ∈ kerφ, which implies that there

exists q ∈ R[x] such that x2 + 1 = pq. Since x2 + 1 has no real roots, neither p or
q can be of degree 1.

So, one of p or q must be a nonzero constant polynomial. p cannot be a nonzero
constant polynomial, for that would imply that kerφ = R[x]. So, q is a constant,
which implies that p = q−1(x2 + 1). We conclude that kerφ = (x2 + 1).

It now follows from the First Isomorphism Theorem that R[x]/(x2 + 1) ∼=
C.
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MATH 2070A Week 12

Rational Root Theorem, Gauss’s Theorem, Eisenstein’s
Criterion

12.1 Polynomials over Z and Q
Theorem 12.1 (Rational Root Theorem). Let f = a0 + a1x + · · · + anx

n, be a
polynomial in Q[x], with ai ∈ Z, an 6= 0. Every rational root r of f in Q has the
form r = b/c (b, c ∈ Z) where b|a0 and c|an.

Proof. Let r = b/c be a rational root of f , where b, c are relatively prime integers.
We have:

0 =
n∑
i=0

ai(b/c)
i

Multiplying both sides of the above equation by cn, we have:

0 = a0c
n + a1c

n−1b+ a2c
n−2b2 + · · ·+ anb

n,

or equivalently:

a0c
n = −(a1c

n−1b+ a2c
n−2b2 + · · ·+ anb

n).

Since b divides the right-hand side, and b and c are relatively prime, b must divide
a0.

Similarly, we have:

anb
n = −(a0c

n + a1c
n−1b+ a2c

n−2b2 + · · ·+ an−1cb
n−1).

Since c divides the right-hand side, and b and c are relatively prime, c must divide
an.
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Definition 12.2. A polynomial f ∈ Z[x] is said to be primitive if the gcd of its
coefficients is 1.

Remark. Note that if f is monic, i.e. its leading coefficient is 1, then it is primitive.
If d is the gcd of the coefficients of f , then 1

d
f is a primitive polynomial in

Z[x].

Lemma 12.3 (Gauss’s Lemma). If f, g ∈ Z[x] are both primitive, then fg is
primitive.

Proof. Write f =
∑m

k=0 akx
k, g =

∑n
k=0 bkx

k. Then, fg =
∑m+n

k=0 ckx
k, where:

ck =
∑
i+j=k

aibj.

Suppose fg is not primitive. Then, there exists a prime p such that p divides ck
for k = 0, 1, 2, . . . ,m+ n.

Since f is primitive, there exists a least u ∈ {0, 1, 2, . . . ,m} such that au is
not divisible by p.

Similarly, since g is primitive, there is a least v ∈ {0, 1, 2, . . . , n} such that bv
is not divisible by p. We have:

cu+v =
∑

i+j=u+v
(i,j)6=(u,v)

aibj + aubv,

hence:
aubv = cu+v −

∑
i+j=u+v
i<u

aibj −
∑

i+j=u+v
j<v

aibj.

By the minimality conditions on u and v, each term on the right-hand side of the
above equation is divisible by p.

Hence, p divides aubv, which by Euclid’s Lemma implies that p divides either
au or bv, a contradiction.

Lemma 12.4. Every nonzero f ∈ Q[x] has a unique factorization:

f = c(f)f0,

where c(f) is a positive rational number, and f0 is a primitive polynomial in Z[x].

Definition 12.5. The rational number c(f) is called the content of f .
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Proof. Existence:
Write f =

∑n
k=0(ak/bk)x

k, where ak, bk ∈ Z. Let B = b0b1 · · · bn. Then,
g := Bf is a polynomial in Z[x]. Let d be the gcd of the coefficients of g. Let
D = ±d, with the sign chosen such that D/B > 0. Observe that f = c(f)f0,
where

c(f) = D/B,

and
f0 :=

B

D
f =

1

D
g

is a primitive polynomial in Z[x].
Uniqueness:
Suppose f = ef1 for some positive e ∈ Q and primitive f1 ∈ Z[x]. We have:

ef1 = c(f)f0.

