MATH 1010A/K 2017-18

University Mathematics Tutorial Notes II Ng Hoi Dong

Question

(Q1) A sequence $\{x_n\}$ is defined by $x_0 = 1$, $x_1 = 2$ and $x_n = \frac{x_{n-1} + x_{n-2}}{2}$ for $n \ge 2$.

(a) Write down the values of $x_2 - x_1$, $x_3 - x_2$ and $x_4 - x_3$.

(b) For n = 1, 2, 3, ..., guess an expression for $x_n - x_{n-1}$ in terms of n and prove it.

(c) Hence find $\lim_{n\to\infty} x_n$.

(Q2) Let p > 0 and $p \neq 1$,

 $\{a_n\}$ is a sequence of positive numbers defined by $\begin{cases} a_0=2\\ a_n=\frac{1}{\sqrt[p]{n}}+\frac{1}{p}a_{n-1}, & n=1,2,3,\dots \end{cases}$

(a) Prove that $\lim_{n \to \infty} a_n = 0$ if the limit exists.

(b) Using (a), or otherwise,

(i) if $2 = a_0 < a_1 < a_2 < ...$, show that $\lim_{n \to \infty} a_n$ does not exist.

(ii) if $a_{k-1} \ge a_k$ for some k > 1, show that $a_{n-1} \ge a_n$ for $n \ge k$ and deduce that $\lim_{n \to \infty} a_n = 0$.

(c) Using (a),(b), or otherwise,

(i) if $0 , show that <math>\lim_{n \to \infty} a_n$ does not exist.

(ii) if $p \ge 2$, show that $\lim_{n \to \infty} a_n = 0$.

(d) Using (a),(b), or otherwise,

(i) Suppose $1 . Prove by mathematical induction that <math>a_n < \frac{2}{n-1}$ for $n \ge 0$.

(ii) Suppose $1 . Prove that <math>\lim_{n \to \infty} a_n = 0$.

(Q3) Let
$$f(x) = \sqrt{\frac{x+|x|}{x+2}}$$
, $g(x) = \sqrt{x^2 - |x| - 2}$.

Find the maximal domain of f, g (in \mathbb{R}).

 $(\mathbf{Q4})$ Find values of a and b such that

$$f(x) = \begin{cases} ax + 2b, & x \le 0, \\ x^2 + 3a - b, & 0 < x \le 2, \\ 4x - 2b, & x > 2 \end{cases}$$

is continuous at every $x \in \mathbb{R}$.

Answer

(A1) Let
$$x_0 = 1$$
, $x_1 = 2$ and $x_n = \frac{x_{n-1} + x_{n-2}}{2}$ for $n \ge 2$.

(a)
$$x_2 = \frac{3}{2}$$
, $x_3 = \frac{7}{4}$, $x_4 = \frac{13}{8}$. Then $x_2 - x_1 = -\frac{1}{2}$, $x_3 - x_2 = \frac{1}{4}$, $x_4 - x_3 = -\frac{1}{8}$.

(b) Guess
$$x_n - x_{n-1} = (-1)^{n-1} \frac{1}{2^{n-1}}$$
.

Let P(n) be the statement that " $x_n - x_{n-1} = (-1)^{n-1} \frac{1}{2^{n-1}}$ ".

Note that P(1) is true since $x_1 - x_0 = 1 = (-1)^0 \frac{1}{2^0}$.

Let $k \in \mathbb{Z}$ and $k \ge 2$, assume P(k) is true, i.e. $x_k - x_{k-1} = (-1)^{k-1} \frac{1}{2^{k-1}}$.

Consider n = k + 1,

$$x_{k+1} - x_k = \frac{x_k + x_{k_1}}{2} - x_k$$
$$= -\frac{x_k - x_{k-1}}{2}$$
$$= \frac{(-1)^k}{2^k}.$$

so P(k+1) is true.

By principal of mathematical induction, P(n) is true for any n = 1, 2, 3, ...,

i.e.
$$x_n - x_{n-1} = (-1)^{n-1} \frac{1}{2^{n-1}}$$
 for any $n = 1, 2, 3, \dots$

(c) Note that
$$x_n - x_0 = \sum_{i=1}^n (x_i - x_{i-1}) = \sum_{i=1}^n (-1)^{i-1} \frac{1}{2^{i-1}}$$

and
$$\sum_{i=0}^{\infty} (-1)^{i-1} \frac{1}{2^{i-1}} = \frac{1}{1 - \left(-\frac{1}{2}\right)} = \frac{2}{3}$$
.

Therefore, $\lim_{n\to\infty} x_n$ exist and $\lim_{n\to\infty} x_n = x_0 + \frac{2}{3} = \frac{5}{3}$.

- (A2) Let p, a_n are defined as the question.
 - (a) If the limit exists, by the definition of a_n ,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{\sqrt[p]{n}} + \frac{1}{p} \lim_{n \to \infty} a_{n-1} = \frac{1}{p} \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n = 0 \quad \text{since } p \neq 1$$

- **(b)** Using (a),
 - (i) Suppose it were true that $\lim_{n\to\infty} a_n$ exists,

Since $\{a_n\}$ is increasing sequence, so (Why?)

$$2 = a_0 \le a_n \le \lim_{n \to \infty} a_n = 0$$
 for any $n = 0, 1, 2, ...$

Contradiction arises, hence $\lim_{n\to\infty} a_n$ does not exist.

(ii) Let P(n) be the statement that " $a_{k+n-1} \ge a_{k+n}$ ".

Since $a_{k-1} \ge a_k$, P(0) is true.

