
Lecture 20

1 Maximum principle

Theorem 1. (weak form) Let D be a bounded connected domain in Rn. For a
smooth solution u which satis�es 4u = 0. Then

max
D

u = max
∂D

u

and

min
D

u = min
∂D

u.

Proof. Given a small ε > 0, let v(x) = u(x) + ε|x|2. Then we have in D

4v = 4u+ 2nε = 2nε > 0. (1)

If maximum of v attained at x0 ∈ D, we have

D2v(x0) ≤ 0. (2)

Thus (2) contradicts to (1). So the maximum point of v must be attained
on the boundary which means max

D
v = max

∂D
v. So we get

max
∂D

u ≤ max
D

u ≤ max
D

v = max
∂D

v ≤ max
∂D

u+ εl2 ,

where l is bounded by the diameter of the domain D.
Letting ε→ 0, we have

max
D

u = max
∂D

u.

Similarly, for the proof of minD u = min∂D u, we consider v(x) = u(x) −
ε|x|2.

Exercise 2. Suppose u satis�es the equation 4u+
n∑
i=1

bi
∂u
∂xi

+cu = 0 in D ∈ Rn

where c ≤ 0 and bi are bounded constants. Prove that

max
D

u ≤ max
∂D
{u, 0}.
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and

min
D

u ≥ min
∂D
{u, 0}.

Hint: let v(x) = u(x) + εeαx1 for some large α.

Proposition 3. (Mean value property) Let u be a harmonic function in a disk
D, continuous in its closure D. Then from Poisson's formula, we have the
following mean value properties for any point x0 ∈ D and any ball Br(x0) ⊆ D

u(x0) =
1

2πr

∫
|x′−x0|=r

u(x′)ds′.

and

u(x0) =
1

πr2

∫
|x′−x0|≤r

u(x′)dx′.

Remark. There are also mean value properties for n dimensional harmonic func-
tions.

Proof. Without loss of generality, we assume that x0 = 0.
Recall the Poisson's formula

u(x) =
a2 − |x|2

2πa

∫
|x′|=a

u(x′)

|x− x′|2
ds′.

Let x = 0, we have

u(0) =
a2

2πa

∫
|x′|=a

u(x′)

|x′|2
ds′

=
1

2πa

∫
|x′|=a

u(x′)ds′.

Mutiply both side by a and integrate from 0 to r

u(0)
r2

2
=

∫ r

0

u(0)ada =
1

2π

∫ r

0

∫
|x′|=a

u(x′)ds′

=
1

2π

∫
|x′|≤r

u(x′)dx′.

So we get

u(0) =
1

πr2

∫
|x′|≤r

u(x′)dx′.
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Theorem 4. (strong form) Let u(x) be harmonic in D which is a bounded
connected domain in Rn. Then the maximum point x0 /∈ D unless u ≡ constant.
In other word, if maximum point x0 ∈ D, then u ≡ costant.

Proof. Denote M = max
D

u. Set Σ = {x ∈ D;u(x) = M}. It is relatively closed

in D. If x0 ∈ D, We need to show Σ = D . From the mean value property, we
have for Br(x0) ⊆ D for some r > 0

M = u(x0) =
1

|Br|

∫
Br(x0)

u(x)dx ≤M.

Thus Br(x0) ⊆ Σ. This implies Σ is relatively open in D. In this way, using
the assumption that D is connected, we deduce that Σ = D.

Proposition 5. Let u be a continuous harmonic function in any open set D
of the plane. Then u(x) is smooth in D. This also true for n-dimensional
harmonic functions.

Proof. For any point x ∈ D, there is a ball Ba(x0) such that x ∈ Ba(x0) ⊆ D.
The mean value property is

u(x) =
a2 − |x− x0|2

2πa

∫
|x′−x0|=a

u(x′)

|x′ − x|2
ds′.

Because the denominator of the integrand |x′ − x|2 6= 0 when x ∈ Ba(x0).
It implies u is smooth in Ba(x0).

Proposition 6. The Dirichlet problem to the Laplace equation

4u = f in D

u = h on ∂D

is unique.

Proof. Suppose u and v are solutions all satisfy the above Dirichlet problem.
Let w = u− v which satis�es

4w = 0 in D

w = 0 on ∂D.

By the maximum principle we have

0 = min
∂D

u ≤ wmin ≤ w(x) ≤ wmax ≤ max
∂D

u = 0.

So we get w ≡ 0 which proved the uniqueness.