Writing e/c(f) = u/v where u, v are relatively prime positive integers, we have:

uf1 = vf0.

Since gcd(u, v) = 1, by Euclid’s Lemma the above equation implies that v divides
each coefficient of f1, and u divides each coefficient of f0. Since f0 and f1 are
primitive, we conclude that u = v = 1. Hence, e = c(f), and f1 = f0.

Corollary 12.6. For f ∈ Z[x] ⊆ Q[x], we have c(f) ∈ Z.

Proof. Let d be the gcd of the coefficients of f . Then, (1/d)f is a primitive
polynomial, and

f = d

(
1

d
f

)
is a factorization of f into a product of a positive rational number and a primitive
polynomial in Z[x]. Hence, by uniqueness of c(f) and f0, we have c(f) = d ∈
Z.

Corollary 12.7. Let f, g, h be nonzero polynomials in Q[x] such that f = gh.
Then, f0 = g0h0 and c(f) = c(g)c(h).

Proof. The condition f = gh implies that:

c(f)f0 = c(g)c(h)g0h0,

where f0, g0, h0 are primitive polynomials and c(f), c(g), c(h) are positive ratio-
nal numbers. By a previous result g0h0 is primitive. It now follows from the
uniqueness of c(f) and f0 that f0 = g0h0 and c(f) = c(g)c(h).
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Theorem 12.8 (Gauss’s Theorem). Let f be a nonzero polynomial in Z[x]. If
f = GH for some G,H ∈ Q[x], then f = gh for some g, h ∈ Z[x], where
deg g = degG, deg h = degH .

Consequently, if f cannot be factored into a product of polynomials of smaller
degrees in Z[x], then it is irreducible as a polynomial in Q[x].

Proof. Suppose f = GH for someG,H in Q[x]. Then f = c(f)f0 = c(G)c(H)G0H0,
where G0, H0 are primitive polynomials in Z[x], and c(G)c(H) = c(f) by the
uniqueness of the content of a polynomial.

Moreover, since f ∈ Z[x], its content c(f) lies in Z. Hence, g = c(f)G0 and
h = H0 are polynomials in Z[x], with deg g = degG, deg h = degH , such that
f = gh.

Let p be a prime. Let Fp = Z/pZ ∼= Zp. It is a field, since p is prime. For
a ∈ Z, let a denote the residue of a in Fp.

Exercise: We have a = ap, where ap is the remainder of the division of a by
p.

Theorem 12.9. Let f =
∑n

k=0 akx
k be a polynomial in Z[x] such that p - an

(in particular, an 6= 0). If f :=
∑n

k=0 akx
k is irreducible in Fp[x], then f is

irreducible in Q[x].

Proof. Suppose f is irreducible in Fp[x], but f is not irreducible in Q[x]. By
Gauss’s theorem, there exist g, h ∈ Z[x] such that deg g, deg h < deg f and
f = gh.

Since by assumption p - an, we have deg f = deg f .
Moreover, gh = g · h ( Exercise ).
Hence, f = gh = g · h, where deg g, deg h < deg f . This contradicts the

irreducibility of f in Fp[x].
Hence, f is irreducible in Q[x] if f is irreducible in Fp[x].

Example 12.10. The polynomial f(x) = x4−5x3 + 2x+ 3 ∈ Q[x] is irreducible.

Proof. Consider f = x4 − 5x3 + 2x + 3 = x4 + x3 + 1 in F2[x]. If we can
show that f is irreducible, then by the previous theorem we can conclude that f is
irreducible.

Since F2 = {0, 1} and f(0) = f(1) = 1 6= 0, we know right away that f has
no linear factors. So, if f is not irreducible, it must be a product of two quadratic
factors:

f = (ax2 + bx+ c)(dx2 + ex+ g), a, b, c, d, e, g ∈ F2.
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Note that by assumption a, d are nonzero elements of F2, so a = d = 1. This
implies that, in particular:

1 = f(0) = cg

1 = f(1) = (1 + b+ c)(1 + e+ g)

The first equation implies that c = g = 1. The second equation then implies that
1 = (2 + b)(2 + e) = be. Hence, b = e = 1.

