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Abstract

We present a novel numerical method to the time-harmonic inverse medium scattering
problem of recovering the refractive index from noisy near-field scattered data. The approach
consists of two stages, one pruning step of detecting the scatterer support, and one resolution
enhancing step with nonsmooth mixed regularization. The first step is strictly direct and of
sampling type, and it faithfully detects the scatterer support. The second step is an innova-
tive application of nonsmooth mixed regularization, and it accurately resolves the scatterer
sizes as well as intensities. The nonsmooth model can be efficiently solved by a semi-smooth
Newton-type method. Numerical results for two- and three-dimensional examples indicate
that the new approach is accurate, computationally efficient, and robust with respect to data
noise.
Key words: inverse medium scattering problem, reconstruction algorithm, sampling method,
mixed regularization, semi-smooth Newton method

1 Introduction

In this work we study the inverse medium scattering problem (IMSP) of determining the refrac-
tive index from near-field measurements for time-harmonic wave propagation [8]. Consider a
homogeneous background space Rd (d = 2, 3) that contains some inhomogeneous media occupy-
ing a bounded domain Ω. Let ui = e

ik x·d be an incident plane wave, with the incident direction
d ∈ Sd−1 and the wave number k. Then the total field u induced by the inhomogeneous medium
scatterers satisfies the following Helmholtz equation [8]

∆u+ k
2
n
2(x)u = 0, (1)

where the function n(x) is the refractive index, i.e., the ratio of the wave speed in the homo-
geneous background to that in the concerned medium at location x. The model (1) describes
not only time-harmonic acoustic wave propagation, but also electromagnetic wave propagation
in either the transverse magnetic or transverse electric modes [17, Appendix].

Next we let η = (n2−1)k2, which combines the relative refractive index n
2−1 with the wave

number k. Clearly the coefficient η characterizes the material properties of the inhomogeneity
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and is supported in the scatterer Ω ⊂ Rd. We denote by I = ηu the induced current, by G(x, y)
the fundamental solution to the Helmholtz equation in the homogeneous background, i.e.,

G(x, y) =






i

4
H

1
0 (k |x− y|), d = 2,

1

4π

e
ik|x−y|

|x− y| , d = 3,

where the function H
1
0 refers to Hankel function of the first kind and zeroth-order. Then we can

express the total field u as follows [8]

u = u
i +

�

Ω
G(x, y)I(y) dy . (2)

By multiplying both sides of equation (2) by η, we arrive at the following integral equation of
the second kind for the induced current I

I(x) = ηu
i + η

�

Ω
G(x, y)I(y)dy. (3)

The reformulation (3) is numerically more amenable than the model (1) since all computation
is restricted to the scatterer support Ω, which is much smaller than the whole space Rd. Hence,
the complexity is also very low. We will approximate the solution to (3) by the mid-point rule
(cf. Appendix A).

Next we let us = u−u
i be the scattered field, which is measured on a closed curve/surface Γ

enclosing the scatterers Ω. Then the IMSP is to retrieve the refractive index n
2 or equivalently

the coefficient η from (possibly very noisy) measurements of the scattered field u
s, correspond-

ing to one or several incident fields. In the literature, a number of reconstruction techniques
for the IMSP have been developed. These methods can be roughly divided into two groups:
support detection and coefficient estimate. The former group (including MUSIC [10, 6], linear
sampling method [7, 3], factorization method [21] and orthogonality sampling [24] etc.) usually
is of sampling type, and aims at detecting the scatterer support efficiently. The latter group
generally relies on the idea of regularization (including Tikhonov regularization [2, 25], iterative
regularization method [13, 1, 14], contrast source inversion [29], subspace regularization [5]),
and aims at retrieving a distributed estimate of the refractive index function. These approaches
generally are more expensive, but their results may profile the inhomogeneities more precisely.

In this paper, we shall develop a novel two-stage numerical method for solving the IMSP. The
first step employs a direct sampling method, recently developed in [17], to detect the scatterer
support Ω stably and accurately. It is based on the following index function

Φ(xp) =
|�us, G(·, xp)�L2(Γ)|

�us�L2(Γ)�G(·, xp)�L2(Γ)
∀xp ∈ �Ω, (4)

where �Ω ⊃ Ω is a sampling domain. Numerically, the method is strictly direct and does not incur
any linear matrix operations. The method can detect reliably the scatterer support Ω even in
the presence of a large amount of data noises [17]. In particular, a (much smaller) computational
domain D ⊂ �Ω can be determined from the index Φ, and furthermore the restriction Φ|D (up to

a multiplicative constant) may serve as a first approximation to the unknown coefficient η.
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The second step enhances the image resolution by a novel application of (nonsmooth) mixed
regularization. With the approximation Φ|D (up to a multiplicative constant) from the sampling
step at hand, equation (3) gives an approximate induced current �I as well as an approximate
total field �u. Then we seek a regularized solution η to the linearized scattering equation

