Lecture 20

1 Maximum principle

Theorem 1. (weak form) Let D be a bounded connected domain in R"™. For a
smooth solution u which satisfies Au = 0. Then

maxu = maxu
5} oD
and
minuy = minu.
D oD

Proof. Given a small € > 0, let v(z) = u(x) + €|x|?. Then we have in D

Av = Au+2ne=2ne > 0. (1)

If maximum of v attained at xo € D, we have
D*v(zg) < 0. (2)

Thus (2) contradicts to (1). So the maximum point of v must be attained
on the boundary which means maxv = max v. So we get
D

maxu < maxu < maxv = maxv < maxu + el®>
aD D D aD aD

where [ is bounded by the diameter of the domain D.

Letting € — 0, we have

maxu = Imaxu.
D oD

D

Similarly, for the proof of mingyu = mingp u, we consider v(z) = u(z) —
€|z|?. O

n
Exercise 2. Suppose u satisfies the equation Au+ > bi% +cu=0in D € R"”
~ i

i=
where ¢ < 0 and b; are bounded constants. Prove that

< .
maxu < r%%x{u, 0}



and

. N oL
minu > Igbn{u,}

Hint: let v(z) = u(x) 4+ ee*** for some large a.

Proposition 3. (Mean value property) Let u be a harmonic function in a disk
D, continuous in its closure D. Then from Poisson’s formula, we have the
following mean value properties for any point xg € D and any ball B,(x) C D

1

277

u(zg) = u(z)ds'.

&' —zo|=r
and
1

u(zg) = —5 u(z)dx'.
mr |#'—zo|<rT

Remark. There are also mean value properties for n dimensional harmonic func-
tions.

Proof. Without loss of generality, we assume that xg = 0.
Recall the Poisson’s formula

R - /| _ul@) g

21a N=q [T — ' [2

Let x = 0, we have

a? u(z’)
0) = — ds’
U( ) 2ma |z’ |=a |$/‘2 y
1 /
= — ds’.
2 u(z")ds

z’|=a

Mutiply both side by a and integrate from 0 to r

u(O)g :/Oru(O)ada = 217T/0T/|m/|_ u(x')ds'
1

= — w(x)dx'.
271' |x/|§T ( )

So we get

u(0) = — u(z')dx'.



Theorem 4. (strong form) Let u(x) be harmonic in D which is a bounded
connected domain in R"™. Then the mazimum point xo ¢ D unless u = constant.
In other word, if mazimum point xo € D, then u = costant.

Proof. Denote M = maxu. Set ¥ = {z € D;u(z) = M}. It is relatively closed
D

in D. If g € D, We need to show ¥ = D . From the mean value property, we
have for B, (z¢) C D for some r >0

1

M= .
“U0) = BT o o

u(z)dr < M.
Thus B,-(z¢) C X. This implies X is relatively open in D. In this way, using
the assumption that D is connected, we deduce that ¥ = D. O

Proposition 5. Let u be a continuous harmonic function in any open set D
of the plane. Then u(x) is smooth in D. This also true for n-dimensional
harmonic functions.

Proof. For any point & € D, there is a ball B,(zg) such that © € B,(x¢) C D.
The mean value property is

2 |2 /
u(z) = o — |z — ol / 7?@ ) sds'.
2ma |2/ —zo|=a |7 — 7
Because the denominator of the integrand |2/ — z|? # 0 when z € B,(zo).
It implies w is smooth in By (zo). O

Proposition 6. The Dirichlet problem to the Laplace equation
Au=f in D
wu="h on 0D
1§ uNIqUe.

Proof. Suppose u and v are solutions all satisfy the above Dirichlet problem.
Let w = u — v which satisfies

Aw=0 in D
w=0 on O0D.

By the maximum principle we have

0=minu < wWpin <wW(E) < Wnax < maxu=0.
oD oD

So we get, w = 0 which proved the uniqueness. O

Proposition 7. Suppose that u € C%(Br(x¢)) is harmonic. Then there holds

|Du(zo)] < = max]ul.
R B,



Proof. Because % satisfies

ou
A = 0.

Hence % has the mean value inequality

ou 1 ou
T = d
3951'( ) 1Br(20)| J By () Oxi B, W)
1 Yi
= u(y)==dS,.
Bl Jopne " R

The last equation is due to divergence theorem. So we have

ou E yl
Du(zo)|* = ) |5—[*(z0) < / R
Pl = 2 Agp ) = oo N

|0BR(0)| u? Yiy2
|Br(x0)1* JoBs(xo) ) ;(R) 45y
(M max|u|)2

|Br(zo)| Br

n max\u|)2.

(5 e

Exercise 8. A bounded harmonic function in R” is constant.

Exercise 9. Suppose u € C2(D) satisfies

Au+cu=f(x) in D
u=p(z) on 0D

for some f € C(D) and ¢ € C(AD). If ¢ < 0, then show that
lu(z)] < max|p[ 4+ Cmax f
oD D

for any x € D . Where C is a positive constant which depends on diameter
of D.
Example 10. Solve laplace equation in a Wedge

Dou=0 in W={(r0),0<r<a,0<0<p}
u(r,0) = 0 = u(r, §)

ou
E(a,@) = h(6).



Proof. By separation of variable in polar coordinate, we get the solution
> nml
u(r,0) = Z Apr™™ B gin —
n=1 ﬂ
with coefficients given by

2 [P 0
A, = alf’”/ﬁ—/ h(0) sin 2 dg.
nm Jo 15}

Example 11. Solve laplace equation in annulus

Nou=0 in A={0<a®<2®+y*<b?}
u=g0) on 2*>+1y*=a?
u=nh(0). on 2*+y*=">%

Proof. By separation of variable in polar coordinate, we get the solution

1
u(r,0) = =
2 n=1

Note that in this case we don’t throw out the function »~™ and logr.
From the boundary condition, the coefficients need to satisfy

1 27
Co+ Dologa = 7/ g(0)do
T Jo
1 2m
Co+ Dglogh = — (9)de,
T Jo
and
1 2
Cpa" +Dpa™" = 7/ g(0) cos nfdb
™ Jo
1 2
Cob"+Dpb™" = — h(6) cosnddo,
™ Jo
and
1 27
Apa™ + Bpa™" = f/ g(0) sinnfdf
T Jo
1 27
A" + Bpb™" = 7/ h(6) sin nfds.
T Jo
Thus
1 2m
Do = — [ (h(6) - g(0)a
mlog 2 Jo
1 [2m log b log a
Co = ;/0 [logb—logagw)_logb—logah(e)]de7

(Co + Dglogr) + Z(C’nr" + Dyr=")cosnb + (A,r™ + Bpr~ ") sinnf.



and
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(0) cos nfdb
(0) cos nddo
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0) sin nfdf
0) sinnbdo
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Example 12. Solve laplace equation in the exterior of a disk

Agu =0
u = h(0)

n

on

x2+y2>a2

$2+y2:a2

u bounded as z* + y? — co.

Proof. Because u is bounded as r — oo, in this case we throw out the function
r™ and log r. By separation of variable in polar coordinate, we get the solution

1 o0
u(r,0) = §A0 + E r~" (A, cosnb + By, sinnf)
n=1

with the coefficients given by

A, = a—/ h(8) cosnbdb
U -7
and
a” [T .
B, = —/ h() sin nfdb.
™ -7

So we get Poisson’s formula in this case

(,r,2 B a2) A%r

h(o) do
a? — 2ar cos(0 — @) + 12 2w

u(r,0)

for r > a.