We have:

x4 + x3 + 1 = (x2 + x+ 1)(x2 + x+ 1)

= x4 + 2x3 + 3x2 + 2x+ 1 = x4 + x2 + 1,

a contradiction.
Hence, f is irreducible in F2[x], which implies that f is irreducible in Q[x].

Theorem 12.11 (Eisenstein’s Criterion). Let f = a0 + a1x + · · · + anx
n be a

polynomial in Z[x]. If there exists a prime p such that p|ai for 0 ≤ i < n, but
p - an and p2 - a0, then f is irreducible in Q[x].

Proof. We prove by contradiction. Suppose f is not irreducible in Q[x]. Then,
by Gauss’s Theorem, there exists g =

∑l
k=0 bkx

k, h =
∑n−l

k=0 ckx
k ∈ Z[x], with

deg g, deg h < deg f , such that f = gh.
Consider the image of these polynomials in Fp[x]. By assumption, we have:

anx
n = f = gh.

This implies that g and h are divisors of anxn. Since Fp is a field, unique factor-
ization holds for Fp[x]. Hence, we must have:

g = bux
u, h = cn−ux

n−u,

for some u ∈ {0, 1, 2, . . . , l}.
If u < l, then n− u > n− l ≥ deg h, which cannot hold.
So, we conclude that g = blx

l, h = cn−lx
n−l.

In particular, b0 = c0 = 0 in Fp, which implies that p divides both b0 and c0.
Since a0 = b0c0, we have p2|a0, a contradiction.

Example 12.12. The polynomial x5 + 3x4− 6x3 + 12x+ 3 is irreducible in Q[x].
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MATH 2070A Week 13

Field Extensions, Finite Fields

13.1 Field Extensions
Definition 13.1. Let R be a ring. A subset S of R is said to be a subring of R if
it is a ring under the addition +R and multiplication ×R associated with R, and
its additive and multiplicative identity elements 0, 1 are those of R.

Remark. To show that a subset S of a ringR is a subring, it suffices to show that:

• S contains the additive and multiplicative identity elements of R.

• S is "closed under addition": a+R b ∈ S for all a, b ∈ S.

• S is "closed under multiplication": a×R b ∈ S for all a, b ∈ S.

• S is closed under additive inverse: For all a ∈ S, the additive inverse −a
of a in R belongs to S.

Definition 13.2. A subfield k of a field K is a subring of K which is a field.

In particular, for each nonzero element r ∈ k ⊆ K. The multiplicative inverse
of r in K lies k.

Definition 13.3. Let K be a field and k a subfield. Let α be an element of K. We
define k(α) to be the smallest subfield of K containing k and α. In other words,
if F is a subfield of K which contains k and α, then F ⊇ k(α). We say that k(α)
is obtained from k by adjoining α.

Theorem 13.4. Let k be a subfield of a field K. Let α be an element of K.
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1. If α is a root of a nonzero polynomial f ∈ k[x] (viewed as a polynomial in
K[x] with coefficients in k), then α is a root of an irreducible polynomial
p ∈ k[x], such that p|f in k[x].

2. Let p be an irreducible polynomial in k[x] of which α is a root. Then, the
map φ : k[x]/(p) −→ K, defined by:

φ

(
n∑
j=0

cjx
j + (p)

)
=

n∑
j=0

cjα
j,

is a well-defined one-to-one ring homomorphism with imφ = k(α). (Here,∑n
j=0 cjx

j + (p) is the congruence class of
∑n

j=0 cjx
j ∈ k[x] modulo (p).)

Hence,
k[x]/(p) ∼= k(α).

3. If α, β ∈ K are both roots of an irreducible polynomial p in k[x], then there
exists a ring isomorphism σ : k(α) −→ k(β), with σ(α) = β and σ(s) = s,
for all s ∈ k.