�

D
G(x, y) �u(y) η(y) dy = u

s(x), (5)

by an innovative regularization incorporating both L
1 and H

1 penalties. The L
1 penalty pro-

motes the sparsity of the solution [27, 4, 11]. However, the estimate tends to be very spiky
when the L

1 penalty is used alone. Meanwhile, the conventional H1 penalty can only yield
globally smooth but often overly diffusive profiles. In this work we shall propose a novel mixed
model that consists of a suitable combination of the L

1 and H
1 penalties. As we will see below,

this mixed model produces well clustered and yet distributed solutions, thereby overcoming the
aforementioned drawbacks of the models with one single regularization. It is the mixed model
that enables us to obtain a clear and accurate reconstruction of the inclusions: The homoge-
neous background is vividly separated from the scatterers and both support and intensity of the
inclusions are accurately resolved.

Numerically, the L
1 penalty term gives rise to a nonsmooth optimality condition, which

renders its direct numerical treatment inconvenient. Fortunately, by using complementarity
functions, the optimality condition reduces to a coupled nonlinear system for the sought-for
coefficient η and the Lagrangian multiplier, which is amenable to efficient numerical solution. We
shall develop an efficient and stable semi-smooth Newton solver for the model via a primal-dual
active-set strategy [19]. Overall, the direct sampling method is very cheap and reduces the
computational domain D in the mixed model (cf. (5)) significantly, which in turn makes the
semi-smooth Newton method for the mixed model very efficient. Hence, the proposed inverse
scattering method is computationally very efficient.

The rest of the paper is structured as follows. In Section 2, we recall a novel direct sampling
method for screening the scatterer support Ω, and derive thereby an initial guess to the coef-
ficient η. Then in Section 3 we develop an enhancement technique based on the idea of mixed
regularization, and an efficient semi-smooth Newton solver. Finally, we present numerical re-
sults for two- and three-dimensional examples to demonstrate the accuracy and efficiency of the
proposed inverse scattering method.

2 A direct sampling method

In this section, we describe a direct sampling method to determine the shape of the scatterers,
recently derived in [17]. We only briefly recall the derivation, but refer the readers to [17] for
more details. Consider a circular curve Γ (d = 2) or a spherical surface Γ (d = 3). Let G(x, xp)
be the fundamental solution in the homogeneous background. Then using the definitions of the
fundamental solutions G(x, xp) and G(x, xq) and Green’s second identity, we deduce

2i�(G(xp, xq)) =

�

Γ

�
G(x, xq)

∂G(x, xp)

∂n
−G(x, xp)

∂G(x, xq)

∂n

�
ds, (6)

where the points xp and xq lie within the domain ΩΓ, i.e., the domain enclosed by the boundary
Γ.
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Next we approximate the right hand side of identity (6) by means of the Sommerfeld radiation
condition for the Helmholtz equation, i.e.,

∂G(x, xp)

∂n
= ikG(x, xp) + h.o.t..

Consequently, we arrive at the following approximate relation
�

Γ
G(x, xp)G(x, xq)ds ≈ k

−1�(G(xp, xq)),

which is valid if the points xp and xq are not close to the boundary Γ.

Now, we consider a sampling domain �Ω enclosing the scatterer support Ω. Upon dividing �Ω
into small elements {τj}, we may approximate the integral in the scattering relation (2) by

u
s(x) =

�

�Ω
G(x, y)I(y)dy ≈

�

j

wj G(x, yj), (7)

where the weight wj is given by |τj |Ij with |τj | being the volume of the jth element τj . The
relation (7) is plausible if the induced current I is regular in each element and the elements {τj}
are sufficiently fine. It also admits a nice physical interpretation: the scattered field u

s at any
fixed point x ∈ Γ is a weighted average of that due to point scatterers located at {yj}.

Combining the preceding two relations yields
�

Γ
u
s(x)G(x, xp)ds ≈ k

−1
�

j

wj�(G(yj , xp)). (8)

Hence, if the sampling point xp is close to some point scatterer yj , i.e., yj ∈ Ω, then G(yj , xp)
is nearly singular and takes a very large value, contributing significantly to the sum in (8).
Conversely, if the point xp is far away from all the physical point scatterers, then the sum will
be very small due to the decay property of the fundamental solution G(x, y).

These facts lead us to the index function Φ(xp) in (4) for any xp in the sampling region �Ω.
In practice, if a point xp satisfies Φ(xp) ≈ 1, then it likely lies within the support; whereas if
Φ(xp) ≈ 0, then the point xp most probably lies outside the support. Hence it serves as an

indicator of the scatterer support. Consequently, we can determine a domain D ⊂ �Ω as one
approximate scatterer support. The subdomain D may be chosen as D = {x ∈ �Ω : Φ(x) ≥
µmaxx∈�ΩΦ(x)} with µ being a suitable cut-off value, i.e., the union of elements whose index
values are not less than a specified fraction of the largest index value over the sampling region
�Ω. This choice will be adopted in our numerical experiments.

