SOME CONSEQUENCES OF THE MEAN-VALUE THEOREM

PO-LAM YUNG

Below we establish some important theoretical consequences of the mean-value theorem. First recall the mean value theorem:

Theorem 1 (Mean value theorem). Suppose $f: [a, b] \to \mathbb{R}$ is a function defined on a closed interval [a, b] where $a, b \in \mathbb{R}$. If f is continuous on the closed interval [a, b], and f is differentiable on the open interval (a, b) , then there exists $c \in (a, b)$ such that

$$
f(b) - f(a) = f'(c)(b - a).
$$

This has some important corollaries. To proceed further, we need the following definitions:

Definition 1. Suppose $f: I \to \mathbb{R}$ is defined on some interval I.

- (a) f is said to be constant on I, if and only if $f(x) = f(y)$ for any $x, y \in I$.
- (b) f is said to be increasing on I, if and only if for any $x, y \in I$ with $x \le y$, we have $f(x) \le f(y)$.
- (c) f is said to be *strictly increasing* on I, if and only if for any $x, y \in I$ with $x \leq y$, we have $f(x) < f(y)$.
- (d) f is said to be decreasing on I, if and only if for any $x, y \in I$ with $x \leq y$, we have $f(x) \geq f(y)$.
- (e) f is said to be *strictly decreasing* on I, if and only if for any $x, y \in I$ with $x \le y$, we have $f(x) > f(y).$

(Can you draw some examples of such functions?)

Corollary 2. Suppose $f : [a, b] \to \mathbb{R}$ is a function defined on a closed interval [a, b] where $a, b \in \mathbb{R}$ $\mathbb R$. Suppose also that f is continuous on the closed interval [a, b], and that f is differentiable on the open interval (a, b) .

- (i) If $f'(t) = 0$ for all $t \in (a, b)$, then f is constant on $[a, b]$.
- (ii) If $f'(t) \geq 0$ for all $t \in (a, b)$, then f is increasing on $[a, b]$.
- (iii) If $f'(t) > 0$ for all $t \in (a, b)$, then f is strictly increasing on [a, b].
- (iv) If $f'(t) \leq 0$ for all $t \in (a, b)$, then f is decreasing on $[a, b]$.
- (v) If $f'(t) < 0$ for all $t \in (a, b)$, then f is strictly decreasing on $[a, b]$.

Proof. Suppose f is continuous on [a, b], and differentiable on (a, b) . Fix two points $x, y \in [a, b]$, with say $x < y$. Then f is continuous on the closed interval $[x, y]$, and differentiable on the open interval (x, y) , so the mean value theorem applies, and there exists some $c \in (x, y) \subset (a, b)$ such that

$$
f(y) - f(x) = f'(c)(y - x).
$$

(i) If $f'(t) = 0$ for all $t \in (a, b)$, then in particular $f'(c) = 0$. So

$$
f(y) - f(x) = f'(c)(y - x) = 0,
$$

i.e. $f(x) = f(y)$. Since x, y are arbitrary in [a, b], this shows f is a constant on [a, b].

(ii) If $f'(t) \geq 0$ for all $t \in (a, b)$, then in particular $f'(c) \geq 0$. So using also $y - x > 0$, we see that

$$
f(y) - f(x) = f'(c)(y - x) \ge 0,
$$

i.e. $f(x) \leq f(y)$. Since x, y are arbitrary in [a, b], this shows f is increasing on [a, b].

(iii) If $f'(t) > 0$ for all $t \in (a, b)$, then in particular $f'(c) > 0$. So using also $y - x > 0$, we see that

$$
f(y) - f(x) = f'(c)(y - x) > 0,
$$

i.e. $f(x) < f(y)$. Since x, y are arbitrary in [a, b], this shows f is strictly increasing on $[a, b]$.

