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Abstract. Recently, Gaiotto, Moore and Neitzke [6] proposed a new construc-
tion of hyperkähler metrics. In particular, they gave a new construction of the
Ooguri-Vafa metric, in which they came across certain formulas. We interpret
those formulas as wall-crossing formulas that appear in the SYZ construction of
instanton-corrected mirror manifolds. This reveals the close relation between the
Ooguri-Vafa metric and nontrivial holomorphic discs with boundary in special
Lagrangian torus fibers.
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1. Introduction

This note grew out of an attempt to understand the relationship between the
new construction of the Ooguri-Vafa metric by Gaiotto, Moore and Neitzke [6]
and the wall-crossing formulas which appear in the instanton-corrected construc-
tion of mirror manifolds in examples investigated by Auroux [1], [2].

In their recent beautiful work [6], Gaiotto, Moore and Neitzke proposed a new
construction of hyperkähler metrics on complex integrable systems. The simplest
case of this construction reproduces the Ooguri-Vafa metric.1 This sheds new light
on the understanding of the metric. In particular, one is naturally lead to certain
formulas which resemble the wall-crossing formulas in Auroux’s examples of the
construction of instanton-corrected mirror manifolds [1], [2].

To connect these two constructions, we will study mirror symmetry for the
Ooguri-Vafa metric from the point of view of the SYZ Conjecture [18]. Recall
that the naïve SYZ construction of mirror manifolds, namely, dualizing special
Lagrangian torus fibrations (or so-called T-duality in physics), in general does
not give the correct complex geometry of the mirror manifold. This is due to
the presence of singular fibers and nontrivial holomorphic discs with boundary
on special Lagrangian torus fibers. So we usually need to modify the gluing of

1The original construction by Ooguri and Vafa [17] was done by applying the Gibbons-Hawking
ansatz; see also Greene-Shapere-Vafa-Yau [7] and Gross-Wilson [10].
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complex charts of the mirror manifold by disc instanton corrections, according to
certain wall-crossing formulas.

In this note, we show that the formulas which appear in Gaiotto-Moore-Neitzke’s
construction of the Ooguri-Vafa metric are equivalent to the wall crossing formu-
las which appear in Auroux’s constructions. In particular, we will be able to see
how the construction of the Ooguri-Vafa metric get contributions from correction-
s by disc instantons, i.e. nontrivial holomorphic discs with boundary in special
Lagrangian torus fibers.

At this point, we shall mention that the idea to use wall-crossing formulas
(or gluing formulas) to study the SYZ version of mirror symmetry was first sug-
gested by Kontsevich and Soibelman in [15] (see also [14]). These formulas were
later generalized and applied by Gross and Siebert [9] in their construction of
toric degenerations of Calabi-Yau manifolds and their mirrors from affine man-
ifolds with singularities. The wall-crossing formulas which appear here and in
Auroux’s examples in [1], [2] are all special cases of the gluing formulas used by
Kontsevich-Soibelman and Gross-Siebert.

We shall also emphasis that in all cases, the wall-crossing phenomena are of
the same origin, although there are indeed two kinds of walls as distinguished
by Kontsevich and Soibelman in [16]. The formulas which we are referring to
here and those in Auroux’s works correspond to crossing the wall of second kind
(see p. 27 in [16]); while the formulas in Gaiotto-Moore-Neitzke [6] correspond
to crossing the wall of first kind (see p.30 in [16]).2

In fact, wall-crossing formulas of first kind, which describe the jumping behav-
ior of numerical Donaldson-Thomas invariants, play a key role in Gaiotto-Moore-
Neitzke’s construction of more general hyperkähler metrics. However, in the
Ooguri-Vafa case, the numerical Donaldson-Thomas invariants do not jump (see
Remark 3.2), so the wall-crossing formula of first kind is trivial.3 It is interesting to
understand the relationship between wall-crossing formulas of first kind and the
construction of instanton-corrected mirror manifolds. In particular, it is desirable
to know what the numerical Donaldson-Thomas invariants are counting.

The rest of this note is organized as follows. In the next section, we briefly
review Gaiotto-Moore-Neitzke’s new construction of the Ooguri-Vafa metric. In
Section 3, we proceed to explain why the wall-crossing formulas which appear in
Section 2 can be interpreted as wall-crossing formulas which appear in Auroux’s
construction of instanton-corrected mirror manifolds.

Acknowledgements. I am very grateful to Prof. Shing-Tung Yau for suggesting
this problem, to Andy Neitzke for carefully explaining their constructions, and
to Prof. Yan Soibelman for answering my questions through emails and pointing
out many inaccuracies in earlier versions of this article. I would also like to thank
Prof. Denis Auroux, Prof. Mark Gross, Prof. Naichung Conan Leung and Prof.
Eric Zaslow for numerous useful discussions. Finally, I thank the referees for
several helpful comments. This research was supported by Harvard University
and the Croucher Foundation Fellowship.