Moreover, the restriction Φ|D (up to a multiplicative constant cΦ) of the index Φ to the
domain D may be regarded as a first approximation to the sought-for coefficient η, where the
constant cΦ is to compensate the fact that the index Φ is normalized with a maximum of unity
irrespective the wavenumber k. In practice, it can be determined via a standard least-squares
procedure, and a rough estimate is sufficient. We note that this step involves only one scalar
unknown, i.e., cΦ, hence it is computationally cheap and numerically stable.

This method is of sampling type (cf. [22] for an overview of existing sampling methods), and
its flavor closely resembles the well established multiple signal classification [26, 6, 10] and linear

sampling method [7, 21]. However, unlike these existing techniques, it works with a few (e.g.,
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one or two) incident waves, is highly tolerant with respect to noise, and involves only computing
inner products with fundamental solutions rather than expensive matrix operations as in the
other two techniques. The robustness of Φ is attributed to the fact that the (high-frequency)
noise is roughly orthogonal to the (smooth) fundamental solutions.

Lastly, we recall that our direct sampling method is based on the index function (4) that is
motivated by the approximation (8). Our index function was derived for the near-field data, but
it is related to the one used in the orthogonality sampling algorithm proposed by Potthast [23, 24]
for the far-field data. Potthast developed his sampling algorithm for detecting the location of
the sound-soft/sound-hard obstacles by computing the inner product of the far-field data with
plane waves. Some theoretical justifications of the algorithm were provided for a multi-frequency
variant of the method in [12]. Both derivations and justifications of the orthogonality sampling
algorithm were carried out under the important assumption that the scatterer is small in terms
of the wavelength; see [24] [12]. Instead, our direct sampling method was derived without
any assumption, except the physical Sommerfeld radiation condition, and it was motivated by
the important approximation (8) and the decay behavior of the fundamental solution in the
homogeneous background medium.

3 Mixed regularization

The direct sampling method in Section 2 extracts an accurate estimate D to the scatterer
support Ω as well as a reasonable initial guess to the medium coefficient η, i.e., cΦΦ|D. In
this part we attempt to refine the approximation cΦΦ|D by exploiting the idea of nonsmooth
mixed regularization. Given the approximation cΦΦ|D, we can compute the induced current �I
via (3) for each incident wave and the corresponding total field �u on the domain D from (2). By
substituting the approximation �u into equation (2), we arrive at the following linearized problem
of Lippmann-Schwinger type

�

D
G(x, y)�u(y)η(y)dy = u

s(x) x ∈ Γ.

It is expected to deliver a reasonable approximation to the genuine nonlinear model if the index
cΦΦ|D is not drastically different from the sought-for coefficient η. It is convenient to introduce
a linear integral operator K : L2(D) �→ L

2(Γ) defined by

(Kη)(x) =

�

D
G(x, y)�u(y) η(y) dy. (9)

We observe that the kernel G(x, y)�u(y) is smooth due to the analyticity of fundamental
functions G(x, y) away from the singularities and standard Sobolev smoothness of the total field
�u(y) (following from elliptic regularity theory [8]). Hence, the linear operatorK : L2(D) �→ L

2(Γ)
is compact. As a consequence, the linearized problem (9) is ill-posed in the sense that small
perturbations in the data can lead to huge deviations in the solution, according to the classical
inverse theory [28], which is reminiscent of the severe ill-posedness of the IMSP, and its stable
and accurate numerical solution calls for regularization techniques.

We determine an enhanced estimate of the coefficient η from the linearized problem (9) by
solving the following variational problem:

min
1

2

�

Γ
|Kη − u

s|2ds+ α

�

D
|η|dx+

β

2

�

D
|∇η|2dx. (10)
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In comparison with more conventional regularization techniques, the most salient feature of the
model (10) lies in two penalty terms: it contains both the L1 penalty and the H1 penalty, which
exert drastically different a priori knowledge of the sought-for solution. The scalars α and β are
regularization parameters controlling the strength of respective regularization.

This variational problem (10) allows us to determine a coefficient η which is distributed
yet clustered, i.e., exhibiting a clear groupwise sparsity structure in the canonical pixel basis.
This a priori knowledge is plausible for localized inclusions/inhomogeneities in a homogeneous
background. The model (10) is derived from the following widely accepted observations. The
L
1 penalty promotes the sparsity of the solution [27, 4, 11], i.e., the solution is very much

localized. Hence, the estimated background is homogeneous. However, if the L
1 penalty is

used alone, the solution tends to be very spiky and may miss numerous physically relevant
pixels in the sought-for groups. That is, the desirable groupwise structure is not preserved.
Meanwhile, the more conventional H1 penalty [28] yields a globally smooth profile, but the
solution is often overly diffusive. Consequently, the overall structure stands out clearly, but the
retrieved background is very blurry, which may lead to erroneous diagnosis of the number of
the inclusions as well as their sizes. In order to preserve simultaneously these distinct features
of the sought-for coefficient, i.e., sparsely distributed groupwise structures in a homogeneous
background, a natural idea would be to combine the L

1 penalty with the H
1 penalty, in the

hope of retaining the strengths of both models. As we shall see below, the idea does work very
well, and the model is very effective for enhancing the resolution of the estimate to the coefficient
η.