Proposition 7. Suppose that u ∈ C2(BR(x0)) is harmonic. Then there holds

|Du(x0)| ≤ n

R
max
BR

|u|.
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Proof. Because ∂u
∂xi

satis�es

4 ∂u

∂xi
= 0.

Hence ∂u
∂xi

has the mean value inequality

∂u

∂xi
(x0) =

1

|BR(x0)|

∫
BR(x0)

∂u

∂xi
(y)dy

=
1

|BR(x0)|

∫
∂BR(x0)

u(y)
yi
R
dSy.

The last equation is due to divergence theorem. So we have

|Du(x0)|2 =
∑
i

| ∂u
∂xi
|2(x0) ≤ 1

|BR(x0)|2
∑
i

(

∫
∂BR(x0)

u(y)
yi
R
dSy)2

≤ |∂BR(x0)|
|BR(x0)|2

∫
∂BR(x0)

u2(y)
∑
i

(
yi
R

)2dSy

= (
|∂BR(x0)|
|BR(x0)|

max
BR

|u|)2

= (
n

R
max
BR

|u|)2.

Exercise 8. A bounded harmonic function in Rn is constant.

Exercise 9. Suppose u ∈ C2(D) satis�es

4u+ cu = f(x) in D

u = ϕ(x) on ∂D

for some f ∈ C(D) and ϕ ∈ C(∂D). If c ≤ 0, then show that

|u(x)| ≤ max
∂D
|ϕ|+ C max

D
f

for any x ∈ D . Where C is a positive constant which depends on diameter
of D.

Example 10. Solve laplace equation in a Wedge

42u = 0 in W = {(r, θ); 0 < r < a, 0 < θ < β}
u(r, 0) = 0 = u(r, β)

∂u

∂r
(a, θ) = h(θ).
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Proof. By separation of variable in polar coordinate, we get the solution

u(r, θ) =

∞∑
n=1

Anr
nπ/β sin

nπθ

β

with coe�cients given by

An = a1−nπ/β
2

nπ

∫ β

0

h(θ) sin
nπθ

β
dθ.

Example 11. Solve laplace equation in annulus

42u = 0 in A = {0 < a2 < x2 + y2 < b2}
u = g(θ) on x2 + y2 = a2

u = h(θ). on x2 + y2 = b2.

Proof. By separation of variable in polar coordinate, we get the solution

u(r, θ) =
1

2
(C0 +D0 log r) +

∞∑
n=1

(Cnr
n +Dnr

−n) cosnθ + (Anr
n +Bnr

−n) sinnθ.

Note that in this case we don't throw out the function r−n and log r.
From the boundary condition, the coe�cients need to satisfy

C0 +D0 log a =
1

π

∫ 2π

0

g(θ)dθ

C0 +D0 log b =
1

π

∫ 2π

0

h(θ)dθ,

and

Cna
n +Dna

−n =
1

π

∫ 2π

0

g(θ) cosnθdθ

Cnb
n +Dnb

−n =
1

π

∫ 2π

0

h(θ) cosnθdθ,

and

Ana
n +Bna

−n =
1

π

∫ 2π

0

g(θ) sinnθdθ

Anb
n +Bnb

−n =
1

π

∫ 2π

0

h(θ) sinnθdθ.

Thus

D0 =
1

π log b
a

∫ 2π

0

(h(θ)− g(θ))dθ

C0 =
1

π

∫ 2π

0

[
log b

log b− log a
g(θ)− log a

log b− log a
h(θ)]dθ,
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and [
Cn
Dn

]
=

[
an a−n

bn b−n

]−1 [ 1
π

∫ 2π

0
g(θ) cosnθdθ

1
π

∫ 2π

0
h(θ) cosnθdθ

]
,

and [
An
Bn

]
=

[
an a−n

bn b−n

]−1 [ 1
π

∫ 2π

0
g(θ) sinnθdθ

1
π

∫ 2π

0
h(θ) sinnθdθ

]
.

Example 12. Solve laplace equation in the exterior of a disk

42u = 0 in x2 + y2 > a2

u = h(θ) on x2 + y2 = a2

u bounded as x2 + y2 →∞.

Proof. Because u is bounded as r →∞, in this case we throw out the function
rn and log r. By separation of variable in polar coordinate, we get the solution

u(r, θ) =
1

2
A0 +

∞∑
n=1

r−n(An cosnθ +Bn sinnθ)

with the coe�cients given by

An =
an

π

∫ π

−π
h(θ) cosnθdθ

and

Bn =
an

π

∫ π

−π
h(θ) sinnθdθ.

So we get Poisson's formula in this case

u(r, θ) = (r2 − a2)

∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ

2π

for r > a.
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