Lecture 10

February 21, 2021

We are going to use separation of variables to solve some second order PDEs.
Consider the homogeneous Dirichlet condtions for the wave equation:

Ut — CUpy =0 for 0<z<l (1)
u(0,4) = 0 = u(l,t) (2)

with some initial conditions

u(z,0) = ¢(z) (3)
ug(z,0) =9
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A separated solution is a solution of (1) and (2) of the form
u(z,t) = X(z)T(t).
The equation (1) gives us
X(@)T"t) = X" (2)T(t).

Or we write into the form

B T//(t) B _X"(x) .
ATt) X(z) 7
Note that X7(2)
x
A=— 5
X0 (5)
is independent with ¢, and
Tll(t)
A=— 6
AT(t) (©)

does not depend on z. So A is a constant.
Thus it reduced to solve two second order ODEs.

Theorem. Given a second order linear equation with constant coefficients

y' (@) + 0y () +ey(z) = 0, (7)

—



Solve its characteristic equation r2>4br+c = 0. The general solution depends
on the type of roots obtained.

Case 1. When b*> — 4c > 0, there are two distinct real roots ri, ro. The
general solution to (7) will be

y(z) = 1™ + cpe™".
Case 2. When b>—4c < 0, there are two complex conjugate roots r1 = A+ i,
ro = X\ — pi. The general solution to (7) will be

A

y(x) = c1e™ cospx + coe

“sin px.
Case 3. When b> — 4c = 0, there is one repeated real root . Then
y(x) = c1€™ + come™™.
From the ODE results, if A\ = 0, we have from Case 3 that
X(x) = c1+cn.

But X(0) = X(I) = O infers only ¢; = ¢z = 0. It only gives us a trivial
solution.
If A = =32 < 0, we have from Case 1 that

X(z) = 157 4 cpe b7

Similarly, X (0) = X(I) = 0 will gives us ¢; = ¢o = 0 which is also a trivial
solution.
If we assume A = 32 > 0 we have from Case 2

X(z) = Ccospfzx+ Dsinfx
T(t) = Acosfect+ Bsinfct.

The second step is to impose the boundary condition (2) on the separated
solution.

So we have

X(0) = C=0
X() = Dsinpl=0.

If C = D =0, this is a trivial solution which we are not interested. So we

must have 8 = =F.
That is A, = (2F)?, Xp(2) = sin 2% .



So we have many solutions

t t
up(x,t) = (A, cos 2 + B, sin m;c ) sin ?

where A, and B,, are arbitrary constants (which can be determined by ¢ and

).

The sum of solutions is again a solution to (1) and (2)

t t
nrer B, sin %) sin nlﬂ (8)

u(x,t) = Z(A" cos

n

If formula (8) also solves (3) and (4), it has to provide that

and

n

1 Review second order linear ODE.

We are going to review how to get the ODE Theorem 1. Let us consider the
constant coefficient second linear ODE

y' (&) +py'(t) +ay(t) =0 (9)
There is an existence and uniqueness theorem due to Picard-Lindelof.

Theorem 2. Consider the initial value problem

y'(t) +pt)y (1) +qt)y =g(t) a<t<b
y(to) = %o (10)
Y (to) = Yo-

If the functions p, q and g are continuous on the interval [a,b] which con-
taining the point to. Then there exists a unique solution y(t) to the initial value
problem.

This theorem guarantee us there are solutions to the equation (9). We begin
to find the solution with some simple examples.

Example. y(t) = C'sint is a solution to the equation y”(t)+y(t) = 0. From the
solution y(t) = C'sint we know that if we impose initial or boundary conditions
on different points there may have no uniqueness. For instance, for any C' the
solutions y(t) = Csint will satisfy the following condition 1: y(0) = 0 and
y'(5) = 0; or condition 2: y(0) = 0 and y(m) = 0.



Example. And y(t) = Ce' is a solution to the equation y”(t) — y(t) =

So we may guess solutions to the equation (9) will be in the form y(t) = .

From the equation (9) we have
r2e™ 4 pre’ +ge™ = 0.
Thus we need solve the characteristic equation r> + pr + q = 0 of Equation
(9).
Case 1. p? —4q > 0, we have two distinct real roots r; = M,
= @. Then we get two solutions
Xi(t) = et
and
Xo(t) = e
Claim. In this case, the general solution to (9) must be in the form
y(t) = 1 X1(t) +caXa(t) = cre™t 4 cpe™t

Proof. In order to prove this claim, we need to introduce the Wronskian which
is defined

W(t) = Xi(t)X5(t) — Xa(t) X1 (t).

If W(t) # 0, we say that Xjand X, are linearly independent solutions to
the equation (9). In particularly W (t¢g) # 0. One advantage is that suppose the
solution is in the form of y(¢) = ¢; X1 (t)+c2X2(t), we can uniquely determine the
constant ¢; and ¢ from the initial value conditions y(t9) = yo and y'(to) = Yo.
So we have only two parametric freedoms.

One important property of the Wronskian is that

Wi(t) = [X1(5)X5(t) — Xa(t) X1 (1))
= Xi(t)X5(t) + X1 (6) X3 (t) — X5(£) X1 (1) — Xa(t) X7 (1)
= Xi(H)X5(t) - X2(6) X7 (1)
from (9) = Xi(t)[-pXi(t) — ¢X1(t)] — Xa(t)[-pX5(t) — ¢Xa(t)]
= —pIXa(O)X1(t) — Xa(H) X7(1)]
= —pW(@). (11)

From this we can prove uniquess of Equation (9) with given initial conditions
y(to) = yo and y'(to) = Yo. Suppose that y(t) and y(t) are the solutions satisfy
the initial value problem (10) then

Wi(to) = y(to)y (to) — ¥ (to)u(to) = YoYo — Yoyo = 0.



So from the equation (11) for W, we have W (¢t) = 0. Which means y(t) =
cy(t) then from the same initial condition y(t9) = yo = y(to) we have y(t) = y(t).
This gives another proof of the uniqueness of Theorem 2.

Combining the uniqueness and the linear independent solutions X; and Xo,
we have proved the general solution to Equation (9) must be in the form of

y(t) = X3 (t) + Cng(t).
O

Case 3. p?> — 4q = 0, there is one repeated real root r = —£. So one
independent solution X () = e¢"*. We find another independent solution X5 (t)
from Equation (11). From Equation (11), we have

w(t) = o) —pdt _ [ 2rdt
On the other hand by the definition
W(t) = Xu(6)X5(t) — Xa(6) X1 ().
Let X;(t) = e"*, we have
eXY(t) —ret Xo(t) = €

Solving this first order linear inhomogeneous ODE, we get the other inde-
pendent solution

Xo(t) = te™.
By a similar reason as before, the general solution to Equation (9) is
y(t) = cie"t +cote™.

Case 2. p? —4q < 0, there are two complex conjugate roots 71 = A + pui,
rg = A — pi. So the fundamental solutions may be in the form

Xi(t) = Mt — M (cos pt + isin put)
and
Xo(t) =M rti = M(cos pt — isin ut).
So in the real form the fundamental solution may be
X (t) = eMcosput
and
Xo(t) = eMsinput.

We can check the Wronskian W = pe?* is nonzero. So X; and X, are
independent solutions.

By a similar reason as before, the general solution to Equation (9) in this
case is

y(t) = ci1eM cospt + coe sin put.
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