4. Let p be an irreducible polynomial in k[x] of which α is a root. Then, each
element in k(α) has a unique expression of the form:

c0 + c1α + · · ·+ cn−1α
n−1,

where ci ∈ k, and n = deg p.

Remark. Suppose p is an irreducible polynomial in k[x] of which α ∈ K is a root.
Part 4 of the theorem essentially says that k(α) is a vectors space of dimension
deg p over k, with basis:

{1, α, α2, . . . , αn−1}.

Example 13.5. Consider k = Q as a subfield of K = R. The element α ∈ 3
√

2 ∈
R is a root of the the polynomial p = x3 − 2 ∈ Q[x], which is irreducible in Q[x]
by the Eisenstein’s Criterion for the prime 2.

The theorem applied to this case says that Q(α), i.e. the smallest subfield of
R containing Q and α, is equal to the set:

{c0 + c1α + c2α
2 : ci ∈ Q}

The addition and multiplication operations in Q(α) are those associated with R,
in other words:

(c0 + c1α + c2α
2) + (b0 + b1α + b2α

2)

= (c0 + b0) + (c1 + b1)α + (c2 + b2)α
2,
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(c0 + c1α + c2α
2) · (b0 + b1α + b2α

2)

= c0b0 + c0b1α + c0b2α
2 + c1b0α + c1b1α

2

+ c1b2α
3 + c2b0α

2 + c2b1α
3 + c2b2α

4

= (c0b0 + 2c1b2 + 2c2b1) + (c0b1 + c1b0 + 2c2b2)α

+ (c0b2 + c1b1 + c2b0)α
2

Exercise 13.6. Given a nonzero γ = c0 + c1α + c2α
2 ∈ Q(α), ci ∈ Q, find

b0, b1, b2 ∈ Q such that b0 + b1α+ b2α
2 is the multiplicative inverse of γ in Q(α).

Proof. (of Theorem 13.4 )

1. Define a map ψ : k[x] −→ K as follows:

ψ
(∑

cjx
j
)

=
∑

cjα
j.

Exercise: ψ is a ring homomorphism.

By assumption, f lies in kerψ. Since k is a field, the ring k[x] is a PID. So,
there exists p ∈ k[x] such that kerψ = (p). Hence, p|f in k[x].

By the First Isomorphism Theorem, imψ is a subring ofK which is isomor-
phic to k[x]/(p). In particular, imψ is an integral domain because K has no
zero divisors. Hence, by Theorem 11.20 , the polynomial p is an irreducible
in k[x].

Since p ∈ (p) = kerψ, we have 0 = ψ(p) = p(α). Hence, α is a root of p.

2. If f+(p) = g+(p) in k[x]/(p), then g−f ∈ (p), or equivalently: g = f+pq
for some q ∈ k[x].

Hence, φ(g + (p)) = f(α) + p(α)q(α) = f(α) = φ(f + (p)).

This shows that φ is a well-defined map. We leave it as an exercise to show
that φ is a one-to-one ring homomorphism.

We now show that imφ = k(α). By the First Isomorphism Theorem, imφ
is isomorphic to k[x]/(p), which is a field since p is irreducible. Moreover,
α = φ(x+ (p)) lies in imφ. Hence, imφ is a subfield of K containing α.

Since each element in imφ has the form
∑n

j=0 cjα
j , where cj ∈ k, and

fields are closed under addition and multiplication, any subfield of K which
contains k and α must contain imφ. This shows that imφ is the smallest
subfield of K containing k and α. Hence, k[x]/(p) ∼= imφ = k(α).
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3. Define φ′ : k[x]/(p) −→ k(β) as follows:

φ′
(∑

cjx
j + (p)

)
=
∑

cjβ
j.

By the same reasoning applied to φ before, the map φ′ is a well-defined ring
isomorphism, with:

φ′(x+ (p)) = β, φ′(s+ (p)) = s for all s ∈ k.

It is then easy to see that the map σ := φ′ ◦ φ−1 : k(α) −→ k(β) is the
desired isomorphism between k(α) and k(β).

