Math 2070 Week 13

Field Extensions, Finite Fields

13.1 Field Extensions

Definition 13.1. Let R be a ring. A subset S of R is said to be a subring of R if
it is a ring under the addition + g and multiplication X g associated with R, and
its additive and multiplicative identity elements 0, 1 are those of R.

Remark. To show that a subset S of a ring R is a subring, it suffices to show that:
e S contains the additive and multiplicative identity elements of R.
e S is "closed under addition": a +r b € S forall a,b € S.
e S is "closed under multiplication": a X b € S forall a,b € S.

e S is closed under additive inverse: For all a € S, the additive inverse —a
of a in R belongs to S.

Definition 13.2. A subfield k of a field K is a subring of K which is a field.

In particular, for each nonzero element » € £ C K. The multiplicative inverse
of rin K lies k.

Definition 13.3. Let K be a field and k a subfield. Let o be an element of K. We
define k() to be the smallest subfield of K containing k and . In other words,
if F'is a subfield of K which contains k and o, then F' O k(«). We say that k(o)
is obtained from k by adjoining o.

Theorem 13.4. Let k be a subfield of a field K. Let o be an element of K.



1. If ais a root of a nonzero polynomial f € k(x| (viewed as a polynomial in
K [x] with coefficients in k), then « is a root of an irreducible polynomial
p € klx], such that p|f in k[z].

2. Let p be an irreducible polynomial in k|x] of which « is a root. Then, the
map ¢ : klz]/(p) — K, defined by:

¢ (Z cjal + (p)> =
j=0 j=0

is a well-defined one-to-one ring homomorphism with im ¢ = k(«). (Here,
> o c;x? + (p) is the congruence class of > o cjx? € k[z] modulo (p).)

Hence,

klz]/(p) = k(e).

3. If a, 8 € K are both roots of an irreducible polynomial p in k|x], then there
exists a ring isomorphism o : k(o) — k(B), witho(a) = S and o(s) = s,
forall s € k.

4. Let p be an irreducible polynomial in k[z| of which « is a root. Then, each
element in k(«) has a unique expression of the form:

-1
co+coa+-+c, 0",

where ¢; € k, and n = degp.

Remark. Suppose p is an irreducible polynomial in k(x| of which o € K is a root.
Part 4 of the theorem essentially says that k(«) is a vectors space of dimension
deg p over k, with basis:

{1,a,0?, ..., 0"t}

Example 13.5. Consider k = Q as a subfield of K = R. The element o € /2 €
R is a root of the the polynomial p = z* — 2 € Q|x], which is irreducible in Q[z]
by the Eisenstein’s Criterion for the prime 2.

The theorem applied to this case says that Q(«), i.e. the smallest subfield of
R containing Q and o, is equal to the set:

{co + cra + ca? i ¢; € Q}

The addition and multiplication operations in Q(«) are those associated with R,
in other words:

(co + cra+ caa?) + (b + brav + bacr®)
= (Co + bo) + (01 + bl)CY + (Cz + bQ)C]fQ,



(co + cra + coa?) - (by + b + bya?)
= cobo + cobrav + cobod® + c1bgar + ¢1b102
+ 190 + c2bpa® + cabia + cobya?
= (cobo + 2¢1bg + 2¢2b1) + (coby + c1bo + 2¢9b2) v
+ (coby + c1by + coby)a?

Exercise 13.6. Given a nonzero v = ¢y + cia + ca? € Q(a), ¢; € Q, find
bo, b1, by € Q such that by + bya + bai? is the multiplicative inverse of v in Q(«).

Proof. (of Theorem 13.4)

1. Define a map ¢ : k[x] — K as follows:
WY (Z cja;j> = cho/.

Exercise: 1 is a ring homomorphism.

By assumption, f lies in ker . Since £ is a field, the ring k[z] is a PID. So,
there exists p € k[x] such that ker ¢ = (p). Hence, p|f in k[z].

By the First Isomorphism Theorem, im ) is a subring of K which is isomor-
phic to k[z]/(p). In particular, im ¢ is an integral domain because / has no
zero divisors. Hence, by Theorem 11.20/, the polynomial p is an irreducible
in k[z].

Since p € (p) = ker ), we have 0 = ¥(p) = p(«). Hence, « is a root of p.

