Lecture 20

1 Maximum principle

Theorem 1. (weak form) Let D be a bounded connected domain in \mathbb{R}^n . For a smooth solution u which satisfies $\triangle u = 0$. Then

$$\max_{\overline{D}} u \ = \ \max_{\partial D} u$$

and

$$\underline{\min}_{\overline{D}} u = \underline{\min}_{\partial D} u.$$

Proof. Given a small $\epsilon > 0$, let $v(x) = u(x) + \epsilon |x|^2$. Then we have in D

$$\triangle v = \triangle u + 2n\epsilon = 2n\epsilon > 0. \tag{1}$$

If maximum of v attained at $x_0 \in D$, we have

$$D^2v(x_0) < 0. (2)$$

Thus (2) contradicts to (1). So the maximum point of v must be attained on the boundary which means $\max_{\overline{D}} v = \max_{\partial D} v$. So we get

$$\max_{\partial D} u \leq \max_{\overline{D}} u \quad \leq \max_{\overline{D}} v = \max_{\partial D} v \leq \max_{\partial D} u + \epsilon l^2 \quad ,$$

where l is bounded by the diameter of the domain D. Letting $\epsilon \to 0$, we have

$$\max_{\overline{D}} u = \max_{\partial D} u.$$

Similarly, for the proof of $\min_{\overline{D}} u = \min_{\partial D} u$, we consider $v(x) = u(x) - \epsilon |x|^2$.

Exercise 2. Suppose u satisfies the equation $\Delta u + \sum_{i=1}^{n} b_i \frac{\partial u}{\partial x_i} + cu = 0$ in $D \in \mathbb{R}^n$ where $c \leq 0$ and b_i are bounded constants. Prove that

$$\max_D u \ \leq \ \max_{\partial D} \{u, 0\}.$$

and

$$\min_{D} u \geq \min_{\partial D} \{u, 0\}.$$

Hint: let $v(x) = u(x) + \epsilon e^{\alpha x_1}$ for some large α .

Proposition 3. (Mean value property) Let u be a harmonic function in a disk D, continuous in its closure \overline{D} . Then from Poisson's formula, we have the following mean value properties for any point $x_0 \in D$ and any ball $B_r(x_0) \subseteq D$

$$u(x_0) = \frac{1}{2\pi r} \int_{|x'-x_0|=r} u(x') ds'.$$

and

$$u(x_0) = \frac{1}{\pi r^2} \int_{|x'-x_0| \le r} u(x') dx'.$$

Remark. There are also mean value properties for n dimensional harmonic functions.

Proof. Without loss of generality, we assume that $x_0 = 0$. Recall the Poisson's formula

$$u(x) \quad = \quad \frac{a^2 - |x|^2}{2\pi a} \int_{|x'| = a} \frac{u(x')}{|x - x'|^2} ds'.$$

Let x = 0, we have

$$u(0) = \frac{a^2}{2\pi a} \int_{|x'|=a} \frac{u(x')}{|x'|^2} ds'$$
$$= \frac{1}{2\pi a} \int_{|x'|=a} u(x') ds'.$$

Mutiply both side by a and integrate from 0 to r

$$u(0)\frac{r^2}{2} = \int_0^r u(0)ada = \frac{1}{2\pi} \int_0^r \int_{|x'|=a} u(x')ds'$$
$$= \frac{1}{2\pi} \int_{|x'| \le r} u(x')dx'.$$

So we get

$$u(0) = \frac{1}{\pi r^2} \int_{|x'| < r} u(x') dx'.$$

Theorem 4. (strong form) Let u(x) be harmonic in D which is a bounded connected domain in \mathbb{R}^n . Then the maximum point $x_0 \notin D$ unless $u \equiv constant$. In other word, if maximum point $x_0 \in D$, then $u \equiv costant$.

Proof. Denote $M=\max_{\overline{D}}u$. Set $\Sigma=\{x\in D;u(x)=M\}$. It is relatively closed in D. If $x_0\in D$, We need to show $\Sigma=D$. From the mean value property, we have for $\overline{B}_r(x_0)\subseteq D$ for some r>0

$$M = u(x_0) = \frac{1}{|B_r|} \int_{B_r(x_0)} u(x) dx \le M.$$

Thus $B_r(x_0) \subseteq \Sigma$. This implies Σ is relatively open in D. In this way, using the assumption that D is connected, we deduce that $\Sigma = D$.