2In the physics literature, the wall of first kind is called the wall of marginal stability.
3In the language of Gross-Siebert [9], there are no scattering in the Ooguri-Vafa case, since there is

only one singular point, and hence one wall, in the base affine manifold.
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2. Review of a new construction of the Ooguri-Vafa metric by

Gaiotto-Moore-Neitzke [6]

This section is a very brief review of the construction of the Ooguri-Vafa metric
using the method proposed by Gaiotto, Moore and Neitzke in their recent work
[6]. For more details and construction of hyperkähler metrics on general complex
integrable systems, we refer the reader to the original paper [6].

Let B = {b ∈ C : |b| < r} be the open disc centered at the origin with radius
r > 0, and let B′ = B \ {0}. Suppose that ψ : M → B is an elliptic fibration with
a type I1 singular fiber over 0 ∈ B. Consider the local system Γ = R1ψ∗Z → B′,
the generic fiber of which is given by Γb

∼= H1(Mb, Z), where Mb = ψ−1(b) is the
fiber over b ∈ B′. The monodromy of Γ around 0 ∈ B is nontrivial and given by

γe(b) 7→ γe(b),
γm(b) 7→ γm(b) + γe(b),

where {γe(b), γm(b)} is a symplectic basis of H1(Mb, Z).4 This basis extends
to local sections γe, γm of Γ over a small enough open subset U ⊂ B′. Since
MU = Γ∨

U ⊗Z (R/2πZ), the sections γe, γm define local fiber coordinates

θe, θm : MU → R/2πZ,

so that we have [dθe|Mb ] = 2πγe(b), [dθm|Mb ] = 2πγm(b). Note that θe can be
extended to a global function on M, while θm cannot because of the nontrivial
monodromy θm 7→ θm + θe.

To construct a hyperkähler metric on M, we define a homomorphism Z : Γ →
C by setting

Z(γe(b)) = b,

Z(γm(b)) =
1

2πi
(b log

b
r
− b).

Z is called the central charge in the physics literature. The functions Ze := Z(γe(b)),
Zm := Z(γm(b)) are defined in this way so that they are compatible with the
monodromy of θe, θm respectively. Then, we can define two families of C∗-valued
functions χsf

e (ζ), χsf
m(ζ) locally on M:

χsf
e (ζ) = exp

[
π

ϵ
(ζ−1Ze + ζZ̄e) + iθe

]
,

χsf
m(ζ) = exp

[
π

ϵ
(ζ−1Zm + ζZ̄m) + iθm

]
,

parameterized by ζ ∈ C∗. Here, ϵ > 0 is a constant. The functions χsf
e (ζ), χsf

m(ζ)
give the so-called semi-flat local coordinates on M. Notice that the coordinate
χsf

e (ζ) extends to a global function on M, while χsf
m(ζ) has nontrivial monodromy

around 0 ∈ B given by χsf
m(ζ) 7→ χsf

e (ζ)χ
sf
m(ζ).

4The subscripts "e" and "m" stand for "electric" and "magnetic" respectively, and Γ is called the
charge lattice in [6].
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Now, consider the two-forms

Ωsf(ζ) =
dχsf

e (ζ)

χsf
e (ζ)

∧ dχsf
m(ζ)

χsf
m(ζ)

, ζ ∈ C∗

on M.5 In [6], it was checked that this family of two-forms {Ωsf(ζ) : ζ ∈ C∗}
satisfies all the hypotheses in the theorem of Hitchin et al [13] (see also [11]) and
concluded that M × CP1 equipped with {Ωsf(ζ) : ζ ∈ C∗} is the twistor space
of a hyperkähler metric gsf on M (so that Ωsf(ζ) is a holomorphic 2-form with
respect to the complex structure parameterized by ζ). However, since χsf

m(ζ) is
not globally defined on M, this semi-flat metric gsf is singular at a point in the
fiber over 0 ∈ B.

To obtain a smooth hyperkähler metric on M, Gaiotto, Moore and Neitzke ar-
gued that we should modify the function χsf

m(ζ) by instanton corrections. (We
need not correct the function χsf

e (ζ) and thus we shall set χe(ζ) = χsf
e (ζ).) They

did so by solving a Riemann-Hilbert problem which is described as follows. Con-
sider the following rays in the ζ-plane.

l+ = {ζ ∈ C∗ : b/ζ ∈ R<0},
l− = {ζ ∈ C∗ : b/ζ ∈ R>0}.

