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10.1 On Closed Contours

A major question in doing complex contour integration is this:

If the contour Γ is closed, when will

∫
Γ
f = 0.

This is important because it is related to that the integral is independent of the contour (but

only the end points).

It is known previously that if there exists an antiderivatives F on some domain Ω ⊃ Γ for f , i.e.,

F ′(z) = f(z) for each z ∈ Ω, then we have a zero contour integral. Note that in this situation,

both Γ and Ω can have “bad shape”, i.e. self-intersections and holes.

On the other hand, the requirement on f that an antiderivative exists is quite demanding . It is

not easy to check this condition of f unless one is able to find the antiderivative.

In this notes, we will provide a different situation that the contour integral on a closed contour

is zero. The condition on the integrand f will be weaker; but in place of this, we need a stronger

condition on the shapes of the contour Γ and the domain Ω.

First, to simplify the discussion, we may break contours with self-intersection into simple ones.

For example, we may write Γ = (γ1,−γ2) for the picture below.
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In this case, both γ1 and γ2 are simple closed contours and∫
Γ
f =

∫
γ1

f −
∫
γ2

f .



10.1.1 About Simple Contours

As mentioned above, we need a stronger condition involving the contour and the domain. This

condition is easier to express if the contour is simple. Later, even when the contour is not simple,

the result can be suitably used.

According to the Jordan Curve Theorem, a simple closed contour separates the plane into two

pieces, one is bounded and the other is unbounded. Mathematically, if γ is a simple closed

contour, then

C \ γ = Sb ∪ Su ,

where both Sb and Su are open connected sets such that Sb is bounded and Su is unbounded.
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There is a sign convention in relation to the integral. That is indeed the compatibility of the

orientation of the contour and the bounded domain. Let γ be a simple closed contour, its

orientation (direction) is given by the parametrization. Its normal is on the left-hand side of

the tangent, i.e., the tangent and normal form a positive basis for the plane. The bounded

component Sb is either on the normal side or the opposite side of γ as in the figure.
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∂Sb = γ ∂Sb = −γ

If the bounded component Sb is on the side of the normal, then γ is positively oriented and

denote ∂Sb = γ; otherwise ∂Sb = −γ.

A good condition about a simple closed contour γ with bounded Sb and a domain Ω is

Ω ⊃ γ ∪ Sb (∗∗)

This condition is illustrated in the figure below. Note that Ω itself may have holes, but not Sb.
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In the left-hand picture, Ω is simply connected. The rigorous definition requires algebraic

topology. Intuitively, it means that there is no hole nor puncture. If Ω is simply connected, then

for each γ ⊂ Ω, the condition (∗∗) is automatically satisfied. Therefore, some books assume

that Ω is simply connected.

Thomas Au MATH2230A • Notes 10: Zero Contour Integrals • 2



10.1.2 Another Useful Result

Now, we are ready to discuss the result that we are looking for. Recall that we want to relax the

condition on the integrand f and perhaps strengthen the condition on the domain and contour.

Theorem 10.1. Let f : Ω ⊂ C → C be of C1 and satisfy the Cauchy-Riemann Equations on Ω.

Then for each simple closed contour γ with bounded complement domain Sb, i.e., ∂Sb = ±γ such

that γ ∪ Sb ⊂ Ω, ∫
γ
f = 0 .

Note that this theorem guarantees the zero answer for a special type of closed contour. The

requirement on the function f becomes C1 and the Cauchy-Riemann Equations. Such require-

ment implies that f is analytic on Ω. At this point, we do not know whether analyticity is

enough for zero integral. Below, if we put a condition on the domain Ω, then it works for any

closed contour.

Corollary 10.2. Let Ω be a simply connected domain such that f : Ω ⊂ C → C is of C1 and

satisfies the Cauchy-Riemann Equation. Then, for every closed contour Γ ⊂ Ω, we have∫
Γ
f = 0 .

Note that Γ needs not be simple in the corollary because it can be broken into simple pieces.

Main Idea of proof. Write f(x+ iy) = u(x, y) + iv(x, y) and let z(t) = x(t) + iy(t), t ∈ [a, b] be

a parametrization of Γ. Without loss of generality, we may assume that ∂Sb = Γ. Then∫
Γ
f =

∫ b

a
[u(x(t), y(t)) + iv(x(t), y(t)) ] ·

[
x′(t) + iy′(t)

]
dt

=

∫ b

a

[
ux′ − vy′

]
dt+ i

∫ b

a

[
uy′ + vx′

]
dt

=

∫
Γ
(u dx− v dy) + i

∫
Γ
(v dx+ u dy)

=

∫∫
Sb

(ux − vy) dxdy + i

∫∫
Sb

(vx + uy) dxdy by Green’s Theorem.

The two double integrals in the last line are zero because of the Cauchy-Riemann Equations. �

Remark . In the above proof, in order to use the Green’s Theorem, we need the continuity of

the functions ux, uy, vx, vy and so f has to be of C1. Moreover, we need the contour Γ to be

piecewise C1, which we always assume the contour to be. This version of the theorem is proved

by Cauchy. Later, Goursat extend it to a more powerful theorem.

Finally, we now have two conditions that will lead to a zero contour integral on closed contours.

One requires the integrand f to have an antiderivative, which is hard to verify. The other

requires that f to be C1 and satisfy the Cauchy-Riemann equations. This is obviously easier

to follow. To gain this benefit, we need to put a stronger requirement on the situation of the

domain or on the contour.
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