2. If f+(p) = g+(p) in k[z]/(p), then g— f € (p), or equivalently: g = f+pq
for some ¢ € k[z].

Hence, ¢(g + (p)) = f(a) + p(a)q(a) = f(a) = o(f + (p)).

This shows that ¢ is a well-defined map. We leave it as an exercise to show
that ¢ is a one-to-one ring homomorphism.

We now show that im ¢ = k(«). By the First Isomorphism Theorem, im ¢
is isomorphic to k[z]/(p), which is a field since p is irreducible. Moreover,
a = ¢(z + (p)) lies in im ¢. Hence, im ¢ is a subfield of K containing c.

Since each element in im ¢ has the form Z?:o cjad, where ¢; € k, and
fields are closed under addition and multiplication, any subfield of K which
contains £ and o must contain im ¢. This shows that im ¢ is the smallest
subfield of K containing k and «.. Hence, k[x]/(p) = im ¢ = k().
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3. Define ¢ : k[x]/(p) — k() as follows:

@' (Z c;x) + (p)) = Zc]ﬂj.

By the same reasoning applied to ¢ before, the map ¢’ is a well-defined ring
isomorphism, with:

(x4 (p)=p8, ¢(s+(p)=sforallscek.

It is then easy to see that the map o := ¢/ 0o ¢ : k(o) — k(p) is the
desired isomorphism between k(«) and k().

4. Since ¢ in Part 2 is an isomorphism onto im ¢ = k(«), we know that each
element v € k() is equal to ¢(f + (p)) = f(a) := > c¢;ja? for some
[ = ¢l € klz].
By the division theorem for k[x]. There exist m,r € k[z| such that f =
mp + r, with degr < degp = n. In particular, f + (p) = r + (p) in
klz]/(p).
Write r = Z?;é bjx?, with b; = 0if j > degr.
We have:

n—1
7= + (1) = 00r+ (p) = Db,
5=0
It remains to show that this expression for +y is unique. Suppose v = g(a) =
27;01 ba’ for some g = Z;:& Vil € klx].
Then, g(«) = r(a) = ~ implies that ¢(g + (p)) = é(r + (p)), hence:
(g —7)+ (p) € ker ¢.

Since ¢ is one-to-one, we have (¢ — ) = 0 modulo (p), which implies that
pl(g — ) in klz].

Since deg g, degr < deg p, this implies that ¢ — r = 0. So, the expression
v =by+bia+ -+ b,_1a" ! is unique.

O
Terminology:
e If k is a subfield of K, we say that K is a field extension of £.

e Let o be an element in a field extension KX of a field k. If there exists a
polynomial p € k[z] of which « is a root, then « is said to be algebraic
over k.



o If o € K is algebraic over k, then there exists a unique monic irreducible
polynomial p € k[z] of which « is a root (Exercise). This polynomial p is
called the minimal polynomial of « over k.

For example, v/2 € R is algebraic over Q. Its minimal polynomial over Q is
3 — 2.

Exercise 13.7. Find the minimal polynomial of 2 — /6 € R over Q, if it exists.
Exercise 13.8. Find the minimal polynomial of /5 over Q.

Exercise 13.9. Express the multiplicative inverse of v = 2 + /5 in Q(3/5) in the
form:

2
vl =co+aVhte (\3/5> ,

where ¢; € Q, if possible.

13.2 Splitting Field

Example 13.10. Since v/2 € Q(~/2) is a root of x* — 2, the polynomial p = x° —2
has a linear factor in Q(~/2)[z]. More precisely,

7P — 2= (= V2)(2® + V2z + (V2)?)
in Q(v/2)[x]. Exercise: Is 2% 4 ¥/2x + (3/2)? irreducible in Q(~/2)[x]?

We could repeat this process and adjoin roots of 22 + v/2x + (v/2)? to Q(v/2)
to further "split" the polynomial 2® — 2 into a product of linear factors. That is the
main idea behind the following theorem:

Theorem 13.11. If k is a field, and f is a nonconstant polynomial in k[z|, then
there exists a field extension K of k, such that [ € k[z] C K|[x] is a product of
linear factors in K|z|.

In other words, there exists a field extension K of k, such that:

f=cz—ar)--(z —an),

for some c,o; € K.



Proof. We prove by induction on deg f.