4. Since φ in Part 2 is an isomorphism onto imφ = k(α), we know that each
element γ ∈ k(α) is equal to φ(f + (p)) = f(α) :=

∑
cjα

j for some
f =

∑
cjx

j ∈ k[x].

By the division theorem for k[x]. There exist m, r ∈ k[x] such that f =
mp + r, with deg r < deg p = n. In particular, f + (p) = r + (p) in
k[x]/(p).

Write r =
∑n−1

j=0 bjx
j , with bj = 0 if j > deg r.

We have:

γ = φ(f + (p)) = φ(r + (p)) =
n−1∑
j=0

bjα
j.

It remains to show that this expression for γ is unique. Suppose γ = g(α) =∑n−1
j=0 b

′
jα

j for some g =
∑n−1

j=0 b
′
jx
j ∈ k[x].

Then, g(α) = r(α) = γ implies that φ(g + (p)) = φ(r + (p)), hence:

(g − r) + (p) ∈ kerφ.

Since φ is one-to-one, we have (g − r) ≡ 0 modulo (p), which implies that
p|(g − r) in k[x].

Since deg g, deg r < deg p, this implies that g − r = 0. So, the expression
γ = b0 + b1α + · · ·+ bn−1α

n−1 is unique.

Terminology:

• If k is a subfield of K, we say that K is a field extension of k.

• Let α be an element in a field extension K of a field k. If there exists a
polynomial p ∈ k[x] of which α is a root, then α is said to be algebraic
over k.
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• If α ∈ K is algebraic over k, then there exists a unique monic irreducible
polynomial p ∈ k[x] of which α is a root (Exercise). This polynomial p is
called the minimal polynomial of α over k.

For example, 3
√

2 ∈ R is algebraic over Q. Its minimal polynomial over Q is
x3 − 2.

Exercise 13.7. Find the minimal polynomial of 2− 3
√

6 ∈ R over Q, if it exists.

Exercise 13.8. Find the minimal polynomial of 3
√

5 over Q.

Exercise 13.9. Express the multiplicative inverse of γ = 2 + 3
√

5 in Q( 3
√

5) in the
form:

γ−1 = c0 + c1
3
√

5 + c2

(
3
√

5
)2
,

where ci ∈ Q, if possible.

13.2 Splitting Field

Example 13.10. Since 3
√

2 ∈ Q( 3
√

2) is a root of x3−2, the polynomial p = x3−2
has a linear factor in Q( 3

√
2)[x]. More precisely,

x3 − 2 = (x− 3
√

2)(x2 +
3
√

2x+ (
3
√

2)2)

in Q( 3
√

2)[x]. Exercise: Is x2 + 3
√

2x+ ( 3
√

2)2 irreducible in Q( 3
√

2)[x]?

We could repeat this process and adjoin roots of x2 + 3
√

2x+ ( 3
√

2)2 to Q( 3
√

2)
to further "split" the polynomial x3− 2 into a product of linear factors. That is the
main idea behind the following theorem:

Theorem 13.11. If k is a field, and f is a nonconstant polynomial in k[x], then
there exists a field extension K of k, such that f ∈ k[x] ⊆ K[x] is a product of
linear factors in K[x].

In other words, there exists a field extension K of k, such that:

f = c(x− α1) · · · (x− αn),

for some c, αi ∈ K.
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Proof. We prove by induction on deg f .
If deg f = 1, we are done.
Inductive Step: Suppose deg f > 1. Suppose, for any field extension k′ of k,

and any polynomial g ∈ k′[x] with deg g < deg f , there exists a field extension K
of k′ such that g splits into a product of linear factors in K[x].

Suppose f is irreducible. Let f(t) be the polynomial in k[t] obtained from f by
replacing the variable x with the variable t. Consider k′ := k[t]/(f(t)). Then, k′

is a field extension of k if we identify k with the subset {c+ (f(t)) : c ∈ k} ⊆ k′,
where c is considered as a constant polynomial in k[t].

Observe that k′ contains a root α of f , namely α = t + (f(t)) ∈ k[t]/(f(t)).
Hence, f = (x− α)q in k′[x] for some polynomial q ∈ k′[x] with deg q < deg f .

