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Abstract. Let X̌0 be a semi-flat Calabi-Yau manifold equipped with a Lagrangian torus fibration
p̌ : X̌0 → B0. We investigate the asymptotic behavior of Maurer-Cartan solutions of the Kodaira-
Spencer deformation theory on X̌0 by expanding them into Fourier series along fibres of p̌ over a
contractible open subset U ⊂ B0, following a program set forth by Fukaya [21] in 2005. We prove that
semi-classical limits (i.e. leading order terms in asymptotic expansions) of the Fourier modes of a
specific class of Maurer-Cartan solutions naturally give rise to consistent scattering diagrams, which
are tropical combinatorial objects that have played a crucial role in works of Kontsevich-Soibelman
[37] and Gross-Siebert [28] on the reconstruction problem in mirror symmetry.

1. Introduction

1.1. Background. The celebrated Strominger-Yau-Zaslow (SYZ) conjecture [45] asserts that mir-
ror symmetry is a T-duality, meaning that a mirror pair of Calabi-Yau manifolds should admit
fibre-wise dual (special) Lagrangian torus fibrations to the same base. This immediately suggests a
construction of the mirror (as a complex manifold): Given a Calabi-Yau manifold X, one first looks
for a Lagrangian torus fibration p : X → B̌. The base B̌ is then an integral affine manifold with
singularities. Letting B̌0 ⊂ B̌ be the smooth locus and setting

X̌0 := TB̌0/ΛB̌0
,

where ΛB̌0
⊂ TB̌0 denotes the natural lattice locally generated by affine coordinate vector fields,

yields a torus bundle p̌ : X̌0 → B̌0 which admits a natural complex structure J̌0, called the semi-flat
complex structure. This would not produce the correct mirror in general,1 simply because J̌0 cannot
be extended across the singular points B̌sing. But the SYZ proposal suggests that the mirror is given
by deforming J̌0 using quantum corrections coming from holomorphic disks in X with boundary on
the Lagrangian torus fibres of p.

The precise mechanism of such a mirror construction was first depicted by Kontsevich-Soibelman
[36] using rigid analytic geometry and then by Fukaya [21] using asymptotic analysis. In Fukaya’s
proposal, he described how instanton corrections would arise near the large volume limit given by
scaling of the symplectic structure on X by } ∈ R>0, which is mirrored to scaling of the complex
structure J̌0 on X̌0. It was conjectured that the desired deformations of J̌0 were given by a specific
class of solutions to the Maurer-Cartan equation of the Kodaira-Spencer deformation theory of
complex structures on X̌0, whose expansions into Fourier modes along torus fibres of p̌ would have
semi-classical limits (i.e. leading order terms in asymptotic expansions as } → 0) concentrated
along gradient flow trees of a canonically defined multi-valued Morse function on B̌0 [21, Conjecture
5.3]. On the mirror side, holomorphic disks in X with boundary on fibres of p were conjectured to
collapse to gradient flow trees emanating from the singular points B̌sing ⊂ B̌ [21, Conjecture 3.2].
From this one sees directly how the mirror complex structure is determined by quantum corrections.
Unfortunately, the arguments in [21] were only heuristical and the analysis involved to make them
precise seemed intractable at that time.

1Except in the semi-flat case when B̌ = B̌0 where there are no singular fibres; see [40].
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These ideas were later exploited by Kontsevich-Soibelman [37] (for dimension 2) and Gross-Siebert
[28] (for general dimensions) to construct families of rigid analytic spaces and formal schemes respec-
tively from integral affine manifolds with singularities, thereby solving the very important recon-
struction problem in SYZ mirror symmetry. They cleverly got around the analytical difficulties, and
instead of solving the Maurer-Cartan equation, used gradient flow trees in B̌0 [37] or tropical trees
in the Legendre dual B0 [28] to encode the modified gluing maps between charts in constructing the
mirror family. A key notion in their constructions is that of scattering diagrams, which are combi-
natorial structures encoding possibly very complicated gluing data. It has also been understood (by
works of these authors and their collaborators, notably [27]) that these scattering diagrams encode
Gromov-Witten data as well.

In this paper, we revisit Fukaya’s original ideas and apply asymptotic analysis motivated by
Witten-Morse theory [46]. Our primary goal is to connect consistent scattering diagrams to the
asymptotic behavior of a specific class of solutions of the Maurer-Cartan equation. In particular we
prove a modified version of (the “scattering part” of) Fukaya’s original conjecture in [21]. As pointed
out by Fukaya himself, understanding scattering phenomenon is vital to a general understanding of
quantum corrections in mirror symmetry.

