
Math 2070 Week 11

Quotient Rings, Polynomials over a Field

11.1 Quotient Rings - continued
Example 11.1. Let m be a natural number. Consider the map φ : Z −→ Zm

defined by:
φ(n) = nm, ∀n ∈ Z,

where nm is the remainder of the division of n by m.
Exercise: φ is a homomorphism.
It is clear that φ is surjective, and that kerφ = mZ. So, it follows from the

First Isomorphism Theorem that:

Zm
∼= Z/mZ.

Definition 11.2 (Gaussian Integers). Let:

Z[i] = {z ∈ C : z = a+ bi for some a, b ∈ Z},

where i =
√
−1.

Exercise 11.3. Show that the set Z[i] is a ring under the usual addition + and
multiplication × operations on C.

Moreover, we have 0Z[i] = 0, 1Z[i] = 1, and:

−(a+ bi) = (−a) + (−b)i

for any a, b ∈ Z.

Example 11.4. The ring Z[i]/(1 + 3i) is isomorphic to Z/10Z.
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Proof. Define a map φ : Z −→ Z[i]/(1 + 3i) as follows:

φ(n) = n, ∀n ∈ Z,

where n is the residue of n ∈ Z[i] modulo (1 + 3i).
It is clear that φ is a homomorphism ( Exercise ).
Observe that in Z[i], we have:

1 + 3i ≡ 0 mod (1 + 3i),

which implies that:

1≡ −3i mod (1 + 3i)

i · 1≡ i · (−3i) mod (1 + 3i)

i≡ 3 mod (1 + 3i).

Hence, for all a, b ∈ Z,

a+ bi = a+ 3b = φ(a+ 3b)

in Z[i]/(1 + 3i). Hence, φ is surjective.
Suppose n is an element of Z such that φ(n) = n = 0. Then, by the definition

of the quotient ring we have:
n ∈ (1 + 3i).

This means that there exist a, b ∈ Z such that:

n = (a+ bi)(1 + 3i) = (a− 3b) + (3a+ b)i,

which implies that 3a+ b = 0, or equivalently, b = −3a. Hence:

n = a− 3b = a− 3(−3a) = 10a,

which implies that kerφ ⊆ 10Z. Conversely, for all m ∈ Z, we have:

φ(10m) = 10m = (1 + 3i)(1− 3i)m = 0

in Z[i]/(1 + 3i).
This shows that 10Z ⊆ kerφ. Hence, kerφ = 10Z.
It now follows from the First Isomorphism Theorem that:

Z/10Z ∼= Z[i]/(1 + 3i).
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11.2 Polynomials over a Field
Let k be a field. For f ∈ k[x] and a ∈ k, let:

f(a) = φa(f),

where φa is the evaluation homomorphism defined in Example 9.5. That is:

φa

(
n∑

i=0

cix
i

)
=

n∑
i=0

cia
i.

Definition 11.5. Let f =
∑n

i=0 cix
i be a polynomial in k[x]. An element a ∈ k is

a root of f if:
f(a) = 0

in k.

Lemma 11.6. For all f ∈ k[x], a ∈ k, there exists q ∈ k[x] such that:

f = q(x− a) + f(a)

Proof. By the Division Theorem for Polynomials with Unit Leading Coefficients,
there exist q, r ∈ k[x] such that:

f = q(x− a) + r, deg r < deg(x− a) = 1.

This implies that r is a constant polynomial.
Applying the evaluation homomorphism φa to both sides of the above equa-

tion, we have:

f(a) = φa(q(x− a) + r)

= φa(q) · φa(x− a) + φa(r)

= q(a)(a− a) + r

= r.

Claim 11.7 (Root Theorem). Let k be a field, f a polynomial in k[x]. Then, a ∈ k
is a root of f if and only if (x− a) divides f in k[x].

Proof. If a ∈ k is a root of f , then by the previous lemma there exists q ∈ k[x]
such that:

f = q(x− a) + f(a)︸︷︷︸
=0

= q(x− a),

so (x− a) divides f in k[x].
Conversely, if f = q(x− a) for some q ∈ k[x], then f(a) = q(a)(a− a) = 0.

Hence, a is a root of f .
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Theorem 11.8. Let k be a field, f a nonzero polynomial in k[x].

1. If f has degree n, then it has at most n roots in k.

2. If f has degree n > 0 and a1, a2, . . . , an ∈ k are distinct roots of f , then:

f = c · Πn
i=1(x− ai) := c(x− a1)(x− a2) · · · (x− an)

for some c ∈ k.

Proof. 1. We prove Part 1 of the claim by induction. If f has degree 0, then f
is a nonzero constant, which implies that it has no roots. So, in this case the
claim holds.

Let f be a polynomial with degree n > 0. Suppose the claim holds for all
nonzero polynomials with degrees strictly less than n. We want to show that
the claim also holds for f . If f has no roots in k, then the claim holds for f
since 0 < n. If f has a root a ∈ k, then by the previous claim there exists
q ∈ k[x] such that:

f = q(x− a).