- (iv) Similar to (ii) (or apply (ii) to $-f$)
- (v) Similar to (iii) (or apply (iii) to $-f$)

 \Box

Note: The converse of (i) , (ii) and (iv) are true, but the converse of (iii) , (v) are not! Verify yourself.

Next, we recall the definition of second derivatives: If f is a differentiable function on an open interval (a, b) , and if f' is also differentiable on (a, b) , then the derivative of f' is denoted f'' , and is called the second derivative of f. Such functions are said to be *twice differentiable* on (a, b) .

The sign of the second derivative is related to the concept of convexity, which we defined below.

Definition 2. Suppose $f : (a, b) \to \mathbb{R}$ is a continuous function on some open interval (a, b) .

(a) f is said to be *convex* on (a, b) , if and only if

$$
f\left(\frac{x+y}{2}\right) \le \frac{f(x) + f(y)}{2}
$$

for any $x, y \in (a, b)$.

(b) f is said to be *concave* on (a, b) , if and only if

$$
f\left(\frac{x+y}{2}\right) \ge \frac{f(x) + f(y)}{2}
$$

for any $x, y \in (a, b)$.

(Can you draw some examples of such functions?)

(Some people call convex functions "convex up", and concave functions "convex down". We will not use these terminologies.)

Corollary 3. Suppose $f : (a, b) \to \mathbb{R}$ is twice differentiable on an open interval (a, b) .

(i) If $f''(t) \geq 0$ for all $t \in (a, b)$, then f is convex on (a, b) .

(ii) If $f''(t) \leq 0$ for all $t \in (a, b)$, then f is concave on (a, b) .

Proof. Fix two points $x, y \in (a, b)$, with say $x < y$. For brevity, let $c = \frac{x+y}{2}$ $\frac{+y}{2}$. Consider the function $F: (a, b) \to \mathbb{R}$, defined by

$$
F(t) = f(t) - [f'(c)(t - c) + f(c)] \text{ for all } t \in (a, b).
$$

Then F is differentiable on (a, b) , and for all $t \in (a, b)$, we have

$$
F'(t) = f'(t) - f'(c).
$$

(i) If $f''(t) \ge 0$ for all $t \in (a, b)$, then f' is increasing on (a, b) , so

$$
F'(t) = f'(t) - f'(c) \begin{cases} \leq 0 & \text{if } t \in (a, c) \\ \geq 0 & \text{if } t \in (c, b) \end{cases}
$$

Hence F is decreasing on $[x, c]$, and increasing on $[c, y]$. It follows that

$$
F(x) \geq F(c)
$$
, and $F(y) \geq F(c)$.

Now we add the two inequalities. Recall $F(c) = 0$,

$$
\begin{cases}\nF(x) = f(x) - f'(c)(x - c) - f(c) \\
F(y) = f(y) - f'(c)(y - c) - f(c)\n\end{cases}
$$

Note that $x - c = -(y - c)$, since $c = \frac{x+y}{2}$ $\frac{+y}{2}$ is the mid-point of x and y. Hence the terms involving $f'(c)$ cancels out when we add $F(x)$ and $F(y)$. The result is then

.

$$
f(x) + f(y) - 2f(c) \ge 0
$$
, i.e. $f(c) \le \frac{f(x) + f(y)}{2}$.

This proves what we want.

(ii) Just reverse the signs of f'' in the proof above, or apply (i) to $-f$.

One can easily show now that e.g. $exp(x)$ is strictly increasing and convex on R.

The above can help us determine whether a critical point is a local maxima and minima. We recall the following definitions:

Definition 3. Suppose $f:(a, b) \to \mathbb{R}$ is defined on an open interval (a, b) .