Let *l* be a nonnegative integer, assume P(l) is true, i.e. $a_{k+l-1} \ge a_{k+l}$, then

$$a_{k+l} - a_{k+l+1} = \left(\frac{1}{\sqrt[p]{k+l}} - \frac{1}{\sqrt[p]{k+l+1}}\right) + \frac{1}{p}(a_{k+l-1} - a_{k+l}) \ge 0$$

Hence, $a_{k+l} \ge a_{k+l+1}$, i.e. P(l+1) is true.

By the principal of mathematical induction, P(n) is true for any $n=0,1,2,\ldots$. Since $\{a_{k+n-1}\}_{n=1}^{\infty}$ is monotone decreasing and bounded below (by 0), by Monotone Convergent Theorem, $\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_{n+k-1}$ exist. Apply (a), $\lim_{n\to\infty}a_n=0$.

- (c) Using (a),(b),
 - (i) For any n = 1, 2, 3, ..., since 0 , we have

$$a_n = \frac{1}{\sqrt[p]{n}} + \frac{1}{p} a_{n-1} > \frac{1}{p} a_{n-1} > a_{n-1}.$$

Hence, $2 = a_0 < a_1 < a_2 < ...$, by (b)(i), $\lim_{n \to \infty} a_n$ does not exist.

(ii) Since $p \ge 2$, we have

$$a_1 = \frac{1}{\sqrt[p]{1}} + \frac{1}{p}a_0 = 1 + \frac{2}{p} \le 2 = a_0.$$

By (b)(ii), $\lim_{n\to\infty} a_n = 0$.

- (d) Using (a),(b),
 - (i) Suppose 1 . Let <math>P(n) be the statement that " $a_n < \frac{2}{p-1}$ ". Note that $a_0 = 2 < \frac{2}{p-1}$ since p-1 < 1, hence P(0) is true.

Let k be a nonnegative integer, assume P(k) is true, i.e. $a_k < \frac{2}{n-1}$, then

$$\begin{split} a_{k+1} &= \frac{1}{\sqrt[p]{n+1}} + \frac{1}{p} a_k < 1 + \frac{1}{p} \frac{2}{p-1} \\ &= \frac{p^2 - p + 2}{p(p-1)} = \frac{(p-2)(p-1) + 2p}{p(p-1)} \\ &= \frac{p-2}{p} + \frac{2p}{p(p-1)} < \frac{2p}{p(p-1)} \\ &= \frac{2}{p-1}. \end{split}$$

Hence P(k + 1) is true, by the principal of mathematical induction,

P(n) is true for any n = 0, 1, 2, ..., i.e. $a_n < \frac{2}{p-1}$ for any n = 0, 1, 2, ...

- (ii) By (d)(i), $\{a_n\}$ bounded above. Suppose it were true that $\{a_n\}$ is strictly increasing, by (b)(i), $\lim_{n\to\infty} a_n$ does not exist, which is a contradiction with Monotone Convergent Theorem, hence $\{a_n\}$ is not strictly increasing, by (b)(ii), $\lim_{n\to\infty} a_n = 0$.
- (A3) For $f(x) = \sqrt{\frac{x+|x|}{x+2}}$, since the denominator cannot be 0.

Hence, -2 NOT belongs to the domain of f.

Note
$$\frac{x+|x|}{x+2} = \begin{cases} \frac{x+x}{x+2} = \frac{2x}{x+2} & \text{if } x \ge 0\\ \frac{x-x}{x+2} = 0 & \text{if } x < 0, \ x \ne -2 \end{cases}$$
.

Note $\frac{2x}{x+2}$ always non-negative for any $x \ge 0$.

So f well-defined for any $x \ge 0$. (The expression inside square root need to be non-negative.) Maximum domain of f is $\mathbb{R} \setminus \{-2\}$.

For
$$g(x) = \sqrt{x^2 - |x| - 2}$$
, Note $x^2 - |x| - 2 = \begin{cases} x^2 - x - 2 = (x - 2)(x + 1) & \text{if } x \ge 0 \\ x^2 + x - 2 = (x + 2)(x - 1) & \text{if } x < 0 \end{cases}$.

x	x < -2	x = -2	-2 < x < 0	x = 0	0 < x < 2	x = 2	x > 2
$ x^2 - x - 2$	+	0	_	_	_	0	+

Since the expression inside the square need to be non-negative,

the number between -2 and 2 (not include ± 2) NOT belongs to the domain of g.

Hence, the maximal domain of g is $\mathbb{R} \setminus (-2, 2)$. (Or you can write $(-\infty, -2] \cup [2, +\infty)$)

(A4) Note that f is a polynomial when x < 0, 0 < x < 2 or x > 2.

Hence f is obviously continuous on $\mathbb{R} \setminus \{0, 2\}$.

Suppose f is continuous in \mathbb{R} everywhere.

Then
$$\lim_{x \to 0} f(x)$$
, $\lim_{x \to 2} f(x)$ exist and $\lim_{x \to 0} f(x) = f(0)$, $\lim_{x \to 2} f(x) = f(2)$.

That means
$$\lim_{x \to 0^+} f(x) = f(0) = \lim_{x \to 0^-} f(x)$$
, $\lim_{x \to 2^+} f(x) = f(2) = \lim_{x \to 2^-} f(x)$. Note that

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} ax + 2b = 2b$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x^{2} + 3a - b = 3a - b$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} x^{2} + 3a - b = 4 + 3a - b$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 4x - 2b = 8 - 2b.$$

Therefore, we have
$$\begin{cases} 2b & = 3a - b \\ 4 + 3a - b & = 8 - 2b \end{cases}$$
. Hence, $a = b = 1$.