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Notes of lim e *x*, 1im x sin —
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Caution This notes need to use some basic knowlegde of calculus.
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Theorem For all x > 0, e><>1+x+5 +%foranykeNU{0}.

Proof We use induction on k.
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Let P(k) be the statement that "For all x > 0,e* > 1+ x + % + —.

Note P(0) is true since e* > 1 for any x > 0.

Assume P(i) is true for some i € NU {0}. That is
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Hence, P(i + 1) is true.

By the first principal of Mathematical Induction, P(k) is true for any k € N U {0}.
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Corollary lim >~ = 0 for any k € N U {0}.
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Proof By last theorem, we have e* > 1+ x+ —... + > > 0 for any x > 0.
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Thatis, 0 < = < (k+1) = (k+1) . Note lim 0 =0= lim (—)
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By Sandwich Theorem, lim — exists and lim — = 0.
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Corollary lim =0forany k € NuU {0}.
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Proof lim = lim — =0.
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Theorem Let f : R — R be a function, and ¢ € RU {+o0}.
It )1(i_>n%|f(x)| =0, then )l}_}ni f(x) exists and equals to 0.
Proof Note —|w| < w <|w| for any w € R.
Hence, —|f(x)| < f(x) <|f(x)| for any x € R.
Note )lci_)ng—|f(x)| =0= )lci_)n3|f(x)|.

By Sandwich Theorem, lim f(x) exists and equals to O.
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Theorem lim x sin — = 0.
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Proof We prove it from one-sided limit.
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For x > 0, we have —x < xsin — < x.
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Note lim —x =0 = lim x, by Sandwich Theorem, we have lim x sin — exists and equals to 0.
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For x < 0, we have x < xsin — < —x.
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Note lim x =0 = lim —x, by Sandwich Theorem, we have lim x sin — exists and equals to 0.
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Hence, lim xsin— =0 = lim xsin —.
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Therefore, lim x sin — exists and equals to 0.
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