If deg f = 1, we are done.

Inductive Step: Suppose deg f > 1. Suppose, for any field extension £’ of k,
and any polynomial g € k’[z] with deg g < deg f, there exists a field extension K
of £’ such that g splits into a product of linear factors in K[z].

Suppose f is irreducible. Let f(t) be the polynomial in k[¢] obtained from f by
replacing the variable = with the variable ¢. Consider &' := k[t]/(f(t)). Then, £’
is a field extension of k if we identify k with the subset {c+ (f(t)) : c € k} C K/,
where c is considered as a constant polynomial in & [t].

Observe that &’ contains a root « of f, namely o = ¢ + (f(¢)) € k[t]/(f(t)).
Hence, [ = (x — «)q in k/[z] for some polynomial ¢ € k'[x] with deg ¢ < deg f.

Now, by the induction hypothesis, there is an extension field K of £’ such
that ¢ splits into a product of linear factors in K [x]. Consequently, f splits into a
product of linear factors in K[z].

If f is not irreducible, then f = gh for some g, h € k[z], with deg g, deg h <
deg f. So, by the induction hypothesis, there is a field extension &” of & such that
g is a product of linear factors in k'[z].

Hence, f = (z — o) -+ (z — ay,)h in K'[z]. Since degh < deg f, by the
inductive hypothesis there exists a field extension K of &’ such that A splits into
linear factors in K [x].

Hence, f is a product of linear factors in K [x]. O

13.3 WeBWork

1. WeBWorK
2. WeBWorK
3. WeBWorK
4. WeBWorK

@thm If £ is a field, and f is a nonconstant polynomial in k[x], then there exists a
field extension K of k, such that f € k[x] C K{z] is a product of linear factors in
K[z]. @newcol In other words, there exists a field extension K of &, such that:

f=cz—=ar)-(z —an),

for some c,; € K. @endcol@end@proof@newcol We prove by induction
on deg f. @col If deg f = 1, we are done. @col<b class="notkw">Inductive
Step:</b> Suppose deg f > 1. Suppose, for any field extension £’ of k, and any
polynomial g € k'[z] with degg < deg f, there exists a field extension K of
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k" such that g splits into a product of linear factors in K [x]. @col Suppose f is
irreducible. Let f(t) be the polynomial in k[t] obtained from f by replacing the
variable x with the variable ¢. Consider k' := k[t]/(f(t)). Then, ¥’ is a field ex-
tension of k if we identify k with the subset {c + (f(¢)) : ¢ € k} C k', where c is
considered as a constant polynomial in k[t]. @col Observe that k&’ contains a root «
of f,namely o = t+ (f(t)) € k[t]/(f(t)). Hence, f = (z — «)q in k'[x] for some
polynomial ¢ € k'[z] with deg ¢ < deg f. @col Now, by the induction hypothesis,
there is an extension field K of &" such that ¢ splits into a product of linear factors
in K[z|. Consequently, f splits into a product of linear factors in K[z]. @col If f
is not irreducible, then f = gh for some g, h € k[z], with deg g,degh < deg f.
So, by the induction hypothesis, there is a field extension &’ of k such that g is a
product of linear factors in k'[z]. @col Hence, f = (z—ay) - -+ (x — ) hin £ [z].
Since deg h < deg f, by the inductive hypothesis there exists a field extension /X
of &’ such that h splits into linear factors in K [z]. @col Hence, f is a product of
linear factors in K [z]. @ged@endcol@end

13.4 Finite Fields

Recall:

Definition 13.12. Let R be a ring with additive and multiplicative identity ele-
ments 0, 1, respectively. The characteristic char R of R is the smallest positive
integer n such that:

I+1+---+1=0.

n times

If such an integer does not exist, we say that the ring has characteristic zero.
Example 13.13. e The ring Q has characteristic zero.
e charZg = 6.

Exercise 13.14. If a ring R as finitely many elements, then it has positive (i.e.
nonzero) characteristic.

Claim 13.15. If a field F has positive characteristic char F, then char F' is a
prime number.

Example 13.16. char F5 = 5, which is prime.

Remark. Note that all finite rings have positive characteristics, but there are
rings with positive characteristics which have infinitely many elements, e.g. the
polynomial ring Fs|x].