For any other root b ∈ k of f which is different from a, we have:

0 = f(b) = q(b)(b− a).

Since k is a field, it has no zero divisors; so, it follows from b− a 6= 0 that
q(b) = 0. In other words, b is a root of q. Since deg q < n, by the induction
hypothesis q has at most n− 1 roots. So, f has at most n− 1 roots different
from a. This shows that f has at most n roots.

2. Let f be a polynomial in k[x] which has n = deg f distinct roots a1, a2, . . . , an ∈
k.

If n = 1, then f = c0 + c1x for some ci ∈ k, with c1 6= 0. We have:

0 = f(a1) = c0 + c1a1,

which implies that: c0 = −c1a1. Hence,

f = −c1a1 + c1x = c1(x− a1).

Suppose n > 1. Suppose for all n′ ∈ N, such that 1 ≤ n′ < n, the claim
holds for any polynomial of degree n′ which has n′ distinct roots in k. By
the previous claim, there exists q ∈ k[x] such that:

f = q(x− an).
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Note that deg q = n− 1.

For 1 ≤ i < n, we have

0 = f(ai) = q(ai) (ai − an)︸ ︷︷ ︸
6=0

.

Since k is a field, this implies that q(ai) = 0 for 1 ≤ i < n. So, a1, a2, . . . , an−1
are n− 1 distinct roots of q. By the induction hypothesis there exists c ∈ k
such that:

q = c(x− a1)(x− a2) · · · (x− an−1).

Hence, f = q(x− an) = c(x− a1)(x− a2) · · · (x− an−1)(x− an).

Corollary 11.9. Let k be a field. Let f, g be nonzero polynomials in k[x]. Let
n = max{deg f, deg g}. If f(a) = g(a) for n+ 1 distinct a ∈ k. Then, f = g.

Proof. Let h = f − g, then deg h ≤ n. By hypothesis, there are n + 1 distinct
elements a ∈ k such that h(a) = f(a) − g(a) = 0. If h 6= 0, then it is a nonzero
polynomial with degree ≤ n which has n + 1 distinct roots, which contradicts
the previous theorem. Hence, h must necessarily be the zero polynomial, which
implies that f = g.

Definition 11.10. A polynomial in k[x] is called a monic polynomial if its leading
coefficient is 1.

Corollary 11.11. Let k be a field. Let f, g be nonzero polynomials in k[x]. There
exists a unique monic polynomial d ∈ k[x] with the following property:

1. (f, g) = (d)

Moreover, this d also satisfies the following properties:

2. d divides both f and g, i.e., there exists a, b ∈ k[x] such that f = ad, g = bd.

3. There are polynomials p, q ∈ k[x] such that d = pf + qg.

4. If h ∈ k[x] is a divisor of f and g, then h divides d.

Terminology.

• The unique monic d ∈ k[x] which satisfies property 1 is called the Greatest
Common Divisor (abbrev. GCD) of f and g.

• We say that f and g are relatively prime if their GCD is 1.
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Proof. 1. By Theorem 10.18 , there exists d =
∑n

i=0 aix
i ∈ k[x] such that

(d) = (f, g). Replacing d by a−1n d if necessary, we may assume that d is a
monic polynomial. It remains to show that d is unique.

Suppose (d) = (d′), where both d and d′ are monic polynomials. Then,
there exist nonzero p, q ∈ k[x] such that:

d′ = pd, d = qd′.

Examining the degrees of the polynomials, we have:

deg d′ = deg d+ deg p,

and:
deg d = deg q + deg d′ = deg p+ deg q + deg d.

This implies that deg p+deg q = 0. Hence, p and q must both have degree 0;
in other words, they are constant polynomials. Moreover, we have deg d =
deg d′. Comparing the leading coefficients of d′ and pd, we have p = 1.
Hence, d = d′.

2. Clear.

3. Clear.

4. By Part 3 of the corollary, there are p, q ∈ k[x] such that d = pf + qg. It is
then clear that if h divides both f and g, then h must divide d.

Definition 11.12. Let R be a commutative ring. A nonzero element p ∈ R which
is not a unit is said to be irreducible if p = ab implies that either a or b is a unit.

Example 11.13. The set of irreducible elements in the ring Z is {±p : p a prime number}.

Let k be a field.

Lemma 11.14. A polynomial f ∈ k[x] is a unit if and only if it is a nonzero
constant polynomial.

Proof. Exercise.

Claim 11.15. A nonzero nonconstant polynomial p ∈ k[x] is irreducible if and
only if there is no f, g ∈ k[x], with deg f, deg g < deg p, such that fg = p.
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Proof. Suppose p is irreducible, and p = fg for some f, g ∈ k[x] such that
deg f, deg g < deg p. Then p = fg implies that deg f and deg g are both positive.
By the previous lemma, both f and g are non-units, which is a contradiction, since
the irreducibility of p implies that either f or g must be a unit.

