Math 2070 Week 11

Quotient Rings, Polynomials over a Field

11.1 Quotient Rings - continued

Example 11.1. Let m be a natural number. Consider the map ¢ : 7. —> L,
defined by:
o(n)=n,, Vnez,

where n,, is the remainder of the division of n by m.

Exercise: ¢ is a homomorphism.

It is clear that ¢ is surjective, and that ker ¢ = mZ. So, it follows from the
First Isomorphism Theorem that:

Ly, = 7/ MZ.
Definition 11.2 (Gaussian Integers). Let:
Zli] ={z € C: z = a + bi for some a,b € Z},

where 1 = /—1.

Exercise 11.3. Show that the set Z[i| is a ring under the usual addition + and
multiplication x operations on C.
Moreover, we have Oz;) = 0, 1z = 1, and:

—(a+bi) = (—a) + (=b)i
forany a,b € 7Z.
Example 11.4. The ring Z|i]/(1 + 31) is isomorphic to Z]/10Z.



Proof. Define amap ¢ : Z — Z[i]/(1 + 3t) as follows:
o(n)=mn, VnelzZ,

where 72 is the residue of n € Z[i] modulo (1 + 37).
It is clear that ¢ is a homomorphism ( Exercise ).
Observe that in Z[i|, we have:

1+3i=0 mod (1+ 3i),
which implies that:

1= -3¢ mod (1+ 3i)
i-1=i-(=3i) mod (1+ 3i)
i=3 mod (1+ 3i).

Hence, for all a,b € Z,

a+bi=a+3b= ¢(a+ 3b)

in Z[i] /(1 + 3i). Hence, ¢ is surjective.
Suppose 7 is an element of Z such that ¢(n) = i = 0. Then, by the definition
of the quotient ring we have:
n e (1+30).

This means that there exist a, b € Z such that:
n=(a+bi)(1+3i) = (a —3b) + (3a + b)i,
which implies that 3a + b = 0, or equivalently, b = —3a. Hence:
n=a—3b=a—3(—3a) = 10a,

which implies that ker ¢ C 10Z. Conversely, for all m € Z, we have:

#(10m) = 10m = (14 3i)(1 — 3i)m = 0

in Z[:] /(1 + 3i).
This shows that 10Z C ker ¢. Hence, ker ¢ = 10Z.
It now follows from the First [somorphism Theorem that:

Z/10Z = Zi] /(1 + 3i).



11.2 Polynomials over a Field

Let k be a field. For f € k[x] and a € F, let:
f(a) = ¢a(f)7

where ¢, is the evaluation homomorphism defined in Example 9.5. That is:

n n
ba E cxt :E ca'.
=0 i=0

Definition 11.5. Ler f = )" ¢;z* be a polynomial in k[z]. An element a € k is
aroot of f if:
fla) =0
in k.
Lemma 11.6. For all f € k[z], a € k, there exists q € k[x] such that:

f=q(z—a)+ f(a)

Proof. By the Division Theorem for Polynomials with Unit Leading Coefficients,
there exist ¢, r € k[z] such that:

f=q(x—a)+r degr <deg(r—a)=1.

This implies that 7 is a constant polynomial.
Applying the evaluation homomorphism ¢, to both sides of the above equa-
tion, we have:

fla) = ¢a(q(x —a) +7)

]

Claim 11.7 (Root Theorem). Let k be a field, f a polynomial in k|x]. Then, a € k
is a root of f if and only if (x — a) divides f in k[x].

Proof. If a € k is a root of f, then by the previous lemma there exists ¢ € k[z]
such that:
f=a(z—a)+ fla) = q(z — a),
i
so (z — a) divides f in k[x].
Conversely, if f = g(z — a) for some ¢ € k[z], then f(a) = g(a)(a —a) = 0.
Hence, a is a root of f. O
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Theorem 11.8. Let k be a field, f a nonzero polynomial in k|x].

1. If f has degree n, then it has at most n roots in k.
2. If f has degree n > 0 and aq, as, . . . ,a, € k are distinct roots of f, then:
f=c I (z—a;) =clx—a)(x—az) (v —ay)
for some c € k.

Proof. 1. We prove Part 1 of the claim by induction. If f has degree O, then f
is a nonzero constant, which implies that it has no roots. So, in this case the
claim holds.

Let f be a polynomial with degree n > 0. Suppose the claim holds for all
nonzero polynomials with degrees strictly less than n. We want to show that
the claim also holds for f. If f has no roots in k, then the claim holds for f
since 0 < n. If f has aroot a € k, then by the previous claim there exists
q € k[x] such that:

f=q(x—a).