We start with a Calabi-Yau manifold X (regarded as a symplectic manifold) equipped with a
Lagrangian torus fibration which admits a Lagrangian section s

(X,ω, J) p
//B̌

s
||

and whose discriminant locus is given by B̌sing ⊂ B̌, over which the integral affine structure develops
singularities. Restricting p to the smooth locus B̌0 = B̌ \ B̌sing, we obtain a semi-flat symplectic
Calabi-Yau manifold X0 ↪→ X, which, by Duistermaat’s action-angle coordinates [16], can be iden-
tified as a quotient of the cotangent bundle of the base X0

∼= T ∗B̌0/Λ
∨
B̌0
, where Λ∨

B̌0
⊂ T ∗B̌0 is the

natural lattice (dual to ΛB̌0
) locally generated by affine coordinate 1-forms. We then have a pair of

fibre-wise dual torus bundles over the same base:

X0 = T ∗B̌0/Λ
∨
B̌0

p
&&

X̌0 = TB̌0/ΛB̌0

p̌
yy

B̌0

We scale both the complex structure on X̌0 and the symplectic structure on X0 by introducing a
R>0-valued parameter } (so that }→ 0 give the respective large structure limits) and consider the
family of spaces (as well as the associated dgLa’s) parametrized by }.

As suggested by Fukaya [21] (and motivated by the relation between Morse theory and de Rham
theory [46, 31, 12]), we consider the Fourier expansion (see Definition 2.9) of the Kodaira-Spencer
differential graded Lie algebra (dgLa) (KSX̌0

= Ω0,∗(X̌0, T
1,0X̌0), ∂̄, [·, ·]) associated to X̌0 along

fibres of p̌, and try to solve the Maurer-Cartan (abbrev. MC) equation

(1.1) ∂̄Φ +
1

2
[Φ,Φ] = 0.

Remark 1.1. The idea that Fourier-type transforms should be responsible for the interchange be-
tween symplectic-geometric data on one side and complex-geometric data on the mirror side (i.e.
T-duality) came from the original SYZ proposal [45]. This has been applied successfully in the
toric case: see [34, 36, 13, 14, 10, 11, 22, 23, 24, 1, 2, 17, 18] for compact toric varieties and
[41, 33, 25, 26, 5, 6, 3, 9, 8, 29, 39] for toric Calabi-Yau varieties. Nevertheless, no scattering
phenomenon was involved in those examples.
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1.2. Main results. Before describing our main results, we first choose a Hessian type metric (see
Definition 2.3) on the affine manifold B̌0 which allows us to apply the Legendre transform (see
Section 2.3) and work with the Legendre dual B0.This originates from an idea of Gross-Siebert [28]
who suggested that, while tropical trees on B0 correspond to Morse gradient flow trees on B̌0 under
the Legendre transform, the former are easier to work with because of their linear nature.

We will also choose a convex open subset U ⊂ B0, fix a codimension 2 tropical affine subspace
Q ⊂ U and work locally around Q.2 In U , a scattering diagram can be viewed schematically as the
process of how new walls are being created from the transversal intersection between non-parallel
walls supported on tropical hyperplanes in U . The combinatorics of this process is governed by the
algebra of the tropical vertex group [27], which will be reviewed in Section 3.

We work with dgLa’s over the formal power series ring R = C[[t]] where t is a formal deformation
variable. Our goal is to investigate the relation between the scattering process and solutions of the
MC equation of the Kodaira-Spencer dgLa KSX̌0

[[t]]. 3

To begin with, let w = (P,Θ) be a single wall supported on a tropical hyperplane P ⊂ U
containing Q (although Q does not play any role in this single wall case) and equipped with a
wall-crossing factor Θ (as an element in the tropical vertex group). Our first aim is to see how Θ is
related to solutions of the MC equation (1.1).

Recall that in Witten-Morse theory [46, 31, 12], the shrinking of a fibre-wise loopm ∈ π1(p−1(x), s(x))
towards a singular fibre indicates the presence of a critical point of the symplectic area function fm
in the singular locus (in B), and the union of gradient flow lines emanating from the singular locus
should be interpreted as a stable submanifold associated to that critical point. Furthermore, this
codimension one stable submanifold should correspond to a bump differential 1-form with support
concentrated along P (see [12]).

Inspired by this, given a wall w, we are going to write down an ansatz Π ∈ KS1
X̌0

[[t]] solving (1.1);

see Definition 4.2 for the precise formula. Since X̌0(U) := X̌0 ×B0 U does not admit any non-trivial
deformations, the MC solution Π is gauge equivalent to 0, i.e. there exists ϕ ∈ KS0

X̌0
[[t]] such that

eϕ ∗ 0 = Π; we further use a gauge fixing condition (P̂ϕ = 0) to uniquely determine the gauge ϕ.

In Proposition 4.28, we demonstrate how the semi-classical limit (as } → 0) of ϕ determines
the wall-crossing factor Θ (or more precisely, Log(Θ)); see the introduction of Section 4 for a more
detailed description. Moreover, the support of the bump-form-like MC solution Π (see Figure 4) is
more and more concentrated along P as }→ 0. In Definition 4.19, we make precise the key notion
of having asymptotic support on P to describe such asymptotic behavior. We further show that any
MC solution Π with asymptotic support on P would give rise to the same wall crossing factor Θ in
Section 4.2.3 (see Remark 4.29).

At this point we are ready to explain the main results of this paper. From now on, unlike the
case of a single wall, we will be solving the Maurer-Cartan equation only up to error terms with
exponential order in }−1, i.e. terms of the form O(e−c/}). This is sufficient for our purpose because
those error terms tend to zero as one approaches the large volume/complex structure limits when
} → 0, and thus they do not contribute to the semi-classical limits of the MC solutions and the

associated scattering diagrams.4 To make this precise, we introduce in Section 5.2.1 a dgLa ĝ∗/E∗(U)
which is a quotient of a sub-dgLa of KSX̌0

(U)[[t]], and we will work with and construct MC solutions

of ĝ∗/E∗(U).