These are called the BPS rays corresponding to the central charge Ze. The Riemann-
Hilbert problem then asks for a family of holomorphic functions {χm(ζ) : ζ ∈ C∗}
on M, which are piecewise holomorphic in ζ ∈ C∗, such that the following two
conditions are satisfied.6

(a) χm(ζ) is discontinuous across the BPS rays l± in the following way: Let
(χm(ζ))

+
l+

, (χm(ζ))
−
l+

be the limit of χm(ζ) as ζ approaches l+ in the clock-
wise and counter-clockwise direction respectively, and similarly, (χm(ζ))

+
l−

,
(χm(ζ))

−
l−

be the limit of χm(ζ) as ζ approaches l− in the clockwise and
counter-clockwise direction respectively. Then we require that

(χm(ζ))
−
l+

= (χm(ζ))
+
l+
(1 + χe(ζ)),(2.1)

(χm(ζ))
+
l−

= (χm(ζ))
−
l−
(1 + χ−1

e (ζ)).(2.2)

(b) Let

Υ(ζ) = χm(ζ) exp

[
− π

ϵ
(ζ−1Zm + ζZ̄m)

]
.

Then we require that the limit of Υ(ζ) as ζ → 0 and ζ → ∞ exists, and
the limits are related by

lim
ζ→0

Υ(ζ) = lim
ζ→∞

Υ(ζ).

5The definitions of the holomorphic two-forms Ωsf(ζ) and Ω(ζ) here differ from those in [6] by
multiplication by the constant −ϵ/4π2.

6See Section 4.4 in [6] for details; due to the choice of the monodromy, our formulas (2.1), (2.2)
differ from the formulas (4.52a), (4.52b) on p.16 of [6] by a sign.
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It is ingenious that Gaiotto, Moore and Neitzke were able to write down the
following beautiful and explicit formula for χm(ζ) in [6].7

χm(ζ) = χsf
m(ζ) exp

i
4π

[ ∫
l+

log(1 + χe(ζ
′))

ζ ′ + ζ

ζ ′ − ζ

dζ ′

ζ ′

−
∫

l−
log(1 + χe(ζ

′)−1)
ζ ′ + ζ

ζ ′ − ζ

dζ ′

ζ ′

]
.

Now, the family of two forms

Ω(ζ) =
dχe(ζ)

χe(ζ)
∧ dχm(ζ)

χm(ζ)

on M again satisfies the hypotheses the theorem of Hitchin et al, and hence de-
fines a smooth hyperkähler metric g on M (which can be determined explicitly
from the family of two-forms Ω(ζ), ζ ∈ C∗). Furthermore, Gaiotto, Moore and
Neitzke verified that this is nothing but the Ooguri-Vafa metric constructed by the
Gibbons-Hawking ansatz [17] (see also Greene-Shapere-Vafa-Yau [7] and Gross-
Wilson [10]).

3. Holomorphic discs, wall-crossing and SYZ mirror symmetry

In this section, we study mirror symmetry for the Ooguri-Vafa metric from
the viewpoint of the SYZ Conjecture [18] and interpret the formulas (2.1), (2.2),
which describe the discontinuity of the function χm(ζ) across the BPS rays l±, as
wall-crossing formulas which appear in the SYZ construction of the instanton-
corrected mirror manifold, following the approach of Auroux (see Section 5 in [1]
and Section 3 in [2]). These wall-crossing phenomena are special cases of those
studied first by Kontsevich and Soibelman in [15], which also played a crucial
role in the foundational work of Gross and Siebert [9].

To begin with, recall that we have a family of two-forms {Ω(ζ) : ζ ∈ C∗} on
M. For each ζ ∈ C∗, Ω(ζ) is holomorphic with respect to a complex structure
J(ζ), and there is a corresponding Kähler form ω(ζ). We want to write down
a formula for ω(ζ). To do this, recall that, in the Gibbons-Hawking ansatz, the
hyperkähler metric g on M is determined by a triplet of symplectic forms

ω1 = db1 ∧ α + Vdb2 ∧ db3,
ω2 = db2 ∧ α + Vdb3 ∧ db1,
ω3 = db3 ∧ α + Vdb1 ∧ db2,

where b = b1 + ib2 ∈ B, b3 = ϵθe
2π ∈ R/ϵZ, V = V(b1, b2, b3) is a positive harmonic

function on (B ×R \ {0}× ϵZ)/ϵZ, and α is a connection one-form on M (which
can be realized as a partial compactification of a circle bundle over (B×R \ {0}×
ϵZ)/ϵZ) of the form dθm

2π + A(b1, b2, b3) which satisfies dα = dA = ⋆dV. There

7The generalization of this formula, which is an integral equation satisfied by the functions χγ(ζ),
turns out to be the key in the general construction of hyperkähler metrics on general complex inte-
grable systems. In particular, one can obtain successive approximations of the desired hyperkähler
metric by iteratively solving the integral equation.
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are explicit formulas for V and α, see Remark 3.3. The symplectic form ω(ζ),
which is Kähler with respect to J(ζ), is then given by

ω(ζ) =
4π2

ϵ

[
i(ζ̄ω+ − ζω−) + (1 − |ζ|2)ω3

1 + |ζ|2

]
,

where ω± = ω1 ± iω2. We also have

(3.1) Ω(ζ) = −4π2

ϵ

[
1
2i
(ζ−1ω+ + ζω−) + ω3

]
.