For any other root b € k of f which is different from a, we have:

0= f(b) = q()(b—a)

Since £ is a field, it has no zero divisors; so, it follows from b — a # 0 that
q(b) = 0. In other words, b is a root of ¢. Since deg g < n, by the induction
hypothesis ¢ has at most n — 1 roots. So, f has at most n — 1 roots different
from a. This shows that f has at most n roots.

2. Let f be a polynomial in k[x] which has n = deg f distinctroots ay, as, . . ., a, €
k.

If n =1, then f = ¢y + ¢y for some ¢; € k, with ¢; # 0. We have:
0= f(a1) = co+ a1,
which implies that: ¢y = —c;a;. Hence,
f=—ca +cax=c(r—a).

Suppose n > 1. Suppose for all n’ € N, such that 1 < n’ < n, the claim
holds for any polynomial of degree n’ which has n’ distinct roots in k. By
the previous claim, there exists ¢ € k[x] such that:

f=q(x —ay).

4



Note that degqg = n — 1.
For 1 < i < n, we have
0= f(a;) = q(a;) (a; — an) .

——
#0

Since k is a field, this implies that g(a;) = Ofor 1 < i < n. So, ay,as,...,a, 1
are n — 1 distinct roots of ¢. By the induction hypothesis there exists ¢ € k
such that:

g =clz—a)(@ - ) (@ —an ).

Hence, f = q(z —a,) = c(x —a1)(x —az) -+ (x — ap_1)(x — ay).
]

Corollary 11.9. Let k be a field. Let f,g be nonzero polynomials in k[z]. Let
n = max{deg f,deg g}. If f(a) = g(a) for n + 1 distinct a € k. Then, f = g.

Proof. Let h = f — g, then degh < n. By hypothesis, there are n + 1 distinct
elements a € k such that h(a) = f(a) — g(a) = 0. If h # 0, then it is a nonzero
polynomial with degree < n which has n 4 1 distinct roots, which contradicts
the previous theorem. Hence, i must necessarily be the zero polynomial, which
implies that f = g. 0

Definition 11.10. A polynomial in k[z] is called a monic polynomial if its leading
coefficient is 1.

Corollary 11.11. Let k be a field. Let f, g be nonzero polynomials in k[z]. There
exists a unique monic polynomial d € k[z| with the following property:

1. (f,9) = (d)

Moreover, this d also satisfies the following properties:
2. ddivides both f and g, i.e., there exists a,b € k[z]| such that f = ad, g = bd.
3. There are polynomials p, q € klx| such that d = pf + qq.
4. If h € k[z] is a divisor of f and g, then h divides d.

Terminology.

e The unique monic d € k[x] which satisfies property 1 is called the Greatest
Common Divisor (abbrev. GCD) of f and g.

e We say that f and g are relatively prime if their GCD is 1.



Proof. 1. By Theorem 10.18 , there exists d = >\ ja;z’ € k[z] such that
(d) = (f, g). Replacing d by a,, *d if necessary, we may assume that d is a
monic polynomial. It remains to show that d is unique.

Suppose (d) = (d’), where both d and d' are monic polynomials. Then,
there exist nonzero p, ¢ € k[z| such that:

d=pd, d=qd.
Examining the degrees of the polynomials, we have:
degd = degd + deg p,

and:
degd = degq + degd’ = deg p + deg ¢ + deg d.

This implies that deg p+deg ¢ = 0. Hence, p and ¢ must both have degree 0;
in other words, they are constant polynomials. Moreover, we have deg d =
deg d’. Comparing the leading coefficients of d’ and pd, we have p = 1.
Hence, d = d'.

2. Clear.
3. Clear.

4. By Part 3 of the corollary, there are p, g € k[x] such thatd = pf + qg. Itis
then clear that if & divides both f and g, then h must divide d.
]

Definition 11.12. Let R be a commutative ring. A nonzero element p € R which
is not a unit is said to be irreducible if p = ab implies that either a or b is a unit.

Example 11.13. The set of irreducible elements in the ring Z is {+p : p a prime number}.

Let k be a field.

Lemma 11.14. A polynomial f € k[z| is a unit if and only if it is a nonzero
constant polynomial.

Proof. Exercise. O

Claim 11.15. A nonzero nonconstant polynomial p € kx| is irreducible if and
only if there is no f, g € k[z|, with deg f, deg g < deg p, such that fg = p.
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Proof. Suppose p is irreducible, and p = fg for some f,g € k[x] such that
deg f,deg g < degp. Then p = fg implies that deg f and deg g are both positive.
By the previous lemma, both f and g are non-units, which is a contradiction, since
the irreducibility of p implies that either f or g must be a unit.