The general idea of mixed regularization, i.e., using multiple penalties, has proved very effec-
tive in promoting several distinct features simultaneously. This general idea has been pursued in
the imaging community [18] previously. However, to the best of our knowledge, the model (10)
has not been explored in the literature, let alone its efficient and accurate numerical treatment.
A detailed mathematical analysis of the model (10) is beyond the scope of the present paper.
We refer interested readers to [15] for some preliminary results on mixed regularization and to
[20] for a related model (elastic-net).

To fully explore the potentials of the model (10), an efficient and accurate solver is required.
We shall develop a semi-smooth Newton type method, which allows extracting very detailed
features of the solutions to the model (10). The starting point of the algorithm is the necessary
optimality condition of the variational problem (10), which reads

K
∗
Kη − β∆η −K

∗
u
s ∈ −α∂ψ(η), (11)

where ψ(η) = �η�L1 and the subdifferential ∂ψ(η) [19] is the set-valued signum function, which
is defined pointwise as

∂ψ(η)(x) =






1, if η(x) > 0,
[−1, 1 ], if η(x) = 0,
−1, if η(x) < 0.

Due to the convexity of the functional, the relation (11) is also a sufficient condition. Hence
it suffices to solve the inclusion (11), for which there are several different ways, e.g., iterative soft
shrinkage [9, 30], augmented Lagrangian method/alternating direction method or semi-smooth
Newton method [19]. We shall develop a (new) semi-smooth Newton method to efficiently solve
the inclusion (11). To this end, we recall the celebrated complementarity condition [19]

λ =
λ+ cη

max(1, |λ+ c η|) (12)
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for any c > 0, which will be fixed at a constant in the implementation, and λ serves as a Lagrange
multiplier. It can be directly verified by pointwise inspection that the complementarity condition
(12) is equivalent to the inclusion λ ∈ ∂ψ(η) (cf. [19]). With the help of the complementarity
condition (12), we arrive at the following equivalent nonlinear system in the primal variable η

and dual variable λ: 




K
∗
Kη − β∆η −K

∗
u
s + αλ = 0,

λ− λ+ cη

max(1, |λ+ c η|) = 0.

Then we apply the semi-smooth Newton algorithm using a primal-dual active set strategy.
The complete implementation is listed in Algorithm 1. The technical details for deriving the
crucial Newton step (Step 5) are deferred to Appendix B, which involves damping and regular-
ization. A natural choice of the stopping criterion at Step 6 is based on monitoring the change
of the active set A = {x ∈ D : |λ + c η| ≤ 1}: if the active sets for two consecutive iterations
coincide, then we may terminate the algorithm, cf. [19].

Algorithm 1 Primal-dual active set method

1: Initialize η
0 and λ

0, and set c > 0 and k = 0.
2: for k = 0, . . . ,K do
3: Set the active set Ak and inactive set Ik respectively by

Ak = {x ∈ D : |λk + c η
k| ≤ 1},

Ik = {x ∈ D : |λk + c η
k| > 1}.

4: Compute a and b by

a =
λ
k

max(|λk|, 1) and b =
λ
k + c η

k

|λk + c ηk| ,

and set dk = |λk + cη
k| and F

k = ab
t.

5: Solve for (ηk+1
,λ

k+1) from the system

K
∗
Kη

k+1 − β∆η
k+1 −K

∗
u
s + αλ

k+1 = 0 on Ik
,

λ
k+1 − c

1

dk − 1
(I − F

k)ηk+1 − λ
k

max(|λk|, 1) = 0,

η
k+1 = 0 on Ak

.

6: Check the stopping criterion.
7: end for
8: output approximation η

K .

The main computational effort of the algorithm lies in the Newton update at Step 5: each
iteration requires solving a (dense) linear system. We note that the dual variable λ can be
expressed in terms of the primal variable η and on the active set A, the coefficient η vanishes
identically. Thus in practice, we solve only a linear system for η on the inactive set I = D \ A.
An important feature of the algorithm is that the linear system becomes smaller and smaller
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and also less and less ill-conditioned as the iteration proceeds, while the iterate captures more
and more refined details of the inhomogeneous medium regions. If the exact solution is indeed
sparse (many zero entries), then the system size, i.e., |I|, usually shrinks quickly as the iteration
proceeds. The numerical experiments indicate that the convergence of the algorithm is rather
steady and fast.