Claim 13.17. Let F' be a finite field. Then, the number of elements of F' is equal
to p" for some prime p and n € N.

Proof. Since F is finite, it has finite characteristic. Since it is a field, char F'is a
prime p.

Exercise: [F), is isomorphic to a subfield of F'.

Viewing I, as a subfield of I, we see that I is a vector space over [F,,. Since
the cardinality of F' is finite, the dimension n of [ over IF, must necessarily be
finite.

Hence, there exist n basis elements ay, as, . . ., oy, in F', such that each element
of F' may be expressed uniquely as:

C10q + Cog + + - - + Cpuy,

where ¢; € F,,.
Since [F), has p elements, it follows that /" has p™ elements. O

Claim 13.18. Let k be a field, f a nonzero irreducible polynomial in k|x|, then
k[x]/(f) is a vector space of dimension deg f over k.

Proof. Let K = k[t]/(f(t)), then K is a field extension of k which contains a root
a of f, namely, o =t + (f(t)).

It is clear that K = k(«), since any element in K = k[t]/(f(t)) has the form
ST biat, where b; € k.

On the other hand, by Theorem 13.4, every element in k(«) may be expressed
uniquely in the form:

ottt et o €k, n=degf,
which shows that X' = k(«) is a vector space of dimension deg f over k.
Since K is simply k[x]/(f) with the variable x replaced with ¢, we conclude
that k[z]/(f) is a vector space of dimension deg f over k. O

Corollary 13.19. If k is a finite field with |k| elements, and f is an irreducible
polynomial of degree n in k[x], then the field k[z)|/(f) has |k|" elements.

Example 13.20. Let p = 2, n = 2. To construct a finite field with p" = 4
elements. We first start with the finite field Iy, then try to find an irreducible
polynomial f € Fo[z| such that Fo[z]/(f) has 4 elements.

Based on our discussion so far, the degree of f should be equal to n = 2, since
n is precisely the dimension of the desired finite field over FF.

Consider f = x* + x + 1. Since p is of degree 2 and has no root in Fy, it is
irreducible in Fy[z). Hence, Fa[z]/(2? + x + 1) is a field with 4 elements.
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Theorem 13.21. (Galois ) Given any prime p and n € N, there exists a finite field
F with p" elements.

Proof. (Not within the scope of the course.)
Consider the polynomial:

f=a" —z €F,[x]

By Kronecker’s theorem, there exists a field extension K of [, such that f splits
into a product of linear factors in K [z]. Let:

F={aeK: f(a)=0}.

Exercise 13.22. Let g = (z — a1)(z — ag) - - - (v — a,,) be a polynomial in k|x],
where k is a field. Show that the roots ay,as, ..., a, are distinct if and only if
gcd(g, g') = 1, where ¢' is the derivative of g.

In this case, we have f' = p"2?"~! —1 = —1in F,[x]. Hence, gcd(f, f') = 1,
which implies by the exercise that the roots of f are all distinct. So, f has p”
distinct roots in K, hence F' has exactly p" elements.

It remains to show that F'is a field. Let ¢ = p". By definition, an element
a € K belongs to F'if and only if f(a) = a? — a = 0, which holds if and only if
a? = a. For a,b € F', we have:

(ab)? = a%b® = ab,

which implies that /" is closed under multiplication. Since K, being a extension
of F,, has characteristic p. we have (a + b)? = a” + b”. Hence,

(a+0)7 = (a+b)” = ((a+ b)) " = (@ + by

— (ap+bp)p)p”‘ — (ap L )p
= =d" +V =a+b,

which implies that F' is closed under addition.

Let 0,1 be the additive and multiplicative identity elements, respectively, of
K. Since 07 = 0 and 17 = 1, they are also the additive and multiplicative identity
elements of F'.

For nonzero a € F', we need to prove the existence of the additive and multi-
plicative inverses of a in F'.

Let —a be the additive inverse of @ in K. Since (—1)? = —1 (even if p = 2,
since 1 = —1 in [Fy), we have:

()" = (~1)a" = —a,

9



so —a € I'. Hence, a € F has an additive inverse in F'. Since ¢? = a in K, we
have:

2

a?2a=0a"""=1

in K. Since a € F and F is closed under multiplication, a2 = a---q liesin F.
q—2 times
So, a? ?isa multiplicative inverse of a in F'. O]
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