Conversely, suppose p is a nonzero non-unit in k[x], which is not equal to fg
for any f, g € k[x] with deg f,deg g < degp. Then, p = ab, a, b € k[z], implies
that either a or b must have the same degree as p, and the other factor must be a
nonzero constant, in other words a unit in k[x]. Hence, p is irreducible. [l

Lemma 11.16 (Euclid’s Lemma). Let k be a field. Let f, g be polynomials in k|x].
Let p be an irreducible polynomial in k(x]. If p|fg in k[x], then p|f or p|g.

Proof. Suppose p 1 f. Then, any common divisor of p and f must have degree
strictly less than deg p. Since p is irreducible, this implies that any common divi-
sor of p and f is a nonzero constant. Hence, the GCD of p and f is 1. By Corollary
11.11, there exist a, b € k[x] such that:

ap+bf =1.

Multiplying both sides of the above equation by g, we have:

apg+bfg=g.

Since p divides the left-hand side of the above equation, it must also divide the
right-hand side, which is the polynomial g. [

Claim 11.17. If f,g € k|[x] are relatively prime, and both divide h € k[z|, then
fglh.

Proof. Exercise. [

Theorem 11.18 (Unique Factorization). Let k be a field. Every nonconstant poly-
nomial f € k|x] may be written as:

f=cpi--pn,

where c is a nonzero constant, and each p; is a monic irreducible polynomial in
k[x]. The factorization is unique up to the ordering of the factors.

Proof. Exercise. One possible approach is very similar to the proof of unique
factorization for Z. See: The Fundamental Theorem of Arithmetic . [

Exercise 11.19. 1. WeBWorK

Theorem 11.20. Let k be a field. Let p be a polynomial in k[x]. The following
statements are equivalent:
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1.
2.

3.

klx]/(p) is a field.
k[x]/(p) is an integral domain.

p is irreducible in k[z].

Remark. Compare this result with Exercise 8.11 and Corollary 8.16 .

Proof.

2.

1. 1 = 2: Clear, since every field is an integral domain.

2 = 3: If p is not irreducible, there exist f, g € k[x], with degrees strictly
less than that of p, such that p = fg. Since deg f,degg < degp, the
polynomial p does not divide f or g in k[z]. Consequently, the congruence
classes f and § of f and g, respectively, modulo (p) is not equal to zero
in k[z]/(p). On the other hand, f-§ = fg = p = 0in k[z]/(p). This
implies that k[x|/(p) is not an integral domain, a contradiction. Hence, p is
irreducible if k[z]/(p) is an integral domain.

3 = 1: By definition, the multiplicative identity element 1 of a field is
different from the additive identity element 0. So we need to check that the
congruence class of 1 € k[z] in k[z]|/(p) is not 0. Since p is irreducible,
by definition we have degp > 0. Hence, 1 ¢ (p), for a polynomial of
degree > 0 cannot divide a polynomial of degree 0 in k[x]. We conclude

that 1 + (p) # 0+ (p) in k[x]/(p).

Next, we need to prove the existence of the multiplicative inverse of any
nonzero element in k[z|/(p). Given any f € k[x] whose congruence class f
modulo (p) is nonzero in k[z]|/(p), we want to find its multiplicative inverse

f LIf f # 0in k[x]/(p), then by definition f — 0 ¢ (p), which means that
p does not divide f. Since p is irreducible, this implies that GC'D(p, f) = 1.
By Corollary 11.11 there exist g, h € k[x] such that fg + hp = 1. It is then

clear that § = ?71, since fg — 1 = —hp implies that fg — 1 € (p), which

by definition means that f - g = fg = 1 in k[z]/(p).
0

Example 11.21. The rings R[z]/(2? 4+ 1) and C are isomorphic.

Proof.

Define a map ¢ : R[z] — C as follows:

qﬁ(z apx®) = Z ai®.
k=0 k=0

Exercise: ¢ is a homomorphism.
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For all @ + bi (a,b € R) in C, we have:
o(a+bx) = a+ bi.

Hence, ¢ is surjective.

We now find ker ¢. Since R]z]| is a PID (see Definition 10.15 ). There exists
p € R[z] such that ker ¢ = (p).

Observe that ¢(z* + 1) = 0. So, 2% + 1 € ker ¢, which implies that there
exists ¢ € R[z] such that 22 + 1 = pq. Since z* + 1 has no real roots, neither p or
¢ can be of degree 1.

So, one of p or ¢ must be a nonzero constant polynomial. p cannot be a nonzero
constant polynomial, for that would imply that ker ¢ = R[z]. So, ¢ is a constant,
which implies that p = ¢! (22 + 1). We conclude that ker ¢ = (2 + 1).

It now follows from the First Isomorphism Theorem that R[z|/(z* + 1) =
C. N
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