2In the language of the Gross-Siebert program [28], we are working locally near a joint (i.e. a codimension 2 cell)
in a polyhedral decomposition of the singular set Sing(D) of a scattering diagram D.

3There are other approaches to the scattering process or wall-crossing formulas such as [7, 19, 44].
4This point was also anticipated by Fukaya in [21].
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Our first main result relates a specific class of MC solutions (satisfying the two assumptions de-
scribed below) to consistent scattering diagrams (see Definition 3.5 for the precise meaning of consis-
tency). Suppose that we have a countable collection {Pa}a∈W of tropical half-hyperplanes (supports
of the walls) sharing the codimension 2 tropical affine subspace Q as their common boundary, as

shown in Figure 1. We consider a Maurer-Cartan solution Φ ∈ ĝ∗/E∗(U) ⊗R m which admits a

Figure 1. A collection of walls sharing a common boundary Q

Fourier decomposition

(1.2) Φ =
∑
a∈W

Φ(a),

where the sum is finite modulo mN+1 for every N ∈ Z>0 (here m is the maximal ideal in R = C[[t]]).

Assumption I (see Assumption 5.48 for the precise statement): Each summand Φ(a) has asymptotic

support on the corresponding half-hyperplane Pa (intuitively meaning that the support of Φ(a) is
more and more concentrated along Pa as } → 0) and has asymptotic expansion (as } → 0) of the
form

Φ(a) = Ψ (a) + z(a),

where Ψ (a) is the leading order term consisting of terms with the leading } order and z(a) is the
error term consisting of terms with higher } orders.

From this assumption, we deduce that:

Lemma 1.2 (=Lemma 5.40). For each a ∈W, the summand Φ(a) is a solution of the Maurer-Cartan
equation (1.1) over U \Q.

Now we delete Q from U and work over A := U \ Q. We also choose an open set Ã0 in the

universal cover Ã of A and consider the covering map p : Ã0 → A.

Assumption II (see Assumption 5.49 for the precise statement): Applying the homotopy operator

Ĥ (defined by integration over a homotopy h : R× Ã0 → Ã0 contracting Ã0 to a point in (5.23)) to

the pullback of the leading order term Ψ (a) by p gives a step function which jumps across the lift of

Pa in Ã0 and whose restriction to the affine half space Ĥ(Pa) \ Pa produces an element Log(Θa) in
the tropical vertex Lie-algebra h (defined in Definition 3.1). Figure 2 illustrates the situation in a
slice of a tubular neighborhood around Q.

Since X̌0(U)×A Ã0 does not admit any non-trivial deformations, each summand Φ(a) in (1.2) is

gauge equivalent to 0, so there exists a unique solution ϕa to eϕa ∗ 0 = Φ(a) satisfying the gauge
fixing condition P̂ϕa = 0. We carefully estimate the orders of the parameter } in the asymptotic
expansion of the gauge ϕa as in the single wall case above, and obtain the following:
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Figure 2. A slice in a tubular neighborhood around Q

Lemma 1.3 (=Lemma 5.44). The asymptotic expansion of the gauge ϕa is of the form (see Nota-

tions 4.10 for the precise meaning of Oloc(}1/2)):

ϕa = ψa +Oloc(}1/2),

where ψa, the semi-classical limit of ϕa as } → 0, is a step function which jumps across the half-
hyperplane Pa and is related to an element Θa of the tropical vertex group by the formula

Log(Θa) = ψa|Ĥ(Pa)\Pa ;

here Ĥ(Pa) \ Pa ⊂ Ã0 is the open half-space (defined in Notation 5.39) which contains the support
of ψa.

Thus, each Φ(a), or more precisely, the gauge ϕa, determines a wall wa = (Pa,Θa) supported
on a tropical half-hyperplane Pa and equipped with a wall crossing factor Θa. Hence the Fourier
decomposition (1.2) of the Maurer-Cartan solution Φ defines a scattering diagram D(Φ) consisting
of the walls {wa}a∈W. Our first main result is the following:

Theorem 1.4 (=Theorem 5.50). If Φ is any solution to the Maurer-Cartan equation of ĝ∗/E∗(U)
satisfying both Assumptions I and II (or more precisely Assumptions 5.48 and 5.49), then the associ-
ated scattering diagram D(Φ) is consistent, meaning that we have the following identity Θγ,D(Φ) = Id,
where the left-hand side is the path ordered product (whose definition will be reviewed in Section 3.2.1)
along any embedded loop γ in U \ Sing(D(Φ)) intersecting D(Φ) generically; here Sing(D(Φ)) = Q
is the singular set of the scattering diagram D(Φ).