Now, we shall fix ζ ∈ C∗ and denote by M(ζ) the manifold M equipped
with the Kähler form ω(ζ) and the holomorphic two-form Ω(ζ). We want to
study the SYZ mirror symmetry for M(ζ). The first step is to construct a special
Lagrangian torus fibration. Consider the S1-action on M given by rotating the
angle coordinate θm:

eit · (b1, b2, θe, θm) = (b1, b2, θe, θm + t).

Lemma 3.1. This S1-action is Hamiltonian with respect to ω(ζ) when |ζ| = 1, and the
moment map is then given by

µS1 =
2π

ϵ
Im(ζ̄b) : M → R.

Proof. It is clear that the S1-action preserves ω(ζ). By a straightforward compu-
tation, we have

ω(ζ) =
4π2

ϵ
d

[
−2Im(ζ̄b) + (1 − |ζ|2) ϵθe

2π

1 + |ζ|2

]
∧
[

dθm

2π
+ A

]

+
4π2

ϵ
VdRe(ζ̄b) ∧ d

[
ϵθe
π + |ζ|−2(1 − |ζ|2)Im(ζ̄b)

1 + |ζ|2

]
.

Hence,

ι ∂
∂θm

ω(ζ) =
2π

ϵ
d

[
2Im(ζ̄b)− (1 − |ζ|2) ϵθe

2π

1 + |ζ|2

]
,

which is exact when |ζ| = 1, and the moment map is given by

µS1 =
2π

ϵ
Im(ζ̄b).

�
In view of the above lemma, we shall from now on fix a ζ such that |ζ| = 1.
Recall that we have a globally defined coordinate

χe(ζ) = exp

[
2π

ϵ
Re(ζ̄b) + iθe

]
: M → C∗,

which is holomorphic with respect to the complex structure J(ζ).

Definition 3.1. For (s, λ) ∈ R2, define

Ts,λ = {(b1, b2, θe, θm) ∈ M : log |χe(ζ)| = s, µS1 = λ}.
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For (s, λ) ̸= (0, 0), Ts,λ is a torus embedded in M, and T0,0 is nodal. Now, the
reduced space Mred,λ = µ−1

S1 (λ)/S1 is topologically an annulus, and from formula
(3.1), we can see that the reduced holomorphic volume form is given by

Ω(ζ)red,λ = ι ∂
∂θm

Ω(ζ) = −id log χe(ζ).

Thus, by Theorem 1.2 in Gross [8], we have the following result (see also Propo-
sition 5.2 in Auroux [1]).

Proposition 3.1. Each Ts,λ is special Lagrangian in M with respect to ω(ζ), Ω(ζ).
Hence, the map Ψ : M(ζ) → R2 defined by

Ψ = (log |χe(ζ)|, µS1)

gives a special Lagrangian torus fibration, with a single nodal fiber T0,0.

In fact, we have

log |χe(ζ)| =
2π

ϵ
Re(ζ̄b), µS1 =

2π

ϵ
Im(ζ̄b),

and thus

Ψ =
2πζ̄

ϵ
ψ,

where ψ : M → B is the elliptic fibration that we start with. So the image of Ψ is
given by 2π

ϵ B = {b ∈ C : |b| < 2πr
ϵ }. We will abuse notations and use B to denote

{b ∈ C : |b| < 2πr
ϵ }.

Now, as the base of a Lagrangian torus fibration, B is a two-dimensional affine
manifold with a unique singular point at b = 0 ∈ B. This is called the focus-
focus singularity in Hamiltonian mechanics (see for example Section 3 in Castaño
Bernard-Matessi [3]). There are symplectic affine coordinates on B defined as
follows (see Hitchin [12] for details). First let {γ∗

e , γ∗
m} be the basis of H1(Ts,λ, Z)

dual to {γe, γm} ⊂ H1(Ts,λ, Z). For every tangent vector ν on B, lift it to a normal
vector field (which we again denoted by ν) on Ts,λ. Then the 1-forms

ωe(ζ)(ν) =
∫

γ∗
e

ινω(ζ), ωm(ζ)(ν) =
∫

γ∗
m

ινω(ζ),

on B are closed, and thus there are locally defined coordinates ϕe(ζ), ϕm(ζ) on
B such that dϕe(ζ) = ωe(ζ)/2π, dϕm(ζ) = ωm(ζ)/2π.8 These are called the
symplectic affine coordinates on B with respect to the basis {γ∗

e , γ∗
m}.

Proposition 3.2. The symplectic affine coordinates on B with respect to the basis {γ∗
e , γ∗

m}
are explicitly given by

ϕm(ζ) = −2π

ϵ
Im(ζ̄b)

ϕe(ζ) = −1
ϵ

Re

[
ζ̄(b log

b
r
− b)

]
.