Proposition 5. Let u be a continuous harmonic function in any open set D of the plane. Then u(x) is smooth in D. This also true for n-dimensional harmonic functions.

Proof. For any point $x \in D$, there is a ball $B_a(x_0)$ such that $x \in B_a(x_0) \subseteq D$. The mean value property is

$$u(x) = \frac{a^2 - |x - x_0|^2}{2\pi a} \int_{|x' - x_0| = a} \frac{u(x')}{|x' - x|^2} ds'.$$

Because the denominator of the integrand $|x'-x|^2 \neq 0$ when $x \in B_a(x_0)$. It implies u is smooth in $B_a(x_0)$.

Proposition 6. The Dirichlet problem to the Laplace equation

$$\Delta u = f \quad in \quad D$$

$$u = h \quad on \quad \partial D$$

 $is\ unique.$

Proof. Suppose u and v are solutions all satisfy the above Dirichlet problem. Let w = u - v which satisfies

$$\Delta w = 0 \quad in \quad D$$
$$w = 0 \quad on \quad \partial D.$$

By the maximum principle we have

$$0 = \min_{\partial D} u \le w_{\min} \le w(x) \le w_{\max} \le \max_{\partial D} u = 0.$$

So we get $w \equiv 0$ which proved the uniqueness.

Proposition 7. Suppose that $u \in C^2(\overline{B}_R(x_0))$ is harmonic. Then there holds

$$|Du(x_0)| \le \frac{n}{R} \max_{\overline{B}_R} |u|.$$

Proof. Because $\frac{\partial u}{\partial x_i}$ satisfies

$$\triangle \frac{\partial u}{\partial x_i} = 0.$$

Hence $\frac{\partial u}{\partial x_i}$ has the mean value inequality

$$\begin{split} \frac{\partial u}{\partial x_i}(x_0) &= \frac{1}{|B_R(x_0)|} \int_{B_R(x_0)} \frac{\partial u}{\partial x_i}(y) dy \\ &= \frac{1}{|B_R(x_0)|} \int_{\partial B_R(x_0)} u(y) \frac{y_i}{R} dS_y. \end{split}$$

The last equation is due to divergence theorem. So we have

$$|Du(x_0)|^2 = \sum_{i} |\frac{\partial u}{\partial x_i}|^2(x_0) \leq \frac{1}{|B_R(x_0)|^2} \sum_{i} (\int_{\partial B_R(x_0)} u(y) \frac{y_i}{R} dS_y)^2$$

$$\leq \frac{|\partial B_R(x_0)|}{|B_R(x_0)|^2} \int_{\partial B_R(x_0)} u^2(y) \sum_{i} (\frac{y_i}{R})^2 dS_y$$

$$= (\frac{|\partial B_R(x_0)|}{|B_R(x_0)|} \max_{\overline{B}_R} |u|)^2$$

$$= (\frac{n}{R} \max_{\overline{B}_R} |u|)^2.$$

Exercise 8. A bounded harmonic function in \mathbb{R}^n is constant.

Exercise 9. Suppose $u \in C^2(\overline{D})$ satisfies

$$\triangle u + cu = f(x)$$
 in D
 $u = \varphi(x)$ on ∂D

for some $f \in C(\overline{D})$ and $\varphi \in C(\partial D)$. If $c \leq 0$, then show that

$$|u(x)| \le \max_{\partial D} |\varphi| + C \max_{\overline{D}} f$$

for any $x \in D$. Where C is a positive constant which depends on diameter of D.