Now, by the induction hypothesis, there is an extension field K of k′ such
that q splits into a product of linear factors in K[x]. Consequently, f splits into a
product of linear factors in K[x].

If f is not irreducible, then f = gh for some g, h ∈ k[x], with deg g, deg h <
deg f . So, by the induction hypothesis, there is a field extension k′ of k such that
g is a product of linear factors in k′[x].

Hence, f = (x − α1) · · · (x − αn)h in k′[x]. Since deg h < deg f , by the
inductive hypothesis there exists a field extension K of k′ such that h splits into
linear factors in K[x].

Hence, f is a product of linear factors in K[x].

13.3 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

@thm If k is a field, and f is a nonconstant polynomial in k[x], then there exists a
field extension K of k, such that f ∈ k[x] ⊆ K[x] is a product of linear factors in
K[x]. @newcol In other words, there exists a field extension K of k, such that:

f = c(x− α1) · · · (x− αn),

for some c, αi ∈ K. @endcol@end@proof@newcol We prove by induction
on deg f . @col If deg f = 1, we are done. @col<b class="notkw">Inductive
Step:</b> Suppose deg f > 1. Suppose, for any field extension k′ of k, and any
polynomial g ∈ k′[x] with deg g < deg f , there exists a field extension K of
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k′ such that g splits into a product of linear factors in K[x]. @col Suppose f is
irreducible. Let f(t) be the polynomial in k[t] obtained from f by replacing the
variable x with the variable t. Consider k′ := k[t]/(f(t)). Then, k′ is a field ex-
tension of k if we identify k with the subset {c+ (f(t)) : c ∈ k} ⊆ k′, where c is
considered as a constant polynomial in k[t]. @col Observe that k′ contains a root α
of f , namely α = t+(f(t)) ∈ k[t]/(f(t)). Hence, f = (x−α)q in k′[x] for some
polynomial q ∈ k′[x] with deg q < deg f . @col Now, by the induction hypothesis,
there is an extension field K of k′ such that q splits into a product of linear factors
in K[x]. Consequently, f splits into a product of linear factors in K[x]. @col If f
is not irreducible, then f = gh for some g, h ∈ k[x], with deg g, deg h < deg f .
So, by the induction hypothesis, there is a field extension k′ of k such that g is a
product of linear factors in k′[x]. @col Hence, f = (x−α1) · · · (x−αn)h in k′[x].
Since deg h < deg f , by the inductive hypothesis there exists a field extension K
of k′ such that h splits into linear factors in K[x]. @col Hence, f is a product of
linear factors in K[x]. @qed@endcol@end

13.4 Finite Fields
Recall:

Definition 13.12. Let R be a ring with additive and multiplicative identity ele-
ments 0, 1, respectively. The characteristic charR of R is the smallest positive
integer n such that:

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If such an integer does not exist, we say that the ring has characteristic zero.

Example 13.13. • The ring Q has characteristic zero.

• charZ6 = 6.

Exercise 13.14. If a ring R as finitely many elements, then it has positive (i.e.
nonzero) characteristic.

Claim 13.15. If a field F has positive characteristic charF , then charF is a
prime number.

Example 13.16. charF5 = 5, which is prime.

Remark. Note that all finite rings have positive characteristics, but there are
rings with positive characteristics which have infinitely many elements, e.g. the
polynomial ring F5[x].
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Claim 13.17. Let F be a finite field. Then, the number of elements of F is equal
to pn for some prime p and n ∈ N.

Proof. Since F is finite, it has finite characteristic. Since it is a field, charF is a
prime p.

Exercise: Fp is isomorphic to a subfield of F .
Viewing Fp as a subfield of F , we see that F is a vector space over Fp. Since

the cardinality of F is finite, the dimension n of F over Fp must necessarily be
finite.

Hence, there exist n basis elements α1, α2, . . . , αn in F , such that each element
of F may be expressed uniquely as:

c1α1 + c2α2 + · · ·+ cnαn,

where ci ∈ Fp.
Since Fp has p elements, it follows that F has pn elements.