Our second main result studies how a scattering process starting with two non-parallel walls
w1 = (P1,Θ1),w2 = (P2,Θ2) intersecting transversally at Q = P1∩P2 gives rise to a MC solution of

ĝ∗/E∗(U) satisfying both Assumptions I and II, thereby producing a consistent scattering diagram
via Theorem 1.4.5

In this case, there are two solutions to the MC equation (1.1) Πwi ∈ KS1
X̌0

(U)[[t]], i = 1, 2

associated to the two initial walls w1,w2 respectively (e.g. those provided by our ansatz), but their
sum Π := Πw1 + Πw2 ∈ KSX̌0

(U)[[t]] does not solve (1.1), even up to error terms with exponential

5Indeed Assumptions I and II (or more precisely Assumptions 5.48 and 5.49) are extracted from properties of the
MC solutions we constructed.
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order in }−1. Nevertheless, a method of Kuranishi [38] allows us to, after fixing the gauge using an
explicit homotopy operator (introduced in Definition 5.14), write down a solution Φ = Π + · · · , as a
sum over trees (5.14) with input Π, of the equation (1.1) up to error terms with exponential order

in }−1, or more precisely, of the MC equation of the dgLa ĝ∗/E∗(U).

The MC solution Φ has a Fourier decomposition as in (1.2) of the form Φ = Π+
∑

a∈W Φ(a), where

the sum is over a = (a1, a2) ∈ W :=
(
Z2
>0

)
prim

which parametrizes the tropical half-hyperplanes

Pa’s containing Q and lying in-between P1 and P2, as shown in Figure 3. Our second main result is

Figure 3. Scattered walls Pa’s from two initial walls

the following:

Theorem 1.5 (=Theorem 5.46). The Maurer-Cartan solution Φ satisfies both Assumptions I and
II (or more precisely Assumptions 5.48 and 5.49) in Theorem 1.4, and hence the scattering diagram
D(Φ) associated to Φ is consistent, meaning that we have the following identity6

Θγ,D(Φ) = Θ−1
1 Θ2

(
γ∏

a∈W
Θa

)
Θ1Θ−1

2 = Id,

along any embedded loop γ in U \Sing(D(Φ)) which intersects D(Φ) generically; here Sing(D(Φ)) =
Q = P1 ∩ P2.

The proofs that Φ satisfies both Assumptions 5.48 and 5.49 occupy Sections 5.2.3 and 5.2.4;
Assumption 5.48 will be handled in Theorem 5.25 in Section 5.2.3 while Assumption 5.49 will be
handled in Lemma 5.31 in Section 5.2.4.

Remark 1.6. Notice that the scattering diagram D(Φ) is the unique (by passing to a minimal scat-
tering diagram if necessary) consistent extension, determined by Kontsevich-Soibelman’s Theorem
3.7, of the scattering diagram consisting of two initial walls w1 and w2.

1.3. A reader’s guide. The rest of this paper is organized as follows.

In Section 2, we review the Kodaira-Spencer dgLa KSX̌0
associated to the semi-flat Calabi-Yau

manifold X̌0, followed by a brief review of the Legendre and Fourier transforms.

In Section 3, we review the tropical vertex group and the theory of scattering diagrams (in
particular a theorem due to Kontsevich-Soibelman) following the exposition in [27].

Section 4 is about the single wall scenario. In Section 4.1, we write down an ansatz associated
to a given single wall solving the MC equation. In Section 4.2.3, we formulate the key notion of

6Another common way to write this identity is as a formula for the commutator of two elements in the tropical
vertex group: Θ−1

2 Θ1Θ2Θ−1
1 =

∏γ
a∈W Θa.
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asymptotic support on a tropical polyhedral subset which allows us to define a filtration (4.11) to keep
track of the } orders. We also prove two key results, namely, Lemma 4.22 (and its extension Lemma
4.25) and Lemma 4.23, which form the basis for the subsequent asymptotic analysis. Applying
them, we prove the main results Lemma 4.27 and Proposition 4.28 for the single wall case. Except
Definition 4.19 and the statements of Lemmas 4.22 and 4.23, the reader may skip the rather technical
Section 4.2 at first reading.

Section 5 is the heart of this paper where we study the scattering process which starts with two
initial walls. In Section 5.1, Kuranishi’s method of solving the MC equation of a dgLa is reviewed.

In Section 5.2, we introduce the dgLa ĝ∗/E∗(U) by which we make precise the meaning of solving
the MC equation of KSX̌0

(U)[[t]] up to error terms with exponential order in }−1. We then begin

the asymptotic analysis of the MC solutions of ĝ∗/E∗(U); the key results here are Theorem 5.25 and
Lemma 5.35. In Section 5.3, we apply the results obtained in Section 5.2 to prove Lemmas 5.43 and
5.44 (which are parallel to Lemma 4.27 and Proposition 4.28 in Section 4), from which we deduce
Theorems 1.4 and 1.5.
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2. The Kodaira-Spencer dgLa in the semi-flat case

In this section, we review the classical Kodaira-Spencer deformation theory of complex struc-
tures and the associated dgLa [35, 43] in the semi-flat setting, as well as the Legendre and Fourier
transforms [32, 40] which play important roles in semi-flat SYZ mirror symmetry.

2.1. The semi-flat Calabi-Yau manifold X̌0. We let Aff(Rn) = Rn o GLn(R) be the group of
affine linear transformations of Rnand consider the subgroup AffR(Zn)0 := Rn o SLn(Z).