Proof. Since |ζ| = 1, we have

ω(ζ) = −4π2

ϵ
Im(ζ̄ω+) = −4π2

ϵ
dIm(ζ̄b) ∧ (

dθm

2π
+ A) + 2πVdRe(ζ̄b) ∧ dθe.

8We normalize the coordinates ϕe, ϕm so that the formulas appear later will be simpler.
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As V = V(b1, b2, b3) and A = A(b1, b2, b3) are independent of θm (recall that
b3 = ϵθe/2π), it is easy to see that

dϕm(ζ) =
ωm(ζ)

2π
= −2π

ϵ
dIm(ζ̄b),

where we use
∫

γ∗
m

dθm =
∫

γ∗
e

dθe = 2π. Hence, we can take ϕm(ζ) = − 2π
ϵ Im(ζ̄b).

On the other hand, as will be seen in Remark 3.3, we can decompose V and A
into sums of semi-flat and instanton parts, i.e. V = Vsf + Vinst, A = Asf + Ainst.
And observe that both Vinst and Ainst are periodic in θe and have no constant
terms in their Fourier series expansions, so we have∫

γ∗
e

ινω(ζ) =
∫

γ∗
e

ιν

(
− 4π2

ϵ
dIm(ζ̄b) ∧ Asf + 2πVsfdRe(ζ̄b) ∧ dθe

)
.

Now, by the explicit formulas for Vsf and Asf in Remark 3.3, we compute

−4π2

ϵ
dIm(ζ̄b) ∧ Asf + 2πVsfdRe(ζ̄b) ∧ dθe

=
−i
2ϵ

(
log

b
r
− log

b̄
r

)
dIm(ζ̄b) ∧ dθe −

1
2ϵ

(
log

b
r
+ log

b̄
r

)
dRe(ζ̄b) ∧ dθe

= −1
ϵ

dRe

[
ζ̄(b log

b
r
− b)

]
∧ dθe.

Hence,

dϕe(ζ) =
ωe(ζ)

2π
= −1

ϵ
dRe

[
ζ̄(b log

b
r
− b)

]
,

and we can take ϕe(ζ) = − 1
ϵ Re

[
ζ̄(b log b

r − b)
]
. �

Remark 3.1.
(1) Notice that the symplectic affine coordinates are of the form stated by Castaño

Bernard-Matessi on p.511 in [3], as expected.
(2) In the same way, one can show that the complex affine coordinates (which cor-

respond to periods of the form Im(Ω(ζ))), with respect to the basis {−γ∗
e , γ∗

m},
are given by

2π

ϵ
Re(ζ̄b) = log |χe(ζ)|,

1
ϵ

Im
[
ζ̄(b log

b
r
− b)

]
= log |χsf

m(ζ)|.

(3) The central charge Z : Γ → C satisfies the following relations:∫
γ∗

m

ω+ =
1

2π
dZe,

∫
γ∗

e

ω+ = − 1
2π

dZm.

If we define Ž : Γ∨ → C by setting Z(γ∗
m) = Ze and Z(γ∗

e ) = −Zm, then Ž
agrees with the definition of the central charge for a complex integrable system
given by Kontsevich-Soibelman in Section 2.7 in [16].

Having constructed a special Lagrangian torus fibration Ψ : M(ζ) → B and
computed the symplectic affine coordinates on the base B, let us recall the con-
struction of the mirror manifold M̌(ζ) (as a complex manifold) as suggested by
the SYZ Conjecture [18]. First of all, consider the moduli space of pairs (Ts,λ,∇),
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where Ts,λ is a nonsingular special Lagrangian torus fiber and ∇ is a flat U(1)-
connection on the trivial complex line bundle over Ts,λ. The mirror manifold
M̌(ζ) should be, at least topologically, a partial compactification of this moduli
space. More precisely, M̌(ζ) should contain the quotient TB′/Γ of the tangent
bundle of B′ = B \ {0} by the lattice Γ (while M(ζ) contains T∗B′/Γ∨) as a dense
open subset. And, given the symplectic affine coordinates ϕm(ζ), ϕe(ζ) on B′ ⊂ B,
the complex coordinates on TB′/Γ ⊂ M̌(ζ) are naturally given by exponentiating
the complexified coordinates, so we set

w = exp(ϕm(ζ) + iθ̌m), usf = exp(−ϕe(ζ)− iθ̌e).

These give local complex coordinates on the open dense subset TB′/Γ in the
mirror manifold M̌(ζ). However, while the coordinate w is globally defined on
M̌(ζ), the other coordinate usf does not extend to a global coordinate due to
nontrivial monodromy around b = 0 ∈ B: usf 7→ usfw.9

In fact, this is a general phenomenon: When the special Lagrangian torus fibra-
tion M → B admits singular fibers (T0,0 in our case), the local complex coordinates
on the open dense subset TB′/Γ of the mirror M̌ → B given by exponentiating
the complexification of the symplectic affine coordinates on the smooth part B′ of
the base B cannot be extended to the whole mirror manifold M̌ due to nontrivial
monodromy around the singular locus ∆ = B \ B′.