Conversely, suppose p is a nonzero non-unit in k[x], which is not equal to fg
for any f, g ∈ k[x] with deg f, deg g < deg p. Then, p = ab, a, b ∈ k[x], implies
that either a or b must have the same degree as p, and the other factor must be a
nonzero constant, in other words a unit in k[x]. Hence, p is irreducible.

Lemma 11.16 (Euclid’s Lemma). Let k be a field. Let f, g be polynomials in k[x].
Let p be an irreducible polynomial in k[x]. If p|fg in k[x], then p|f or p|g.

Proof. Suppose p - f . Then, any common divisor of p and f must have degree
strictly less than deg p. Since p is irreducible, this implies that any common divi-
sor of p and f is a nonzero constant. Hence, the GCD of p and f is 1. By Corollary
11.11 , there exist a, b ∈ k[x] such that:

ap+ bf = 1.

Multiplying both sides of the above equation by g, we have:

apg + bfg = g.

Since p divides the left-hand side of the above equation, it must also divide the
right-hand side, which is the polynomial g.

Claim 11.17. If f, g ∈ k[x] are relatively prime, and both divide h ∈ k[x], then
fg|h.

Proof. Exercise.

Theorem 11.18 (Unique Factorization). Let k be a field. Every nonconstant poly-
nomial f ∈ k[x] may be written as:

f = cp1 · · · pn,

where c is a nonzero constant, and each pi is a monic irreducible polynomial in
k[x]. The factorization is unique up to the ordering of the factors.

Proof. Exercise. One possible approach is very similar to the proof of unique
factorization for Z. See: The Fundamental Theorem of Arithmetic .

Exercise 11.19. 1. WeBWorK

Theorem 11.20. Let k be a field. Let p be a polynomial in k[x]. The following
statements are equivalent:
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1. k[x]/(p) is a field.

2. k[x]/(p) is an integral domain.

3. p is irreducible in k[x].

Remark. Compare this result with Exercise 8.11 and Corollary 8.16 .

Proof. 1. 1⇒ 2: Clear, since every field is an integral domain.

2. 2 ⇒ 3: If p is not irreducible, there exist f, g ∈ k[x], with degrees strictly
less than that of p, such that p = fg. Since deg f, deg g < deg p, the
polynomial p does not divide f or g in k[x]. Consequently, the congruence
classes f and g of f and g, respectively, modulo (p) is not equal to zero
in k[x]/(p). On the other hand, f · g = fg = p = 0 in k[x]/(p). This
implies that k[x]/(p) is not an integral domain, a contradiction. Hence, p is
irreducible if k[x]/(p) is an integral domain.

3. 3 ⇒ 1: By definition, the multiplicative identity element 1 of a field is
different from the additive identity element 0. So we need to check that the
congruence class of 1 ∈ k[x] in k[x]/(p) is not 0. Since p is irreducible,
by definition we have deg p > 0. Hence, 1 /∈ (p), for a polynomial of
degree > 0 cannot divide a polynomial of degree 0 in k[x]. We conclude
that 1 + (p) 6= 0 + (p) in k[x]/(p).

Next, we need to prove the existence of the multiplicative inverse of any
nonzero element in k[x]/(p). Given any f ∈ k[x] whose congruence class f
modulo (p) is nonzero in k[x]/(p), we want to find its multiplicative inverse
f
−1

. If f 6= 0 in k[x]/(p), then by definition f − 0 /∈ (p), which means that
p does not divide f . Since p is irreducible, this implies thatGCD(p, f) = 1.
By Corollary 11.11 there exist g, h ∈ k[x] such that fg + hp = 1. It is then
clear that g = f

−1
, since fg − 1 = −hp implies that fg − 1 ∈ (p), which

by definition means that f · g = fg = 1 in k[x]/(p).

Example 11.21. The rings R[x]/(x2 + 1) and C are isomorphic.

Proof. Define a map φ : R[x] −→ C as follows:

φ(
n∑

k=0

akx
k) =

n∑
k=0

aki
k.

Exercise: φ is a homomorphism.
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For all a+ bi (a, b ∈ R) in C, we have:

φ(a+ bx) = a+ bi.

Hence, φ is surjective.
We now find kerφ. Since R[x] is a PID (see Definition 10.15 ). There exists

p ∈ R[x] such that kerφ = (p).
Observe that φ(x2 + 1) = 0. So, x2 + 1 ∈ kerφ, which implies that there

exists q ∈ R[x] such that x2 + 1 = pq. Since x2 + 1 has no real roots, neither p or
q can be of degree 1.

So, one of p or q must be a nonzero constant polynomial. p cannot be a nonzero
constant polynomial, for that would imply that kerφ = R[x]. So, q is a constant,
which implies that p = q−1(x2 + 1). We conclude that kerφ = (x2 + 1).

It now follows from the First Isomorphism Theorem that R[x]/(x2 + 1) ∼=
C.
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