BASIC GEOMETRY OF HOLOMORPHIC MAPS

PO-LAM YUNG

In this short note, we will discuss some basic geometry of mappings defined by holomorphic
functions. Write B(zg,7) for an open ball of radius r centered at z, i.e.

B(zp,7) :={2€C: |z — 2| <71}.

Proposition 1. Suppose f: 2 — C is a non-constant holomorphic function on an open
connected set Q0 C C. If zg € Q, wo = f(20), and k is the order of vanishing of f(z) — wy
at z = zy, then there exists an open set U C , and an open set V. C C containing wy,
such that for every w € V \ {wo}, there exists exactly k distinct zy,...,z, € U such that
f(z1) =+ = f(zx) = w. In short, we say that f is locally k to 1 near z.

Proof. First notice that there exists a non-zero constant a € C and some holomorphic
function g on €, such that

f(2) —wo = ax(z — 20)* + g(2)
for all z € Q, and such that g(z) vanishes at zy to order > k + 1. As a result,

9(2)

- =0.

’
fu v arp(z — z0)

Hence there exists ¢ > 0, such that
1
l9(2)| < Slaxllz = 2"

for all z with 0 < |z — 29| < 0. Now for w close to wp, we want to find solutions z to the
equation f(z) = w with z close to zp. So we write

f(z) —w=an(z — 20)* + g(z) + (w — wy).

We know how many roots ay(z — 2)* has, and we want to apply Rouché’s theorem. So we
would estimate the size of |g(z) + (w — wyp)| on the boundary of some curve surrounding z,
and compare it to |ag(z — 20)*| over that curve.

Let’s take that curve to be a circle of radius 0 around zy, where ¢ is chosen as above. So
let U := B(29,0). Then for z on the boundary of U, we have

1
l9(2) + (w = wo)| < g(2)] + lw — wol < Slar(z = 20)*| + [w — w|

for all z on the boundary of U. This suggests that we take V' := B(wy, 5|ax|6*). Then for
every w € V, we have

|9(2) + (w —wo)| < |ax(z — 20)"|
for all z on the boundary of U. This allows us to apply Rouché’s theorem on U to the

functions ax(z — 20)* and ax(z — 20)* + g(2) + (w — w) = f(z) — w: we conclude that for
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every w € V', the function f(z) — w has exactly k zeroes in U. If w # wy, then z # z,
and by shrinking § if necessary, we may assume that f'(z) # 0 for all z € U \ {z}. In that
case, all zeroes of f(z) —w are simple. This shows that for every w € V'\ {wy}, the function
f(2) — w has exactly k distinct zeroes in U, which is our desired conclusion. U

We remark that if & = 1, and if Uy := U N f~1(V), then f is a biholomorphism from Uj
to V. More generally, for a general k, if Uy := U N f~1(V), then f is a k-to-1 covering of V'
by Uo.

Corollary 2. If f is an injective holomorphic function on an open set Q2 C C, then f'(z) # 0
for every z € Q.

Proof. If f'(zy) = 0 for some 2, € €2, then from the previous proposition, f is locally k to 1
for some k > 1. So f cannot be injective. OJ

Proposition 3. If f is holomorphic on an open set containing a point zy and f'(zy) # 0,
then f preserves angles at zg.

Proof. Suppose 71 and 7, are two curves in the open set with 7;(0) = 72(0) = 2o, and
Y () # 0, ¥5(t) # 0 for all t. Let 6 be the angle from v; to v2 at zg. Then

BO) _ 0 h(0)
O~ hi)]
Since (f 071)'(0) = f(20)7(0), and similarly (f 072)/(0) = f'(z0)74(0), from f/(z0) # 0, we

also get
(f o) (0) _ iy (fom)(0)
|(f 072)'(0)] [(fom) (0)]
Hence the angle from f o~y to fory at f(2) is also 6. U

In particular, we also have

Proposition 4. If f is holomorphic on an open set containing a point zo and f'(z9) # 0,
then f preserves orientation at zg.

Let’s give a direct proof of this proposition using Jacobian determinants (which extends
to higher dimensions).

Proof. Let f(z) = u(x,y) +iw(z,y) where u(x,y) = Re f(z +iy) and v(x,y) = Im f(x +iy).
Then the Jacobian matrix is

Ou Oyu \ [ Oyu —0zv
amv ayv - ax'U @xu
by the Cauchy—Riemann equations. Thus, the determinant of the Jacobian matrix is

(0z)” + (0z0)* = | f'(2)[*,

which is positive by assumption. This shows that f preserves orientation at zj. 0
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Finally, we have the following inverse function theorem in one complex variable:

Proposition 5. If f: U — V is bijective and holomorphic, then its inverse g := f~1: V — U
1s also holomorphic.

In particular, being biholomorphic defines an equivalence relation between domains in C.

Proof. Let wy € V, and zy = g(wp). We claim that g(w) is continuous at wy. Indeed, for
any ¢ > 0, the set f(B(z,¢)) is an open set containing wy, by the open mapping theorem.
Hence there exists some § > 0 such that B(wp,d) C f(B(z0,¢)), i.e. g(B(wp,d)) C B(z,€).
This shows that for any w with |w—wy| < §, we have |g(w) —zo| < €, i.e. |g(w) —g(wp)| < &.
Hence g(w) is continuous at wy.

Now we have shown that f’(z9) # 0. Thus

. Z— 2 1
lim =

220 f(Z) - f(Zo) f’(Z()).

This says for any € > 0, there exists § > 0, such that
zZ— 20

() 1

f(z) = f(z0)  f'(%0)
whenever 0 < |z — 29| < 6. By continuity of g(w) at wy, there exists &' > 0 such that
lg(w) — g(wo)| < & whenever |w—wy| < ¢'. As a result, whenever 0 < |w —wy| < §', we have
0 < |g(w) — 20| < §, and from the choice of § as in (1) we have

<e€

‘ glw)—z 1 _.
flg(w)) = f(z0)  f'(20) ’
ie.
o) o)L,
w — Wy f'(20)
This proves that g is differentiable at wy, and that
1

g'(wo) N f’(zo).