To obtain the correct complex coordinates on the mirror manifold, we must
incorporate the information of the singular special Lagrangian fibers and non-
trivial holomorphic discs with boundary on the smooth special Lagrangian torus
fibers (disc instantons). More precisely, we need to modify the gluing of the local
complex charts on the mirror manifold by disc instanton corrections according to
certain wall-crossing formulas. This approach of constructing the corrected mir-
ror manifolds was first suggested by Kontsevich and Soibelman in [15] in the two
dimensional case (K3 surfaces). Later this was studied and generalized by Gross
and Siebert [9] to higher dimensional cases. Explicit examples which indicate
directly the relation of the gluing formulas to holomorphic discs instantons were
first given by Auroux in [1], [2].

To carry out the construction of the instanton-corrected mirror manifold in
our case, we shall first determine which special Lagrangian torus fibers bound
nontrivial holomorphic discs. We have the following proposition (see also Lemma
5.4 in Auroux [1]).

Proposition 3.3. The special Lagrangian torus Ts,λ bounds a nontrivial J(ζ)-holomorphic
disc φ : (D2, ∂D2) → (M(ζ), Ts,λ) if and only if s = 0.

Proof. Consider the map fζ = χe(ζ) : M → C∗. Note that the image of fζ is the
annulus {a ∈ C : exp(−2πr/ϵ) ≤ |a| ≤ exp(2πr/ϵ)}.

Now, suppose that Ts,λ bounds a nontrivial holomorphic disc φ : (D2, ∂D2) →
(M(ζ), Ts,λ). Then the composite map fζ ◦ φ : (D2, ∂D2) → (C∗, {|a| = es})
is a holomorphic map. By the maximum principle, fζ ◦ φ must be a constant

9Since the monodromy of θe, θm around b = 0 ∈ B is given by the matrix T =

(
1 1
0 1

)
, the

monodromy of the dual coordinates θ̌e, θ̌m should be given by the matrix (T−1)t =

(
1 0
−1 1

)
, i.e.

θ̌e 7→ θ̌e − θ̌m, θ̌m 7→ θ̌m.
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map. Hence, the image of the holomorphic disc is contained in some fiber of
fζ . However, for a ̸= 1, the fiber f−1

ζ (a) is biholomorphic to an annulus, and so
cannot contain any nontrivial holomorphic disc. So we must have es = 1 or s = 0.

Conversely, observe that f−1
ζ (1) is reducible and biholomorphic to the union

of two discs. Thus, for λ ̸= 0, T0,λ indeed bounds a nontrivial holomorphic disc
which is contained entirely in the fiber f−1

ζ (1). �

We remark that, for λ > 0, the special Lagrangian torus T0,λ boounds a nontriv-
ial holomorphic disc with symplectic area λ. Denote by β the relative homotopy
class of this disc. By deforming Ts,λ continuously to T0,λ and setting

zβ(Ts,λ,∇) = exp

(
−
∫

β
ω(ζ)

)
hol∇(∂β),

we get a globally defined holomorphic function zβ on M̌(ζ) which is nothing
but the coordinate w given above. For λ < 0, the holomorphic disc bounded by
T0,λ has area −λ, and the corresponding holomorphic coordinate on the mirror
is z−β = z−1

β = w−1.
We can now construct the instanton-corrected mirror of M(ζ) = (M, ω(ζ), Ω(ζ)),

following the approach of Auroux [1], [2]. By the above proposition, we know
that wall-crossing occurs at the wall {b ∈ B : Re(ζ̄b) = 0}. We remark that if
we use the complex affine coordinates on B, then the wall is the straight line in B
invariant under monodromy. Now, the wall divides B into two chambers: B1 and
B2, as shown in Figure 1.

.

..................................

.

..................................

.

..................................

.

..................................

.

..................................

.

..................................

.

..................................

.

..................................

R+

R−

B1

usf
1 = usf

2

B2

usf
1 = usf

2 w
×

u−
R+

u+
R+

u+
R−

u−
R−

Figure 1

On B \ {b ∈ B : Re(ζ̄b) = 0 and Im(ζ̄b) ≥ 0} and B \ {b ∈ B : Re(ζ̄b) =
0 and Im(ζ̄b) ≤ 0}, we choose different branches of log, say log1 and log2, so
that log1 = log2 on B1 and log1 = log2 +2πi on B2. Denote by

ϕk
e (ζ) = −1

ϵ
Re

[
ζ̄(b logk

b
r
− b)

]
, usf

k = exp(−ϕk
e (ζ)− iθ̌e)

the coordinates corresponding to the branch logk, for k = 1, 2. Hence the gluing
of the complex charts of M̌(ζ) defined by the two sets of coordinates (w, usf

1 ) and
(w, usf

2 ) are given by {
usf

1 = usf
2 on B1,

usf
1 = usf

2 w on B2,
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and this clearly does not define a global holomorphic coordinate.
What we need to do is to modify the gluing across the wall Re(ζ̄b) = 0 by disc

instanton corrections as follows. Consider the rays

R+ = {b ∈ B : Re(ζ̄b) = 0 and Im(ζ̄b) > 0},
R− = {b ∈ B : Re(ζ̄b) = 0 and Im(ζ̄b) < 0}.

