Math 1010C Term 1 2014 Supplementary exercises 1

The following exercises are optional, and for your own enjoyment only.

- 1. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be even if f(x) = f(-x) for all $x \in \mathbb{R}$, and odd if f(x) = -f(-x) for all $x \in \mathbb{R}$.
 - (a) Suppose $p: \mathbb{R} \to \mathbb{R}$ is the polynomial function

$$p(x) = \sum_{n=0}^{d} a_n x^n.$$

Show that p is even if and only if $a_n = 0$ for all odd integers n.

- (b) Let p be as in part (a). Find a necessary and sufficient condition on the coefficients of p, such that p is odd.
- (c) Is there a function $g: \mathbb{R} \to \mathbb{R}$ that is neither even nor odd?
- (d) Is there a function $h: \mathbb{R} \to \mathbb{R}$ that is both even and odd?
- (e) Show that every function $f : \mathbb{R} \to \mathbb{R}$ can be written as the sum of an odd function and an even function.
- (f) For those who know derivatives already: show that the derivative of an odd function is even, and the derivative of an even function is odd.
- (g) For those who know some linear algebra: Does the set of all even functions from \mathbb{R} to \mathbb{R} form a vector space over \mathbb{R} ? What about the set of all odd functions?
- 2. The following generalizes the concept of odd and even functions defined above. Suppose X is a set, and $\theta: X \to X$ is an *involution*, in the sense that $\theta \circ \theta$ is the identity function on X (i.e. $\theta(\theta(x)) = x$ for all $x \in X$).
 - (a) Show that $\theta \colon X \to X$ is a bijection.
 - (b) A function $f: X \to \mathbb{R}$ is said to be even with respect to θ if $f(\theta(x)) = f(x)$ for all $x \in X$. A function $f: X \to \mathbb{R}$ is said to be odd with respect to θ if $f(\theta(x)) = -f(x)$ for all $x \in X$.
 - (i) Find all functions $F: X \to \mathbb{R}$ that is both even with respect to θ , and odd with respect to θ .
 - (ii) Show that every function $f: X \to \mathbb{R}$ can be written as the sum g + h, where $g: X \to \mathbb{R}$ is odd with respect to θ , and $h: X \to \mathbb{R}$ is even with respect to θ .
 - (c) How is all this relevant to Question 1?
 - (d) For those who know complex numbers already: Did it matter that we considered functions that took values in \mathbb{R} ? What if we considered complex-valued functions?
- 3. (a) Is there a bijection from \mathbb{N} to \mathbb{Z} ? If yes, construct one.
 - (b) Is there a bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$? (The latter is the set of ordered pairs (m, n), where m and n are both positive integers.) If yes, construct one. (Hint: Draw a picture to visualize $\mathbb{N} \times \mathbb{N}$.)
 - (c) Is there a bijection from \mathbb{N} to \mathbb{Q} ? If yes, construct one. (Hint: Use part (b).)

(d) (Challenge) A sequence of positive integers is an ordered list $(a_1, a_2, a_3, ...)$, where each a_i is a positive integer. Let's denote the set of all sequences of positive integers by Y. Is there a bijection from \mathbb{N} to Y?

 $\mathbf{2}$