Definition 2.1 ([27]). An n-dimensional smooth manifold B is called tropical affine if it admits an
atlas {(Ui, ψi)} of coordinate charts ψi : Ui → Rn such that ψi ◦ ψ−1

j ∈ AffR(Zn)0 for all i, j.

Given a (possibly non-compact) tropical affine manifold B̌0, we set

X̌0 := TB̌0/ΛB̌0
,

where the lattice subbundle ΛB̌0
⊂ TB̌0 is locally generated by the coordinate vector fields ∂

∂x1 , . . . ,
∂
∂xn

for a given choice of local affine coordinates x̌ = (x1, . . . , xn) in a contractible open subset Ǔ ⊂ B̌0.
Then the natural projection map p̌ : X̌0 → B̌0 is a torus fibration. We also let yj ’s be the canonical
coordinates on the fibres of p̌ over Ǔ with respect to the frame ∂

∂x1 , . . . ,
∂
∂xn of TB̌0.
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Choosing β =
∑n

i,j=1 β
j
i (x̌)dxi ⊗ ∂

∂xj
∈ Ω1(TB̌0) satisfying ∇β = 0 ∈ Ω2(TB̌0), where ∇ is

the natural affine flat connection on B̌0, we get a one-parameter family of complex structures
parametrized by } ∈ R>0 defined by the family of matrices

(2.1) J̌β =

(
−}β }I

−}−1(I + }2β2) }β

)
with respect to the local frame ∂

∂x1 , . . . ,
∂
∂xn ,

∂
∂y1 , . . . ,

∂
∂yn , where we write β as a matrix with respect

to the frame ∂
∂x1 , . . . ,

∂
∂xn . Locally, the corresponding holomorphic volume form is given by

(2.2) Ω̌β =
n∧
j=1

(
(dyj −

n∑
k=1

βjkdx
k) + i}−1dxj

)
,

and a holomorphic frame of T 1,0X̌0 can be written as

(2.3) ∂̌j :=
∂

∂ log zj
=

i

4π

(
∂

∂yj
− i}

(
n∑
k=1

βkj
∂

∂yk
+

∂

∂xj

))
,

for j = 1, . . . , n. So the local complex coordinates are given by

(2.4) zj = exp

(
−2πi

(
yj −

∑
k

βjkx
k + i}−1xj

))
.

The condition that
∑n

k=1 β
j
k(x̌)dxk being closed for each j = 1, . . . , n is equivalent to integrability

of the almost complex structure J̌β.

2.2. The Kodaira-Spencer dgLa. For a complex manifold X̌0, the Kodaira-Spencer complex
is the space KSX̌0

:= Ω0,∗(X̌0, T
1,0X̌0) of T 1,0X̌0-valued (0, ∗)-forms, which is equipped with the

Dolbeault differential ∂̄ and a Lie bracket defined in local holomorphic coordinates z1, . . . , zn ∈ X̌0

by [φdz̄I , ψdz̄J ] = [φ, ψ]dz̄I ∧ dz̄J , where φ, ψ ∈ Γ(T 1,0X̌0). The triple

(KSX̌0
, ∂̄, [·, ·])

defines the Kodaira-Spencer differential graded Lie algebra (abbrev. dgLa), which governs the defor-
mation theory of complex structures on X̌0. Given an open subset Ǔ ⊂ X̌0, we may also talk about
the local Kodaira-Spencer complex KSX̌0

(Ǔ).

Notations 2.2. We let R = C[[t]] to be the ring of formal power series and m = (t) denote the
maximal ideal generated by t, and consider dgLa’s over R to avoid convergence issues.

An element ϕ ∈ Ω0,1(X̌0, T
1,0X̌0)⊗m defines a formal deformation of complex structures if and

only if it is a solution to the Maurer-Cartan equation (1.1). The exponential group KS0
X̌0
⊗ m

acts on the set of Maurer-Cartan solutions MCKSX̌0
(R) as automorphisms of the formal family of

complex structures over R, and therefore one can define the space of deformations of X̌0 over R by
DefKSX̌0

(R) := MCKSX̌0
(R)/ exp(KS0

X̌0
⊗m) via the dgLa KSX̌0

.

2.3. The Legendre transform. To define the Legendre dual B0 of B̌0 so that we can work in the
tropical world, we need a metric g on B̌0 of Hessian type (see, e.g. [4, Chapter 6]):

Definition 2.3. A Riemannian metric g = (gij)i,j on B̌0 is said to be Hessian type if it is locally

given by g =
∑

i,j
∂2φ̌

∂xi∂xj
dxi ⊗ dxj in local affine coordinates x1, . . . , xn for some convex function φ̌.
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To construct Kähler structures, we further need a compatibility condition between g and β in
(2.1), namely, we assume that

(2.5)
∑
i,j,k

βji gjkdx
i ∧ dxk = 0,

when we write β =
∑

i,j β
j
i (x̌)dyj ∧ dxi in the local coordinates x1, . . . , xn, y1, . . . , yn. Given such a

Hessian type metric g, a Kähler form on X̌0 is given by ω̌ = 2i∂∂̄φ̌ =
∑

j,k gjkdy
j ∧ dxk.

