MATH 1010A/K 2017-18

University Mathematics

Notes of
$$\lim_{\substack{x \to \infty \\ \text{Ng Hoi Dong}}} e^{-x} x^k$$
, $\lim_{\substack{x \to 0 \\ \text{Ng Hoi Dong}}} x \sin \frac{1}{x}$.

Theorem For all $x \ge 0$, $e^x \ge 1 + x + \frac{x^2}{2!} \dots + \frac{x^k}{k!}$ for any $k \in \mathbb{N} \cup \{0\}$.

Proof We use induction on k.

Let P(k) be the statement that "For all $x \ge 0$, $e^x \ge 1 + x + \frac{x^2}{2!} ... + \frac{x^k}{k!}$."

Note P(0) is true since $e^x \ge 1$ for any $x \ge 0$.

Assume P(i) is true for some $i \in \mathbb{N} \cup \{0\}$. That is

$$\begin{split} e^t & \geq 1 + t + \frac{t^2}{2!} \dots + \frac{t^i}{i!} & \forall \ t \geq 0 \\ \int_0^x e^t dt & \geq \int_0^x \left(1 + t + \frac{t^2}{2!} \dots + \frac{t^i}{i!} \right) dt & \forall \ x \geq 0 \\ e^x & -1 \geq x + \frac{x}{2} + \frac{x}{3!} + \dots + \frac{x^{i+1}}{(i+1)!} & \forall \ x \geq 0 \\ e^x & \geq 1 + x + \frac{x}{2} + \frac{x}{3!} + \dots + \frac{x^{i+1}}{(i+1)!} & \forall \ x \geq 0. \end{split}$$

Hence, P(i + 1) is true.

By the first principal of Mathematical Induction, P(k) is true for any $k \in \mathbb{N} \cup \{0\}$.

Corollary $\lim_{x \to \infty} \frac{x^k}{e^x} = 0$ for any $k \in \mathbb{N} \cup \{0\}$.

Proof By last theorem, we have $e^x \ge 1 + x + \frac{x^2}{2!} ... + \frac{x^{k+1}}{(k+1)!} \ge \frac{x^{k+1}}{(k+1)!} > 0$ for any x > 0.

That is,
$$0 \le \frac{x^k}{e^x} \le \frac{x^k (k+1)!}{x^{k+1}} = \frac{(k+1)!}{x}$$
. Note $\lim_{x \to \infty} 0 = 0 = \lim_{x \to \infty} \frac{(k+1)!}{x}$.

1

By Sandwich Theorem, $\lim_{x \to \infty} \frac{x^k}{e^x}$ exists and $\lim_{x \to \infty} \frac{x^k}{e^x} = 0$.

Corollary $\lim_{x \to \infty} \frac{(\ln x)^k}{x} = 0$ for any $k \in \mathbb{N} \cup \{0\}$.

Proof
$$\lim_{x \to \infty} \frac{(\ln x)^k}{x} \stackrel{y=\ln x}{=} \lim_{y \to \infty} \frac{y^k}{e^y} = 0.$$

Theorem Let $f : \mathbb{R} \to \mathbb{R}$ be a function, and $c \in \mathbb{R} \cup \{\pm \infty\}$.

If $\lim_{x \to c} |f(x)| = 0$, then $\lim_{x \to c} f(x)$ exists and equals to 0.

Proof Note $-|w| \le w \le |w|$ for any $w \in \mathbb{R}$.

Hence, $-|f(x)| \le f(x) \le |f(x)|$ for any $x \in \mathbb{R}$.

Note
$$\lim_{x \to c} -|f(x)| = 0 = \lim_{x \to c} |f(x)|$$
.

By Sandwich Theorem, $\lim_{x \to c} f(x)$ exists and equals to 0.

Theorem $\lim_{x\to 0} x \sin \frac{1}{x} = 0.$

Proof We prove it from one-sided limit.

For x > 0, we have $-x \le x \sin \frac{1}{x} \le x$.

Note $\lim_{x\to 0^+} -x = 0 = \lim_{x\to 0^+} x$, by Sandwich Theorem, we have $\lim_{x\to 0^+} x \sin\frac{1}{x}$ exists and equals to 0.

For x < 0, we have $x \le x \sin \frac{1}{x} \le -x$.

Note $\lim_{x\to 0^-} x = 0 = \lim_{x\to 0^-} -x$, by Sandwich Theorem, we have $\lim_{x\to 0^-} x \sin\frac{1}{x}$ exists and equals to 0.

Hence, $\lim_{x \to 0^{-}} x \sin \frac{1}{x} = 0 = \lim_{x \to 0^{+}} x \sin \frac{1}{x}$.

Therefore, $\lim_{x\to 0} x \sin \frac{1}{x}$ exists and equals to 0.