Math 2070 Week 7

Polynomials, Rings

7.1 Polynomials with Rational Coefficients

Notation:
Q = Set of rational numbers

Q[z] = Set of polynomials with rational coefficients
={ap+amz+ -+ a,z"|n € Zso,a; € Q}

Theorem 7.1 (Division Theorem for Polynomials with Rational Coefficients). For
all f,g € Q[x], such that f # 0, there exist unique q,r € Q[x], satisfying degr <
deg f, such that g = fq +r.

Proof. We first prove the existence of ¢ and r, via induction on the degree of g.
The base step corresponds to the case degg < deg f. In this case, the choice
q=0,r =g works, since g = f -0+ g, and degr = deg g < deg f.

Now, we establish the inductive step. Let f be fixed. Given g, suppose for
all ¢’ with deg ¢’ < deg g, there exist ¢, r’ € Q[z] such that ¢ = f¢' + r/, with
degr’ < deg f. We want to show that there exist ¢, r such that g = fq + r, with
degr < deg f.

Suppose g = ag + ayx + -+ + a,,x™ and f = by + byx + - - - + b,x™, where
am, b, # 0. We may assume that m > n, since the case m < n (i.e. degg <
deg f) has already been proved.

Consider the polynomial:

am

I _ Mameny
g=g b /

Then, deg ¢’ < deg g, and by the induction hypothesis we have:
g/ _ f q/ + 4
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for some ¢', 1" € Q|x] such that degr’ < deg f.
Hence,

Am m—n
9= 5% f=9=Ffd+7,

which implies that:

am m—n
g:f(q’+b—:c >+r’

This establishes the existence of the quotient ¢ = ¢’ + %xm‘” and the remainder
r=r.

Now, we prove the uniqueness of ¢ and r. Suppose g = fq+1r = f¢ + 1/,
where ¢, ¢, r, 7" € Q[z|, with degr, degr’ < deg f. We have:

fa+r=[fqd+7,
which implies that:
deg f(q — ¢') = deg(r’ —r) < deg [.

The above inequality can hold only if ¢ = ¢/, which in turn implies that ' = r. It
follows that the quotient ¢ and the remainder r are unique. [

Definition 7.2. Given f, g € Q[z], a Greatest Common Divisor d of f and g is
a polynomial in Q|x] which satisfies the following two properties:

1. ddivides both f and g.

2. For any e € Q[z] which divides both f and g, we have dege < degd.
Claim 7.3. If g = fq+ 1, and dis a GCD of g and f, then d is a GCD of f and r.
Proof. See the proof of Lemma 6.2. [

Corollary 7.4. The Euclidean Algorithm applies to Q|x].
Namely: Suppose deg g > deg f. let gy = g, fo = f, and let vy be the unique
polynomial in Q[z] such that:

go = foqo + 10, degro < deg fo,

for some qy € Q|x].
For k > 0, let:

9k = fr—1, [Jr = Tr_1

Let v, be the remainder such that:
9k = frqk + T,
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for some g, € Q|x].
Since degry, < deg fr = degry_1, we have:

degrg > degry > degry > -+ > —00

(where by convention we let deg ) = —00).
Eventually, r,, = 0 for some n, and it follows from the previous claim and
arguments similar to those used in the case of Z that r,_1 is a GCD of f and g.

Example 7.5. 1. Finda GCD of 2° + 1 and x* + 1 in Q[z].
2. Finda GCD of 2* — 2* — x + 1 and 2* + 42* + x — 6 in Q[z].

Corollary 7.6 (Bézout’s Identity for Polynomials). Forany f,g € Q[x] which are
not both zero, and d a GCD of f and g, there exist u,v € Q|x] such that:

d= fu+ gv.

7.2 Factorization of Polynomials

Definition 7.7. A polynomial p in Q|x] is irreducible if it satisfies the following
conditions:

1. degp >0,

2. if p = ab for some a,b € Q|x], then either a or b is a constant.

Claim 7.8. If p € Q[z] is irreducible and p|f1 fo, where f1, fo € Q|x], then p|fi
or p| fa.

Proof. Suppose p does not divide f5, then the only common divisors of p and f5
are constant polynomials. In particular, 1 is a GCD of p and f>. Then, by Bézout’s
Identity for Polynomials , there exist u, v, Q[z] such that 1 = pu + fov. We have:

J1=npuf1 + f1fov.
Since p divides the right-hand side of the above equation, it must divide f;. [

Theorem 7.9. A polynomial in Q[z]| of degree greater than zero is either irre-
ducible or a product of irreducibles.
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Proof. Suppose there is a nonempty set of polynomials of degree > 0 which are
neither irreducible nor products of irreducibles. Let p be an element of this set
which has the least degree. Since p is not irreducible, there are a,b € Q[z] of
degrees > 0 such that p = ab. But, a, b, having degrees strictly less than deg p,
must be either irreducible or products of irreducibles. This implies that p is a
product of irreducibles, a contradiction. O]

Remark: Compare this proof with that of Part 1 of the Fundamental Theorem
of Arithmetic (The Fundamental Theorem of Arithmetic).