We can now introduce the Legendre transform following Hitchin [32]; see also [4, Chapter 6].
Given a strictly convex smooth function φ̌ : Ǔ(⊂ B̌0) → R, we trivialize T ∗Ǔ ∼= Ǔ × Rn via affine
frames and define the Legendre transform Lφ̌ : Ǔ → Rn by x = Lφ̌(x̌) := dφ̌(x̌) ∈ Rn, or equivalently,

by xj = ∂φ̌
∂xj

, where x = (x1, . . . , xn) ∈ Rn denote the dual coordinates. The image U := Lφ̌(Ǔ) ⊂ Rn

is an open subset and Lφ̌ is a diffeomorphism. The Legendre dual φ : U → R of φ̌ is defined by the

equation φ(x) :=
∑n

j=1 xjx
j − φ̌(x̌), and the dual transform Lφ is inverse to Lφ̌.

If φ̌ is the semi-flat potential in Definition 2.3 which defines a Hessian type metric, then the
dual coordinate charts U = Lφ̌(Ǔ) actually glue to give another tropical affine manifold B0, which

we call the Legendre dual of B̌0, whose underlying smooth manifold is same as that of B̌0 (see [4,
Chapter 6]. The lattice bundles ΛB0

∼= Λ∨
B̌0

are interchanged in this process, so that we can write

X̌0 = T ∗B0/Λ
∨
B0

, and using the affine coordinates (x1, . . . , xn) on B0, we can write

Ω̌β =

n∧
k=1

dyk − n∑
j=1

(
βjk − i}−1gjk

)
dxj

 , ω̌ =

n∑
k=1

dyk ∧ dxk

2.4. The Fourier transform.

Definition 2.4. The sheaf of integral affine functions AffZ
B̌0

, as a sheaf over B0 (which is the same

as B̌0 as a smooth manifold), is the subsheaf of the sheaf of smooth functions over B0 whose local
sections AffZ

B̌0
(U) over a contractible open set U ⊂ B0 are defined to be affine linear functions of

the form m(x̌) = m1x
1 + · · ·+mnx

n + b for some mi ∈ Z and b ∈ R, in local affine coordinates on
B̌0 (caution: not B0). This sheaf fits into the following exact sequence of sheaves over B0

0→ R→ AffZ
B̌0
→ ΛB0 → 0.

Since X̌0 = TB̌0/ΛB̌0
, exponentiation of complexification of local affine linear functions on B̌0

give local holomorphic functions on X̌0 as follows.

Definition 2.5. Given m ∈ AffZ
B̌0

(U), expressed locally as m(x) =
∑

jmjx
j + b, we let zm :=

e
2πb
} (z1)m1 · · · (zn)mn ∈ OX̌0

(p̌−1(U)), where zj is given in equation (2.4). This defines an embedding

AffZ
B̌0

(U) ↪→ OX̌0
(p̌−1(U)), and we denote the image subsheaf by Oaff, as a sheaf over B0.

We can embed the lattice bundle Λ∨B0
↪→ p̌∗T

1,0X̌0 into the push forward of the sheaf of holomor-
phic vector fields; in local coordinates U , it is given by (cf. equation (2.3))

(2.6) n = (nj) 7→ ∂̌n :=
∑
j

nj
∂

∂ log zj
=

i

4π

∑
j

nj

(
∂

∂yj
− i}

∑
k

(
βkj

∂

∂yk
+ gjk

∂

∂xk

))
for a local section n ∈ Λ∨B0

(U). This embedding is globally defined, and by abuse of notations, we

will write Λ∨B0
to stand for its image subsheaf. For later purpose, we introduce the notation

(2.7) ∂n :=
}

4π

∑
j

njgjk
∂

∂xk
.
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Notations 2.6. Since we work in a contractible open coordinate chart U , we will fix a rank n lattice
M ∼= Zn and its dual N = Hom(M,Z), and identify U ⊂ MR := M ⊗Z R ∼= Rn as an open subset
containing the origin 0 and write NR := N ⊗Z R. We also trivialize ΛB0 |U ∼= M and Λ∨B0

|U ∼= N

and identify X̌0(U) = p̌−1(U) ∼= U × (NR/N). Since TU ∼= ΛB0 ⊗Z R, a local section m ∈ M(U)
naturally corresponds to an affine integral vector field over U , which will be denoted by m as well.
The exact sequence in Definition 2.4 splits and we will call m’s or the associated zm’s the Fourier
modes.

Definition 2.7. We consider the sheaf Oaff ⊗Z Λ∨B0
over B0 and define a Lie bracket [·, ·] on it by

restriction of the usual Lie bracket on p̌∗O(T 1,0X̌0).

Notice that the Lie bracket on Oaff ⊗Z Λ∨B0
is well defined because in a small enough affine

coordinate chart, we have the following formula from [27]

(2.8)
[
zm ⊗ ∂̌n, zm

′ ⊗ ∂̌n′
]

= zm+m′ ∂̌(m′,n)n′−(m,n′)n,

which shows that Oaff ⊗Z Λ∨B0
is closed under the Lie bracket on p̌∗O(T 1,0X̌0).