Over the chamber B1, let u−
R+

be the coordinate usf
1 = usf

2 as b ∈ B approaches
R+ in the clockwise direction, and u+

R−
be the coordinate usf

1 = usf
2 as b ∈ B

approaches R− in the counter-clockwise direction. Over the chamber B2, let u+
R+

be the coordinate usf
2 as b ∈ B approaches R+ in the counter-clockwise direction,

and u−
R−

be the coordinate usf
1 as b ∈ B approaches R− in the clockwise direction.

(See Figure 1.) The corrected gluing should then be given by the following wall-
crossing formulas.

u−
R+

= u+
R+

(1 + w),(3.2)

u+
R−

= u−
R−

(1 + w−1).(3.3)

This defines a global holomorphic coordinate on M̌(ζ).
Now, we claim that the wall-crossing formulas (3.2), (3.3) can naturally be i-

dentified with the formulas (2.1), (2.2) which appear in the construction of Gaiot-
to, Moore and Neitzke. Indeed, by hyperkähler rotation, we know a priori that
the mirror of the Calabi-Yau 2-fold M(ζ) = (M, ω(ζ), Ω(ζ)) should be given by
M̌(ζ) = M(−iζ) = (M, ω(−iζ), Ω(−iζ)). Also, observe that we have

log |χe(−iζ)| =
2π

ϵ
Re(−iζb) = −2π

ϵ
Im(ζ̄b) = ϕm(ζ),

log |χsf
m(−iζ)| =

1
ϵ

Im

[
−iζ(b log

b
r
− b)

]
=

1
ϵ

Re

[
ζ̄(b log

b
r
− b)

]
= −ϕe(ζ).

Hence, the coordinates w and usf can naturally be identified with the semi-flat
coordinates χe(−iζ) and χsf

m(−iζ) respectively. (More precisely, this means that
we have a canonical fiber-preserving diffeomorphism M → M̌, (b1, b2, θe, θm) 7→
(b1, b2, θ̌m = θe, θ̌e = −θm) between M → B and M̌ → B identifying the semi-flat
local coordinates; see also Remark 3.3.)

So the two sets of equations (2.1), (2.2) and (3.2), (3.3) are both defining a
global holomorphic coordinate on M(−iζ) by correcting the semi-flat coordinate
usf = χsf

m(−iζ), and the corrections involving w = χe(−iζ) are of the same form.
The only difference is that the BPS rays l+, l− lie in the ζ-plane, while R+, R− lie
in B. However, we notice that the rays R+, R− can be rewritten as

R+ = {b ∈ B : b/(−iζ) ∈ R<0},
R− = {b ∈ B : b/(−iζ) ∈ R>0}.

Now, when b approaches R+ in the counter-clockwise direction, the BPS ray
l+ = {ζ ′ : b/ζ ′ ∈ R<0} is rotating in the ζ-plane in the counter-clockwise di-
rection and approaching the fixed −iζ. Equivalently, −iζ is approaching l+ in the
clockwise direction. Likewise, when b is approaching R+ in the clockwise direc-
tion, −iζ is approaching l+ in the counter-clockwise direction; and similarly for
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l− and R−. We therefore come to the main conclusion of this note:

Suppose that |ζ| = 1. Then the equations (2.1), (2.2), with ζ replaced by −iζ, which de-
scribe the discontinuity of the holomorphic coordinate χm(−iζ) across the BPS rays l±,
are equivalent to the wall-crossing formulas (3.2), (3.3) which appear in the construction
of the instanton-corrected mirror of M(ζ) = (M, ω(ζ), Ω(ζ)).

In particular, we now see clearly how disc instanton corrections (given by non-
trivial holomorphic discs with boundary on special Lagrangian torus fibers) con-
tribute to the construction of the Ooguri-Vafa metric.

We end this note by a couple of remarks.

Remark 3.2. As we mentioned in the introduction, in the case of the Ooguri-Vafa metric,
the Kontsevich-Soibelman wall-crossing formula of first kind is trivial. This is because the
wall of first kind is empty and thus the numerical Donaldson-Thomas invariants, which
are given by an integer-valued function Ω : Γ → Z, is constant.10 More precisely, we
have, for all b ∈ B, Ω(γe) = Ω(−γe) = 1 and Ω(γ) = 0 for any γ ̸∈ {±γe}. In
turn, this should be interpreted as the fact that only ±γe, now regarded as elements in
H1(M̌(ζ)b, Z), bounds nontrivial holomorphic discs in M̌(ζ) with boundary on the dual
special Lagrangian torus fibers. This is closely related to the comment stated in 1.5(2)
on p.16 in [16], where Kontsevich-Soibelman speculated that the numerical Donaldson-
Thomas invariants Ω(γ) should be counting certain holomorphic discs in M̌(ζ) "near
infinity". As pointed out to me by Yan Soibelman, one interesting question is to interpret
the wall-crossing formulas in terms of 3d Calabi-Yau categories.