Claim 13.18. Let k be a field, f a nonzero irreducible polynomial in k[x], then
k[x]/(f) is a vector space of dimension deg f over k.

Proof. LetK = k[t]/(f(t)), thenK is a field extension of k which contains a root
α of f , namely, α = t+ (f(t)).

It is clear that K = k(α), since any element in K = k[t]/(f(t)) has the form∑
biα

i, where bi ∈ k.
On the other hand, by Theorem 13.4, every element in k(α) may be expressed

uniquely in the form:

c0 + c1α + c2α
2 + · · ·+ cn−1α

n−1, ci ∈ k, n = deg f,

which shows that K = k(α) is a vector space of dimension deg f over k.
Since K is simply k[x]/(f) with the variable x replaced with t, we conclude

that k[x]/(f) is a vector space of dimension deg f over k.

Corollary 13.19. If k is a finite field with |k| elements, and f is an irreducible
polynomial of degree n in k[x], then the field k[x]/(f) has |k|n elements.

Example 13.20. Let p = 2, n = 2. To construct a finite field with pn = 4
elements. We first start with the finite field F2, then try to find an irreducible
polynomial f ∈ F2[x] such that F2[x]/(f) has 4 elements.

Based on our discussion so far, the degree of f should be equal to n = 2, since
n is precisely the dimension of the desired finite field over F2.

Consider f = x2 + x + 1. Since p is of degree 2 and has no root in F2, it is
irreducible in F2[x]. Hence, F2[x]/(x2 + x+ 1) is a field with 4 elements.
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Theorem 13.21. (Galois ) Given any prime p and n ∈ N, there exists a finite field
F with pn elements.

Proof. (Not within the scope of the course.)
Consider the polynomial:

f = xp
n − x ∈ Fp[x]

By Kronecker’s theorem, there exists a field extension K of Fp such that f splits
into a product of linear factors in K[x]. Let:

F = {α ∈ K : f(α) = 0}.

Exercise 13.22. Let g = (x − a1)(x − a2) · · · (x − an) be a polynomial in k[x],
where k is a field. Show that the roots a1, a2, . . . , an are distinct if and only if
gcd(g, g′) = 1, where g′ is the derivative of g.

In this case, we have f ′ = pnxp
n−1− 1 = −1 in Fp[x]. Hence, gcd(f, f ′) = 1,

which implies by the exercise that the roots of f are all distinct. So, f has pn

distinct roots in K, hence F has exactly pn elements.
It remains to show that F is a field. Let q = pn. By definition, an element

a ∈ K belongs to F if and only if f(a) = aq − a = 0, which holds if and only if
aq = a. For a, b ∈ F , we have:

(ab)q = aqba = ab,

which implies that F is closed under multiplication. Since K, being a extension
of Fp, has characteristic p. we have (a+ b)p = ap + bp. Hence,

(a+ b)q = (a+ b)p
n

= ((a+ b)p)p
n−1

= (ap + bp)p
n−1

= (ap + bp)p)p
n−2

= (ap
2

+ bp
2

)p
n−2

= · · · = ap
n

+ bp
n

= a+ b,

which implies that F is closed under addition.
Let 0, 1 be the additive and multiplicative identity elements, respectively, of

K. Since 0q = 0 and 1q = 1, they are also the additive and multiplicative identity
elements of F .

For nonzero a ∈ F , we need to prove the existence of the additive and multi-
plicative inverses of a in F .

Let −a be the additive inverse of a in K. Since (−1)q = −1 (even if p = 2,
since 1 = −1 in F2), we have:

(−a)q = (−1)qaq = −a,

90



so −a ∈ F . Hence, a ∈ F has an additive inverse in F . Since aq = a in K, we
have:

aq−2a = aq−1 = 1

in K. Since a ∈ F and F is closed under multiplication, aq−2 = a · · · a︸ ︷︷ ︸
q−2 times

lies in F .

So, aq−2 is a multiplicative inverse of a in F .
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