Notations 2.8. The pairing (m,n) in (2.8) is the natural pairing between m ∈ ΛB0(U) and n ∈
Λ∨B0

(U). Given a local section m ∈ ΛB0(U), we let m⊥ ⊂ Λ∨B0
(U) be the sub-lattice perpendicular to

m with respect to (·, ·).

Definition 2.9. On a contractible open subset U ⊂ B0
∼= B̌0, the Fourier transform

F : G∗(U) :=
⊕

m∈ΛB0
(U)

Ω∗(U) · zm ⊗Z N ↪→ KSX̌0
(U)

is defined by sending α ∈ Ω∗(U) to
(
p̌∗(α)

)0,1
(where

(
·
)0,1

denotes the (0, 1)-part of the 1-form) and

n ∈ N to ∂̌n. F is injective and hence induces a dgLa structure on G∗(U) from that on KSX̌0
(U).7

We also let G∗N (U) := G∗(U)⊗R/mN+1 and Ĝ∗(U) := lim←−N G∗N (U).

Remark 2.10. For more details on how Fourier (or SYZ) transforms can be applied to understand
(semi-flat) SYZ mirror symmetry, we refer the readers to Fukaya’s original paper [21] and a recent
survey article [42] by the third named author.

3. Scattering diagrams

In the section, we review the notion of scattering diagrams introduced in [37, 28]. We will adopt
the setting and notations from [27] with slight modifications to fit into our context.

3.1. The sheaf of tropical vertex groups. We start with the same set of data (B0, g, β) as in
Section 2.3, and use x = (x1, . . . , xn) as local affine coordinates on B0 and x̌ = (x1, . . . , xn) as local
affine coordinates on B̌0 as before. Given the formal power series ring R = C[[t]] and its maximal
ideal m, we consider the sheaf of Lie algebras g :=

(
Oaff ⊗Z Λ∨B0

)
⊗̂CR over B0.

Definition 3.1. The subsheaf h ↪→ g of Lie algebras is defined as the image of the embedding(⊕
m∈ΛB0

(U) C · zm ⊗Z (m⊥)
)
⊗̂CR → g(U) over each affine coordinate chart U ⊂ B0.8 The sheaf

of tropical vertex groups over B0 is defined as the sheaf of exponential groups exp(h ⊗R m) which
act as automorphisms on h and g.

7Direct computation shows that we have the formula ∂̄(
∑
m z

mαnm∂̌n) =
∑
m z

m(dα)∂̌n.
8It is a subsheaf of Lie subalgebras of g as can be seen from the formula (2.8).
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3.2. Kontsevich-Soibelman’s wall crossing formula. This formulation of the wall crossing
formula originated from [37] but we will mostly follow [27] as we want to work on B0 instead of B̌0.
From now on, we will work locally in a contractible coordinate chart U ⊂ B0. We use the same
notations as in Section 2.

Definition 3.2. Given m ∈ M \ {0} and n ∈ m⊥, we let hm,n := (C[zm] · zm)∂̌n⊗̂Cm ↪→ g whose

general elements are of the form
∑

j,k≥1 ajkz
km∂̌nt

j, where ajk 6= 0 for only finitely many k’s for

each fixed j. This defines an abelian Lie subalgebra of g by the formula (2.8).

Definition 3.3. A wall w in U is a triple (m,P,Θ), where

• m ∈M \ {0} parallel to P ,
• P is a connected oriented codimension one convex tropical polyhedral subset of U (by a convex

tropical polyhedral subset we mean a convex subset which is locally defined by affine linear
equations and inequalities defined over Q),
• Θ ∈ exp(hm,n)|P is a germ of sections near P , where n ∈ Λ∨B0

(U) ∼= N is the unique primitive

element satisfying n ∈ (TP )⊥ and (νP , n) < 0, and νP ∈ TU ∼= U ×MR here is a vector
normal to P such that the orientation of TP ⊕ R · νP agrees with that of U .

Definition 3.4. A scattering diagram D is a set of walls {(mα, Pα,Θα)}α such that there are only
finitely many α’s with Θα 6= id (mod mN ) for every N ∈ Z>0. We define the support of D to be
supp(D) :=

⋃
w∈D Pw, and the singular set of D to be Sing(D) :=

⋃
w∈D ∂Pw ∪

⋃
w1tw2

Pw1 ∩ Pw2,

where w1 t w2 means transversally intersecting walls.9

3.2.1. Path ordered products. An embedded path γ : [0, 1]→ B0 \ Sing(D) is said to be intersecting
D generically if γ(0), γ(1) /∈ supp(D), Im(γ) ∩ Sing(D) = ∅ and it intersects all the walls in D

transversally. Given such an embedded path γ, we define the path ordered product along γ as an
element of the form Θγ,D =

∏γ
w∈D Θw ∈ exp(h ⊗R m)γ(1) in the stalk of exp(h ⊗R m) at γ(1),

following [27]. More precisely, for each k ∈ Z>0, we define Θk
γ,D ∈ exp(h⊗R (m/mk+1))γ(1) and let

Θγ,D := limk→+∞Θk
γ,D, where Θk

γ,D is defined as follows.