4 Numerical experiments

In this part, we present numerical results for several two- and three-dimensional examples to
showcase the proposed two-stage inverse scattering method, for both exact and noisy data. The
wave number k is fixed at 2π, and the wavelength is set to λ = 1. The exact scattered field u

s is
obtained by first solving the integral equation (3) for the induced current I and then substituting
the current I into the integral representation (2). Here the integral equation (3) is discretized
by a mid-point rule; see Appendix A for details. The noisy scattered data u

s
δ are generated

pointwise by the formula
u
s
δ(x) = u

s(x) + �ζmax
x∈Γ

|us(x)|,

where � refers to the relative noise level, and both the real and imaginary parts of the noise
ζ = ζ(x) follow the standard Gaussian distribution. The index Φ, its restriction Φ|D and
the enhanced approximation η by the mixed model will be displayed. As was mentioned in
Section 2, we choose the subdomain D (approximate scatterer support) based on the formula
D = {x ∈ �Ω : Φ(x) ≥ µmaxx∈�ΩΦ(x)}, where the cut-off value µ is taken in the range (0.5, 0.7).
The choice of the cutoff value µ affects directly the size of the domain D, but does not cause
much effects on the reconstructions. Unless otherwise specified, the multiplicative constant cΦ is

set to unity.

Like in any regularization technique, an appropriate choice of regularization parameters
(α,β) in the mixed model (10) is crucial for the success of the proposed imaging algorithm.
There have been a number of choice rules [16] for one single parameter, but very little is known
about the mixed model. We shall choose the pair (α,β) in a trial and error manner, which suffices
our goal of illustrating the significant potentials of the mixed model for inverse scattering. In
Algorithm 1, the parameter c is set to 50, and both η

0 and λ
0 are initialized to zero. The

maximum number K of Newton iterations is 50. In all the experiments, the convergence of
the algorithm is achieved within about 10 iterations. All the computations were performed on
MATLAB 7.12.0 (R2011a) on a dual-core desktop computer with 2GB RAM.

4.1 Two-dimensional examples

Unless otherwise specified, one incident direction d is employed for two-dimensional problems,
and it is fixed at 1√

2
(1, 1)T. We have experimented with various measurement surfaces (of

different radii and geometries), and found that the results are not sensitive to the choice as
long as the measurement surface Γ is not too close to the physical scatterers. In the below, the
scattered field u

s is always measured at 30 points uniformly distributed on a circle of radius 5.
The sampling domain �Ω is fixed at [−2, 2]2, which is divided into a uniform mesh consisting of
small squares of width h = 0.01. The subdomain D for the integral equation (9) is divided into
a coarser uniform mesh consisting of small squares of width 0.02.

Our first example illustrates the method for two separate scatterers.
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(a) true scatterer (b) index Φ (c) index Φ|D (d) sparse recon.

Figure 1: Numerical results for Example 1(a): (a) true scatterer, (b) index Φ, (c) index Φ|D
(restriction to the subdomain D) and (d) sparse reconstruction. The first and second rows refer
to exact data and the data with 20% noise, respectively.

Example 1. We consider two separate square scatterers in the following two scenarios

(a) The scatterers are of width 0.2 and centered at (−0.8,−0.7) and (0.3, 0.9), respectively,

and the coefficient η in both region is 1.

(b) The scatterers are of width 0.3 and centered at (−0.25, 0) and (0.25, 0), respectively, and
the coefficient η in the former and latter is 1.5 and 1, respectively.

The two scatterers in Example 1(a) are well apart from each other. The recovery of the
scatterer locations by the index Φ is quite satisfactory, especially upon noting that we have just
used one incident wave. Two distinct scatterers are observed for both exact data and the data
with 20% noise, cf. Fig. 1(b). However, the magnitudes are inaccurate, and the estimate suffers
from spurious oscillations in the homogeneous background, due to the ill-posed nature of the
IMSP and the oscillating behavior of fundamental solutions. Nonetheless, two localized square
subregions D (each of width 0.4) encompass the modes of the index Φ, see Fig. 1(c), and may be
taken as an approximate scatterer support. In Fig. 1(c), the entire sampling domain �Ω is shown,
and the two small squares represent the approximate support D. Outside of the domain D, the
index Φ|D is set to zero, i.e., identical with homogeneous background, and will not be updated
during the enhancing step. The enhancing step is initialized with Φ|D (i.e., with cΦ = 1), and the
results are shown in Fig. 1(d). The regularization parameters for getting the reconstructions,
which are determined in a trial-and-error manner, are presented in Table 1. The enhancement
of the approximation ΦD over the domain D is significant: the recovered background is now
mostly homogeneous, and the magnitudes and sizes of the recovered scatterers agree well with
the exact ones. This shows clearly the significant potentials of the proposed mixed regularization
for inverse scattering problems. The numbers in Table 1 also sheds valuable insights into the
mixed model (10): the value of the regularization parameter α is much larger than that of β.
Hence, the L1 penalty plays a predominant role in ensuring the sparsity of the solution, whereas
the H

1 penalty yields a locally smooth structure.