Remark 3.3. [The Ooguri-Vafa metric and SYZ mirror transformations] In [6], Gaiotto-
Moore-Neitzke decomposed the positive harmonic function V = V(b1, b2, b3) and the
1-form A = A(b1, b2, b3) into a sum of semi-flat part and instanton part (see also [17]).
More precisely, we can write

V = Vsf + Vinst,
A = Asf + Ainst,

where

Vsf = − 1
4πϵ

(
log

b
r
+ log

b̄
r

)
,

Vinst =
1

2πϵ ∑
n ̸=0

K0

(
2π

ϵ
|nb|

)
einθe ,

Asf =
i

8π2

(
log

b
r
− log

b̄
r

)
dθe,

Ainst = − 1
4πϵ

(
db
b

− db̄
b̄
) ∑

n ̸=0
(sgn n)|b|K1

(
2π

ϵ
|nb|

)
einθe ,

10Caution: Do not confuse the Ω here with the holomorphic two-form Ω(ζ).
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and K0, K1 are modified Bessel functions. Accordingly, we can decompose the holomorphic
two form Ω(ζ) and the symplectic form ω(ζ) into a sum of semi-flat and instanton parts.

Ω(ζ) = Ωsf(ζ) + Ωinst(ζ),

ω(ζ) = ωsf(ζ) + ωinst(ζ).

It is straightforward to show that we have

Ωsf(ζ) =
dχ

sf
e (ζ)

χ
sf
e (ζ)

∧ dχ
sf
m(ζ)

χ
sf
m(ζ)

,

which agrees with the formula in Section 2.
In the case |ζ| = 1, we compute the semi-flat parts Ωsf(ζ) and ωsf(ζ), and they are

respectively given by

Ωsf(ζ) =

(
2π

ϵ
dRe(ζ̄b) + idθe

)
∧
(

2π

ϵ
dRe(ζ̄Zm) + idθm

)
,

ωsf(ζ) = −2π

ϵ
dIm(ζ̄b) ∧ dθm +

2π

ϵ
dIm(ζ̄Zm) ∧ dθe,

Now, if we set θ̌e = −θm, θ̌m = θe (they are the dual fiber coordinates on M̌ = M), then

ωsf(−iζ) =
2π

ϵ
dIm(iζ̄b) ∧ d(−θm) +

2π

ϵ
dIm(iζ̄Zm) ∧ dθe

=
2π

ϵ
dRe(ζ̄b) ∧ dθ̌e +

2π

ϵ
dRe(ζ̄Zm) ∧ dθ̌m.

We can then show that

F sf(eiωsf(−iζ)) = Ωsf(ζ),

(F sf)−1(Ωsf(ζ)) = eiωsf(−iζ),

where F sf is the semi-flat SYZ mirror transformation introduced in Chan-Leung [4], [5].
Moreover, since Vinst and Ainst are periodic in θe and have no constant terms in their
Fourier series expansions, we have

(F sf)−1(Ωinst(ζ)) = 0.

It is thus very natural to ask whether one can construct an SYZ mirror transformation
F such that

F (eiω(−iζ)) = Ω(ζ),

(F )−1(Ω(ζ)) = eiω(−iζ).

This is related to the question of writing down the Kähler structure on the mirror manifold
in terms of the holomorphic volume form on the original manifold. We hope to return to
this in a later paper.
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Comm. Math. Phys. 108 (1987), no. 4, 535–589.

[14] M. Kontsevich and Y. Soibelman, Homological mirror symmetry and torus fibrations. Symplectic
geometry and mirror symmetry (Seoul, 2000), 203–263, World Sci. Publ., River Edge, NJ, 2001.
math.SG/0011041.

[15] , Affine structures and non-Archimedean analytic spaces. The unity of mathematics, 321–385,
Progr. Math., 244, Birkhauser Boston, Boston, MA, 2006. math.AG/0406564.

[16] , Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. Preprint
2008. arXiv:0811.2435.

[17] H. Ooguri and C. Vafa, Summing up Dirichlet instantons. Phys. Rev. Lett. 77 (1996), no. 16, 3296–
3298. hep-th/9608079.

[18] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T-duality. Nuclear Phys. B, 479 (1996),
no. 1-2, 243–259. hep-th/9606040.

Department of Mathematics, Harvard University, Cambridge, MA 02138
E-mail address: kwchan@math.harvard.edu