- (i) If $c \in (a, b)$ is a point, such that $f(x) \ge f(c)$ in a neighborhood of c (i.e. there exists a (possibly tiny) open interval (α, β) , such that $c \in (\alpha, \beta) \subset (a, b)$, and $f(x) \geq f(c)$ for all $x \in (\alpha, \beta)$, then c is called a local minimum of the function f.
- (ii) If $c \in (a, b)$ is a point, such that $f(x) \leq f(c)$ in a neighborhood of c (i.e. there exists a (possibly tiny) open interval (α, β) , such that $c \in (\alpha, \beta) \subset (a, b)$, and $f(x) \leq f(c)$ for all $x \in (\alpha, \beta)$, then c is called a local maximum of the function f.

(Sometimes a local maximum is called a relative maximum, and a local minimum is called a relative minimum. Sometimes we also say a point is a local (or relative) extremum, if it is a local maximum or a local minimum.)

Corollary 4 (First derivative test). Suppose $f : (a, b) \rightarrow \mathbb{R}$ is defined on an open interval (a, b) , and $c \in (a, b)$. Suppose also that f is differentiable on $(a, b) \setminus \{c\}$, and f is continuous at c.

(i) If there exists $\alpha, \beta \in (a, b)$, with $\alpha < c < \beta$, such that

$$
\begin{cases} f'(t) \le 0 & \text{for all } t \in (\alpha, c), \\ f'(t) \ge 0 & \text{for all } t \in (c, \beta), \end{cases}
$$

then c is a local minimum of f.

(ii) If there exists $\alpha, \beta \in (a, b)$, with $\alpha < c < \beta$, such that

$$
\begin{cases} f'(t) \ge 0 & \text{for all } t \in (\alpha, c), \\ f'(t) \le 0 & \text{for all } t \in (c, \beta), \end{cases}
$$

then c is a local maximum of f.

- *Proof.* (i) If f is as in (i), then f is decreasing on $[\alpha, c]$, and increasing on $[c, \beta]$. So $f(x) \ge f(c)$ on (α, β) . It follows that c is a local minimum of f.
- (ii) If f is as in (ii), then f is increasing on $[\alpha, c]$, and decreasing on $[c, \beta]$. So $f(x) \leq f(c)$ on (α, β) . It follows that c is a local maximum of f.

Corollary 5 (Second derivative test). Suppose $f:(a, b) \rightarrow \mathbb{R}$ is differentiable on an open interval (a, b) , and $c \in (a, b)$. Suppose also that $f'(c) = 0$, and that f' is differentiable at c.

- (i) If $f''(c) > 0$, then c is a local minimum of f.
- (ii) If $f''(c) < 0$, then c is a local maximum of f.

Proof. Since $f'(c) = 0$ and $f''(c)$ exists, we have

$$
\lim_{x \to c} \frac{f'(x)}{x - c} = \lim_{x \to c} \frac{f'(x) - f'(c)}{x - c}
$$

exists and equals $f''(c)$.

(i) If $f''(c) > 0$, then

$$
\lim_{x \to c} \frac{f'(x)}{x - c} > 0.
$$

It follows that

$$
\frac{f'(x)}{x-c} > 0
$$

for all x in a deleted neighborhood of c, i.e. there exists $\alpha, \beta \in (a, b)$ with $c \in (\alpha, \beta)$ such that $\frac{f'(x)}{x-c} > 0$ holds for $x \in (\alpha, \beta) \setminus \{c\}$. Since $x - c > 0$ when $x > c$, and $x - c < 0$ when $x < c$, it follows that

$$
f'(x) \begin{cases} < 0 & \text{if } x \in (\alpha, c) \\ > 0 & \text{if } x \in (c, \beta) \end{cases}
$$

Using the first derivative test, it follows that c is a local minimum of f .

(ii) Similar to (i).

 \Box

It is now easy to sketch the graph of a function using its first (and possibly second) derivatives. This in turn allows us to determine (sometimes) the global maximum or minimum of a function over unbounded intervals, and establish some identities / inequalities.

Later on we will use some of these corollaries of the mean value theorem, to derive the familiar properties of the trigonometric functions (like sine and cosine).