9
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Table 1: Regularization parameters (α,β) for the examples.
example 1(a) 1(b) 2 3 4
� = 0% (2.0e-6,1.5e-9) (8.0e-6,1.4e-8) (7.0e-6,1.0e-9) (1.0e-5,6.0e-9) (2.5e-9,4.0e-14)
� = 20% (3.0e-6,2.0e-9) (8.5e-6,9.0e-9) (7.0e-6,5.0e-9) (3.0e-5,1.0e-8) (2.5e-9,5.0e-14)

(a) true scatterer (b) index Φ (c) index Φ|D (d) sparse recon.

Figure 2: Numerical results for Example 1(b): (a) true scatterer, (b) index Φ, (c) index Φ|D
(restriction to the subdomain D) and (d) sparse reconstruction. From top to bottom, the rows
refer to exact data, noisy data with 10% and 20%, respectively.

The two scatterers in Example 1(b) stay very close to each other, and thus it is rather
challenging for precise numerical reconstruction. The detection of the scatterer locations by
the index Φ, see Fig. 2(b), is still very impressive. In particular, it clearly distinguishes two
separate scatterers with their locations correctly retrieved, and this remains stable for data with
up to 20% noise. The mixed regularization is performed on a square D (of width 1) enclosing
the two modes in the index Φ, see Fig. 2(c). This choice of the inversion domain D allows
possibly connecting of the modes. However, the enhancement correctly recognizes two separate
scatterers, with their magnitudes and sizes in excellent agreement with the exact ones. Also the
estimated background is very crispy. Surprisingly, the estimate deteriorates only slightly in that
the right scatterer elongates a little bit towards the left scatterer as the noise level � increases
from 0 to 20%. Although not presented, we would like to note that for this particular example,
the reconstructions are still reasonable for data with 30% noise. Hence the proposed inverse
scattering method is very robust with respect to the data noise.

Next we consider a ring-shaped scatterer.
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(a) true scatterer (b) index Φ (c) index Φ|D (d) sparse recon.

Figure 3: Numerical results for Example 2: (a) true scatterer, (b) index Φ, (c) index Φ|D
(restriction to the subdomain D) and (d) sparse reconstruction. The first and second rows refer
to exact data and the data with 20% noise, respectively.

Example 2. The scatterer is one ring-shaped square located at the origin, with the outer and

inner side lengths being 0.6 and 0.4, respectively. The coefficient η of the scatterer is 1. Two

incident directions d1 =
1√
2
(1, 1)T and d2 =

1√
2
(1,−1)T are considered.

Ring-shaped scatterer represents one of most challenging objects to recover, and it is highly
nontrivial even with multiple scattered field data sets, especially noting the ring has a small
thickness. It has been observed that one single incident field is insufficient to completely resolve
the ring structure, and only some parts of the ring can be resolved, depending on the incident
direction d [17]. Hence we employ two incident waves in the directions d1 = 1√

2
(1, 1)T and

d2 = 1√
2
(1,−1)T in order to yield sufficient amount of information about the scatterer, and

accordingly, the index function Φ is defined as follows

Φ(xp) = max
i

{Φi(xp)} ∀xp ∈ �Ω,

where the function Φi refers to the index for the ith data set. The numerical results with the
exact data and 20% noise in the data are shown in Fig. 3. With just two incident waves,
the index Φ can provide a quite reasonable estimate of the ring shape. Despite some small
oscillations, the overall profile stands out clearly, and remains very stable for up to 20% noise
in the data. The enhancing step via mixed regularization provides a very crispy estimate of the
ring structure: the recovered scatterer has a clear ring structure, which agrees excellently with
the exact one in terms of both magnitude and size. The presence of 20% data noise causes visible
deterioration to the reconstruction, see Fig. 3(d). Nonetheless, the enhanced reconstruction still
exhibits a clear ring shape, and it represents a very good approximation to the true scatterer
upon noting the large amount of data noise.

In the above two examples, the magnitude of the coefficient η is relatively small, and thus
the normalized index Φ|D alone can serve as a reasonable first estimate. The following example
illustrates the approach for recovering a coefficient with large intensity magnitudes.
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(a) true scatterer (b) index Φ (c) index Φ|D (d) sparse recon.

Figure 4: Numerical results for Example 3: (a) true scatterer, (b) index Φ, (c) index Φ|D
(restriction to the subdomain D) and (d) sparse reconstruction. The first and second rows refer
to exact data and the data with 20% noise, respectively.

Example 3. The example consists of two square scatterers of width 0.3, one centered at (−0.25, 0)
and the other at (0, 25, 0), respectively. The coefficient η in the former and the latter is 30 and

20, respectively.