Example 10. Solve laplace equation in a Wedge

$$\triangle_2 u = 0 \quad in \quad W = \{(r, \theta); 0 < r < a, 0 < \theta < \beta\}$$

$$u(r, 0) = 0 = u(r, \beta)$$

$$\frac{\partial u}{\partial r}(a, \theta) = h(\theta).$$

Proof. By separation of variable in polar coordinate, we get the solution

$$u(r,\theta) = \sum_{n=1}^{\infty} A_n r^{n\pi/\beta} \sin \frac{n\pi\theta}{\beta}$$

with coefficients given by

$$A_n = a^{1-n\pi/\beta} \frac{2}{n\pi} \int_0^\beta h(\theta) \sin \frac{n\pi\theta}{\beta} d\theta.$$

Example 11. Solve laplace equation in annulus

$$\triangle_2 u = 0$$
 in $A = \{0 < a^2 < x^2 + y^2 < b^2\}$
 $u = g(\theta)$ on $x^2 + y^2 = a^2$
 $u = h(\theta)$. on $x^2 + y^2 = b^2$.

Proof. By separation of variable in polar coordinate, we get the solution

$$u(r,\theta) = \frac{1}{2}(C_0 + D_0 \log r) + \sum_{n=1}^{\infty} (C_n r^n + D_n r^{-n}) \cos n\theta + (A_n r^n + B_n r^{-n}) \sin n\theta.$$

Note that in this case we don't throw out the function r^{-n} and $\log r$. From the boundary condition, the coefficients need to satisfy

$$C_0 + D_0 \log a = \frac{1}{\pi} \int_0^{2\pi} g(\theta) d\theta$$
$$C_0 + D_0 \log b = \frac{1}{\pi} \int_0^{2\pi} h(\theta) d\theta,$$

and

$$C_n a^n + D_n a^{-n} = \frac{1}{\pi} \int_0^{2\pi} g(\theta) \cos n\theta d\theta$$
$$C_n b^n + D_n b^{-n} = \frac{1}{\pi} \int_0^{2\pi} h(\theta) \cos n\theta d\theta,$$

and

$$A_n a^n + B_n a^{-n} = \frac{1}{\pi} \int_0^{2\pi} g(\theta) \sin n\theta d\theta$$
$$A_n b^n + B_n b^{-n} = \frac{1}{\pi} \int_0^{2\pi} h(\theta) \sin n\theta d\theta.$$

Thus

$$D_0 = \frac{1}{\pi \log \frac{b}{a}} \int_0^{2\pi} (h(\theta) - g(\theta)) d\theta$$

$$C_0 = \frac{1}{\pi} \int_0^{2\pi} \left[\frac{\log b}{\log b - \log a} g(\theta) - \frac{\log a}{\log b - \log a} h(\theta) \right] d\theta,$$

and

$$\begin{bmatrix} C_n \\ D_n \end{bmatrix} = \begin{bmatrix} a^n & a^{-n} \\ b^n & b^{-n} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{\pi} \int_0^{2\pi} g(\theta) \cos n\theta d\theta \\ \frac{1}{\pi} \int_0^{2\pi} h(\theta) \cos n\theta d\theta \end{bmatrix},$$

and

$$\left[\begin{array}{c}A_n\\B_n\end{array}\right] = \left[\begin{array}{cc}a^n & a^{-n}\\b^n & b^{-n}\end{array}\right]^{-1}\left[\begin{array}{c}\frac{1}{\pi}\int_0^{2\pi}g(\theta)\sin n\theta d\theta\\\frac{1}{\pi}\int_0^{2\pi}h(\theta)\sin n\theta d\theta\end{array}\right].$$

Example 12. Solve laplace equation in the exterior of a disk

Proof. Because u is bounded as $r \to \infty$, in this case we throw out the function r^n and $\log r$. By separation of variable in polar coordinate, we get the solution

$$u(r,\theta) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} r^{-n}(A_n \cos n\theta + B_n \sin n\theta)$$

with the coefficients given by

$$A_n = \frac{a^n}{\pi} \int_{-\pi}^{\pi} h(\theta) \cos n\theta d\theta$$

and

$$B_n = \frac{a^n}{\pi} \int_{-\pi}^{\pi} h(\theta) \sin n\theta d\theta.$$

So we get Poisson's formula in this case

$$u(r,\theta) = (r^2 - a^2) \int_0^{2\pi} \frac{h(\phi)}{a^2 - 2ar\cos(\theta - \phi) + r^2} \frac{d\phi}{2\pi}$$

for r > a.