Theorem 7.10 (Unique Factorization for Polynomials). For any p € Q|x] of de-
gree > 0, if:
p=rfifer o =192 Gms

where f;, g; are irreducible polynomials in Q[z], then n = m, and the g;’s may be
reindexed so that f; = \;g; for some \; € Q, forv =1,2,...,n.

Proof. Exercise . See the proof of Part 2 of The Fundamental Theorem of Arith-
metic ). ]

7.3 Rings

7.3.1 Definition of a Ring
Definition 7.11. A ring R (or (R, +, X)) is a set equipped with two operations:

X, +:RxR—R
which satisfy the following properties:
1. Properties of +:

(a) Commutativity: a +b=>b+a, Va,b € R.
(b) Associativity: a + (b+c¢) = (a+b) +c.

(c) There is an element 0 € R (called the additive identity element ),
such that a + 0 = a forall a € R.

(d) Every element of R has an additive inverse; namely: For all a € R,
there exists an element of R, usually denoted —a, such that a+(—a) =
0.

2. Properties of x:

(a) Associativity: a(bc) = (ab)c.
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(b) There is an element 1 € R (called the multiplicative identity element
), suchthat1 x a =a x 1 =aforall a € R.

3. Distributativity:

(a) ax (b+c)=axb+axcforala,b,cé€R.
(b) (a+b) xc=axc+bxc foralla,b,c€ R.

Note:
1. For convenience’s sake, we often write ab for a x b.

2. In the definition, commutativity is required of addition, but not of multipli-
cation.

3. Every element has an additive inverse, but not necessarily a multiplicative
inverse. That is, there may be an element @ € R such that ab # 1 for all
be R.

Example 7.12. The following sets, equipped with the usual operations of addition
and multiplication, are rings:

1. Z, QR

2. Z[z), Qlz], R[z]| (Polynomials with integer, rational, real coefficients, re-
spectively.)

QVE) = {3 @V |ar € Qun € Zno)
= {a+bVv2]a,b e Q}.

4. M, (R), the set of n X n real matrices, n € N.
5. For a fixed n, the set of n X n matrices with integer coefficients.
6. C0,1] ={f:[0,1] = R | f is continuous.}

The following sets, under the usual operations of addition and multiplication,
are not rings:

1. N, no additive identity element, i.e. no 0.

2. NU {0}, nonzero elements have no additive inverses.
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3. GL(n,R), the set of n X n invertible real matrices, n € N.

Claim 7.13. In a ring R, there is a unique additive identity element and a unique
multiplicative identity element.

Proof. Suppose there is an element 0’ € R such that 0'4+r = r for all » € R, then
in particular 0’ + 0 = 0.

Since 0 is an additive identity, we have 0’ + 0 = 0'. So, 0’ = 0.

Suppose there is an element 1’ € R such that 1'r = r orall r € R,

then in particular 1’ - 1 = 1.

But 1’ - 1 = 1’ since 1 is a multiplicative identity element, so 1’ = 1. O]

Exercise 7.14. Prove that: For any r in a ring R, its additive inverse —r is unique.
Thatis, if r +7v" =r+1r" =0, thenr’ =1r".

7.3.2 WeBWorkK
1. WeBWorK
2. WeBWorK

Claim 7.15. For all elements r in a ring R, we have Or = r0 = 0.
Proof. By distributativity,
Or = (04 0)r = 0r + Or.
Adding —0r (additive inverse of Or) to both sides, we have:
0= (0r+0r)+ (—=0r) =0r+ (0r + (=0r)) = 0r + 0 = Or.

The proof of 70 = 0 is similar and we leave it as an exercise . [
Claim 7.16. For all elements r in a ring, we have (—1)(—r) = (—r)(—=1) =r.
Proof. We have:

0=0(=r)= 04+ (=1)(=r)=—=r+ (=1)(-r).
Adding 7 to both sides, we obtain
r=r+(—r+(=1)(-r)) =(+-r)+(=1)(-r) = (=1)(-r).
We leave it as an exercise to show that (—r)(—1) = r. O
Exercise 7.17. Show that: For all r in a ring R, we have:
(—=D)r=r(-1)=—r.

Exercise 7.18. Show that: If R is a ring in which 1 = 0, then R = {0}. That is,
it has only one element.
(We call such an R the zero ring .)
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