The numerical results are shown in Fig. 4, where the multiplicative constant cΦ is determined
by the least-squares method with a value 16.3 for both exact and noisy data. A comparison
with Fig. 2 clearly indicates that the index functions Φ for Examples 1(b) and 3 are almost
identical for either the exact or the noisy data. Therefore, the direct sampling method is
capable of accurately detecting the support of medium scatterers with large magnitudes. With
the approximation cΦΦD as the first estimate to the coefficient η, the enhanced profile agrees
excellently with the exact one: the background is clean, the two scatterers are clearly separately
from each other, and their magnitudes are quantitatively correct, thereby showing clearly the
feasibility of the proposed two-stage method.

4.2 Three-dimensional example

Our last example shows the feasibility of the method for three-dimensional problems.

Example 4. We consider two cubic scatterers of width 0.1 centered at (0.35, 0.15, 0.15) and

(−0.35, 0.15, 0.15), respectively. One single incident field with direction d = 1√
3
(1, 1, 1)T is used,

and the coefficient η of the scatterers is taken to be 1.

The scattered field u
s is measured at 600 points uniformly distributed on the surface Γ of a

cubic of width 5, (i.e., 10 points in each direction). To simulate the scattered field data, we take
the sampling domain �Ω to be the cubic [−1, 1]3, which is divided into a uniform mesh consisting
of small cubes of width h = 0.01. The inversion domain D for the integral equation (9) is divided
into a coarser mesh consisting of small cubes of width 0.03.

The numerical results for Example 4 with exact data are shown in Fig. 5(b), where each row
represents a cross-sectional image along the second coordinate axis x2. The scatterer support
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estimated by the index Φ agrees reasonably with the exact one, and away from the boundary
of the true scatterers, the magnitude of Φ decreases quickly. However, the reconstructed profile
is slightly diffusive in comparison with the exact one, which is reminiscent of the decay prop-
erty of fundamental solutions. The nonsmooth mixed regularization (10) is carried out on two
cubic subregions (of width 0.36λ), cf. Fig. 5(c). Like before, a significant improvement in the
resolution is observed: the sparse estimate is much more localized in comparison with the index
Φ, and also the magnitude is close to the exact one; see Fig. 5(d). The presence of 20% data
noise does not worsen much the index Φ and the sparse reconstruction, cf. Fig. 6. Hence the
reconstruction algorithm is highly tolerant with respect to data noise.

Lastly, we briefly comment on the computational efficiency of the overall procedure. The
first step with the index involves only computing inner products and is embarrassingly cheap
and easily parallelized. The accuracy of the support detection is quite satisfactory, and thus a
large portion of the sampling domain �Ω can be pruned from inversion, i.e., |D| � |�Ω|. Hence,
the enhancement via mixed regularization is also rather efficient.

5 Concluding remarks

We have presented a novel two-stage inverse scattering method for the inverse medium scattering
problem of recovering the refractive index from near-field scattered data. The efficiency and
accuracy of the method stem from accurate support detection by the sampling strategy and
group sparsity-promoting of the mixed regularization technique. The former is computationally
very efficient, and reduces greatly the computational domain for the more expensive inversion
via nonsmooth mixed regularization, while the latter achieves an enhanced resolution with the
magnitudes and sizes comparable with the exact ones. The numerical results for two- and
three-dimensional examples clearly confirm these observations.

These promising experimental results raise a number of interesting questions for further
studies. First, the potentials of mixed regularization have been clearly demonstrated. It is of
great interest to shed theoretical insights into the model as well as to design efficient acceler-
ation strategies, which for three-dimensional problems remains very challenging. Some partial
theoretical results can be found in [15]. Also of much practical relevance is an automated choice
of regularization parameters. Second, the reconstructions were obtained with the linearized
model, which represents only an approximation to the genuine nonlinear IMSP model. It would
be interesting to justify the excellent performance of the linearization procedure. Third, the ro-
bustness of the approach to noise is outstanding when compared with more conventional inverse
scattering algorithms, especially noting the limited data for inversion. The mechanism of the
robustness is not yet completely clear.

Acknowledgements

The work of BJ is supported by Award No. KUS-C1-016-04, made by King Abdullah University
of Science and Technology (KAUST), and that of JZ is substantially supported by Hong Kong
RGC grants (projects 405110 and 404611).

13



(a) true scatterer (b) index Φ (c) index Φ|D (d) sparse recon.

Figure 5: Numerical results for Example 4 with exact data: (a) true scatter, (b) index Φ, (c)
index Φ|D (restriction to the subdomain D) and (d) sparse reconstruction. From the top to
bottom: the cross sectional images at x2 = 1.07, 1.10, 1.13, 1.16, 1.19, and 1.22, respectively.

14



(a) true scatterer (b) index Φ (c) index Φ|D (d) sparse recon.

