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5.10 By (5.2b), the orders of both functions are 1 (cos is a sum of exp). Then by
Hadamard factorisation theorem and symmetric grouping of factors,
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Considering f/(0) = g(0) = 1 shows e? = e” = 1 and considering the constant
terms in (f'/f)(0) and (¢'/g)(0)shows A = 1/2 and C' = 0.

5.11 Suppose f misses a and b, and a # b. By Hadamard’s factorisation theorem, since
f — a has no zero, f(z) = e’®) for some polynomial P. By fundamental theorem
of algebra, P is surjective on C, and hence (f — a)(C) = C\ {0}. In particular,
b—a= f(z) — a for some z, contradictory to the assumption that f misses b.

5.14 We prove the contrapositive. Suppose f has finitely many zeros ay, ..., axy Then f/Q
has no zero for the polynomial Q(z) = [][(z — a;), and hence f = Qe for some
polynomial P. Then the order of f is the degree of P, and hence is integral.

5.15 By Weierstrass factorisation theorem, there exist holomorphic f and g such that
{a,} and {b,} are the set of zeros of f and g respectively. Then h = f/g is a
meromorphic function that vanishes exactly at {a,} and has poles exactly at {b,}.
Now, let ¢ be a meromorphic function with zeros {a,} and poles {b,}. Then @/h
is entire without zeros if h is defined with a,, = a,, and b,, = l~)n Then by taking log,
©/h = e¥ for some entire . Then ¢ = (e¥f)/g, where e f and g are entire.
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6.4 Since f™(2) = a(a+1)...(a+n—1)(1 — z)~+n),
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6.5 Since I'(Z) is meromorphic and agrees on the positive real axis with I'(z), I'(z) = I'(z).

The result then follows from the following chain of equations.
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6.7 a. Proceed hinted. The new bounds are then 0 < v < oo and 0 < r < 1 and the

Jacobian is a((i?) = u, and hence
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The result then follows by the change of variable t =1 — r.

b. In the defining integral of B, do the change of variable u = 1/(1 —¢) — 1 to
change the domain of integration from (0, 1) to (0,00). Then 1 —t =1/(u+1),
t =u/u+1and dt = du/(u+ 1)?. This gives
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The result from interchanging o and 8 because part (a) implies B(a, ) =

BB, a).

6.10 a. Consider the holomorphic function f(w) = e “w*~! on {w : Rw > 0, Jw > 0}
as hinted. Note |f(w)| < e |w|*"!, where u = Rz € (0,1).

The integral on the small arc is bounded by
w/2
e“/ e =0d0 < (n/2)e" =0
0

ase — 0.
The integral on the large arc is bounded by
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as R — oo.

Therefore, [ e "t~ dt =i~* [ e 't*~'dt = ¢™*/’I'(z). Conjugating and re-
placing z by z (note z still lies in the vertical strip between 0 and 1) shows
J, 7 et77 dt = e7™#/?I'(z). The result then follows by taking linear combina-
tions.

. The equations follows by putting z = 0 and z = 1/2 into the second equation

in (a). It remains to show the equation holds on |Rz| < 1. Right-hand side is
clearly holomorphic because the pole of ' at 0 cancels with that of the zero
of sin. Left-hand isde is holomorphic on —1 + ¢ < Rz < —e by Morera’s
theorem, (break the integral into one on (0, 1) and (1, c0), where on the former
the integrand is bounded by t%* as |sint| < [t|).

. For every positive integer k, applying sI'(s) = I'(s + 1) gives I'(—=1/2 — k) =

,Qﬁ

(—1/2-1)(-1/2-2)...(-1/2-k)’ and hence

k!
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Since | —1/2 — k| < 2k, YTt > 5oy — oo, and hence 1/T(s) is not
O(eAll).

. By Hadamard’s factorisation theorem, F' = e’ /T" for some linear polynomial P,

and hence 1/T = e PF. If F(z) = O(e“l), then so is 1/T. The contradiction
then follows.

. fundamental theorem of calculus

b. Since I', and hence log " is eventually increasing on the positive real axis (be-

cause log I is convex (see Theorem 8.18c of Rudin’s Principles of Mathematical
Analysis), and I'(3) > I'(2)), log'(z) < f;ﬂ logl' < logI'(x + 1), or equiva-
lently,

x x+1
(x—1)log(z—1)—(z—1)4c < / logI' <T'(z) < / logI' = zlogz—z+c,
z—1 T

Since for every a < 1, for z sufficiently large, (x —1)log(z —1) — (z — 1) + ¢ >
azlog(ax)+o(xlogz) > arlogz+o(zlogx), and hence I'(z) ~ xlogzr —x+c,
where —x 4+ ¢ = O(x). The result then follows.

st © = dt

- ts —nt "

/0 et—11 /0 21:6 t
X, [ dt
:Z/@mwu
1 70 ¢




6.16

The exchange of integral is justified by Fubini’s theorem for real s because the all
expressions are nonnegative, and hence for all s with ®s > 1 because |(t/n)*] <
(t/n)®, which reduces to the real case. [There are two versions of Fubini’s theorem.
The first, not mentioned in the tutorial note, says if a function f is measurable
and nonnegative, [o, fdA = [, [ fdedy = [, [, fdydz. The second, mentioned in
tutorial note 2, says the same conclusion holds if at least one of the three integrals
is finite when f is replaced by |f|.]

Split the integral in 6.15 to one over (0,1) and (1,00). The one on (1, 00) converges
absolutely uniformly on compact sets, and hence by Morera’s theorem defines a
holomorphic function. For the one on (0,1), =1 = "2 = 9723 % ¢,t",
where ﬁ = >0 ¢,t", by holomorphy, converges uniformly on compact subsets
of B(0,27), and in particular, (0,1). Termwise integration, justified by uniform

T 8 dt _ N\~o© _ep
convergence, then shows [ F—=% =3¢ 2, whose poles are 1,0, —1, -2, ..., all

of which except 1 cancel with the zeros of ﬁ

Therefore, ((s) = ﬁ 01 %% + r(ls) floo %%, where the former term has a unique

pole that is simple at 1 and the latter is entire.