Figure 6: Numerical results for Example 4 with 20% noise in the data: (a) true scatter, (b) index
Φ, (c) index Φ|D (restriction to the subdomain D) and (d) sparse reconstruction. From the top
to bottom: the cross sectional images at x2 = 1.07, 1.10, 1.13, 1.16, 1.19, and 1.22 respectively.
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A Numerical method for forward scattering

We denote by J the index set of grid points of a uniformly distributed mesh with a mesh size
h > 0 and consider square cells

Bj = Bj1,j2 = (x1j1 , x
2
j2) + [−h

2 ,
h
2 ]× [−h

2 ,
h
2 ]

for every tuple j = (j1, j2) belonging to the index set J. Assume that the domain ∪j∈JBj contains
the scatterer support Ω. We use the mid-point quadrature rule to evaluate the operator K, and
hence the integral (3) is approximated by

Ik − ηk

�

j∈J
Gk,jIjh

2 = ηk u
inc(xk)

where Ik = I(xk) and ηk = η(xk), and the off-diagonal entries Gk,j and the diagonal entries Gk,k

are given by Gk,j = G(xk, xj) and

Gk,k =
1

h2

�

(−h
2 ,

h
2 )

2
G(x, 0)dx,

respectively. The diagonal entries can be accurately computed by tensor-product Gaussian
quadrature rules. The resulting system can be solved using standard numerical solvers, e.g.,
Gaussian elimination, if the cardinality of the index set J is medium, and iterative solvers like
GMRES. The extension of the procedure to 3D problems is straightforward.

B Semi-smooth Newton method

In this part, we derive a semi-smooth Newton method for minimizing (10). The optimality
condition of the variational problem reads






K
∗
Kη + αλ− β∆η −K

∗
u
s = 0,

λ− λ+ cη

max(1, |λ+ cη|) = 0,

where λ is the Lagrange multiplier (dual variable). The second line, the complementarity func-
tion, equivalently expresses the inclusion λ ∈ ∂�η�L1 , which can be checked directly by pointwise
inspection. Thereby, we effectively transforms the inclusion (11) into a numerically amenable
nonlinear system. It follows directly from the complementarity relation

λ =
λ+ cη

max(1, |λ+ cη|) (13)

that on the active set A = {x ∈ D : |λ + cη|(x) ≤ 1}, η vanishes identically. Otherwise, both
the dual variable λ and the primal variable η need to be solved. We shall solve the system by a
semi-smooth Newton method [19]. First observe that the Newton step (with the increments for
λ and η denoted by δλ and δη, respectively) applied to the following reformulation of equation
(13) (on the set I = D \ A)

λ|λ+ cη|− λ+ cη = 0
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is given by

|λ+ cη|δλ+ λ
λ+ cη

|λ+ cη| [δλ+ cδη]− (δλ+ cδη) + λ|λ+ cη|− (λ+ cη) = 0,

or equivalently with the notation λ
+ = λ+ δλ and η

+ = η + δη, we have

λ
+|λ+ cη|+ λ

λ+ cη

|λ+ cη| [λ
+ + cη

+] = λ|λ+ cη|+ [λ+ + cη
+].

Next we apply the idea of damping and regularization to the equation and thus get

λ
+|λ+ cη|+ θ[λ+ + cη

+]
λ+ cη

|λ+ cη|
λ

max(|λ|, 1) = [λ+ + cη
+] + θ|λ+ cη| λ

max(|λ|, 1) .

Here, the purpose of the regularization step λ
max(|λ|,1) is to automatically constrain the dual

variable λ to [−1, 1]. The damping factor θ is automatically selected to achieve the stability. To
this end, we let d = |λ+ cη|, �η = d− 1, a = λ

max(|λ|,1) , and b = λ+cη
|λ+cη| . We arrive at

λ
+(�η + 1) + θ[λ+ + cη

+]ab = [λ+ + cη
+] + θad.

Thus we have

λ
+ =

1

�η + θab
[1− θab]cη+ +

θd

�η + θab
a

To arrive at a simple iteration scheme, we set θd
�η+θab = 1, i.e., θ = d−1

d−ab ≤ 1. Consequently, we
obtain a simple iteration

λ
+ =

1− ab

d− 1
cη

+ +
λ

max(|λ|, 1) ,

where we have used the relation 1−θab
�η+θab = 1−ab

d−1 . Substituting this into the first equation gives

K
∗
Kη

+ + αc
1− ab

d− 1
η
+ − β∆η

+ = K
∗
u
s − α

λ

max(|λ|, 1) . (14)

We note that one only needs to solve equation (14) on the inactive set I, since on the active
set A, there always holds η

+ = 0. This has an enormous computational consequence: the size
of the linear system in (14) can be very small if |I| is small, i.e., the solution is sparse. This
last relation shows also clearly the sparsity of the solution, and this provides a crispy estimate
of the background. Upon obtaining the solution η

+, one can update λ
+ on the sets I and A

according to the second and the first equation, respectively. Lastly, we would like to remark on
the consistency of the scheme: if the sequence generated by the semi-smooth Newton method
converges, then the limit satisfies the complementarity relation (13) as desired.
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