Given k, there is a finite subset Dk ⊂ D consisting of walls w with Θw 6= Id (mod mk+1) from
Definition 3.4. We then have a sequence of real numbers 0 = t0 < t1 < t2 < · · · < ts < ts+1 = 1
such that {γ(t1), . . . , γ(ts)} = γ ∩ supp(Dk). For each 1 ≤ i ≤ s, there are walls wi,1, . . . ,wi,li

in Dk such that γ(ti) ∈ Pi,j := supp(wi,j) for all j = 1, . . . , li. Since γ does not hit Sing(D), we
have codim(supp(wi,j1)∩ supp(wi,j2)) = 1 for any j1, j2, i.e. the walls wi,1, . . . ,wi,li are overlapping
with each other and contained in a common tropical hyperplane. Then we have an element Θγ(ti) :=∏k
j=1 Θ

σj
wi,j , where σj = 1 if orientation of Pi,j⊕R·γ′(ti) agree with that of B0 and σj = −1 otherwise.

(Note that this element is well defined without prescribing the order of the product since the elements
Θwi,j ’s are commuting with each other.) We treat Θγ(ti) as an element in exp(h⊗Rm)γ(1) by parallel

transport and take the ordered product along the path γ as Θk
γ,D := Θγ(ts) · · ·Θγ(ti) · · ·Θγ(t1).

Definition 3.5. A scattering diagram D is said to be consistent if we have Θγ,D = Id, for any em-

bedded loop γ intersecting D generically. Two scattering diagrams D and D̃ are said to be equivalent
if Θγ,D = Θγ,D̃ for any embedded path γ intersecting both D and D̃ generically.

Remark 3.6. Given a scattering diagram D, there is a unique representative Dmin from its equiv-
alence class which is minimal. First, we may remove those walls with trivial automorphisms Θ as
they do not contribute to the path ordered product. Second, if two walls w1 and w2 share the same
P and m, we can simply take the multiplication Θ = Θ1 ◦Θ2 and define a single wall w. After doing
so, we obtain a minimal scattering diagram equivalent to D.

9There is a natural (possibly up to further subdivisions) polyhedral decomposition of Sing(D) whose codimension
2 cells are called joints in the Gross-Siebert program [28].
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3.2.2. The wall crossing formula. Next, we consider the case where D is a scattering diagram consist-
ing of only two walls w1 = (m1, P1,Θ1) and w2 = (m2, P2,Θ2) where the supports Pi’s are tropical
hyperplanes of the form Pi = Q−R ·mi intersecting transversally in a codimension two tropical sub-
space Q := P1 ∩ P2 ⊂ U . In this case, we have the following theorem due to Kontsevich-Soibelman
[37]:

Theorem 3.7 (Kontsevich and Soibelman [37]). Given a scattering diagram D consisting of two
walls w1 = (m1, P1,Θ1) and w2 = (m2, P2,Θ2) supported on tropical hyperplanes P1, P2 intersecting
transversally in a codimension two tropical subspace Q := P1 ∩ P2, there exists a unique minimal
consistent scattering diagram S(D) ⊃ Dmin, obtained by adding walls to Dmin supported on tropical
half-hyperplanes of the form Q− R≥0 · (a1m1 + a2m2) for a = (a1, a2) ∈

(
Z2
>0

)
prim

.

Remark 3.8. Interesting relations between these wall crossing factors and relative Gromov-Witten
invariants of weighted projective planes were established in [27]. In general it is expected that these
wall crossing factors encode counts of holomorphic disks on the mirror A-side, which was conjectured
by Fukaya in [21, Section 3] to be closely related to Witten’s Morse theory.

4. Single wall diagrams as deformations

As before, we will work with a contractible open coordinate chart U ⊂ B0. In this section, we
consider a scattering diagram with only one wall w = (m,P,Θ), where P is a connected oriented
tropical hyperplane in U . Recall that we can write

(4.1) Log(Θ) =
∑
j,k≥1

ajkz
km∂̌nt

j ,

where ajk 6= 0 for only finitely many k’s for each fixed j.

The hyperplane P divides the base U into two half spaces H+ and H− according to the orientation
of P , meaning that νP should be pointing into H+ where νP ∈ TU is the normal to P we choose so
that the orientation of TP ⊕ R · νP agrees with that of U . We consider a step-function-like section
ψ ∈ Ω0,0(X̌0(U) \ p̌−1(P ), T 1,0X̌0)[[t]] of the form

(4.2) ψ =

{
Log(Θ) on H+,
0 on H−.

Our goal is to write down an ansatz Π = Π} (depending on }) solving the Maurer-Cartan equation
(1.1) such that Π = eϕ ∗ 0 ∈ Ω0,1(X̌0(U), T 1,0) represents a smoothing of eψ ∗ 0 (which is delta-
function-like and not well defined by itself), and show that the semi-classical limit of ϕ is precisely
ψ as }→ 0.

4.1. Ansatz corresponding to a single wall. We are going to use the Fourier transform F :

Ĝ∗(U) → KSX̌0
(U)[[t]] defined in Definition 2.9 to obtain an element Π ∈ Ĝ∗(U), and perform

all the computations on G∗N (U) or Ĝ∗(U) following Fukaya’s ideas [21]. We will omit the Fourier
transform F in our notations, and we will work with tropical geometry on B0 instead of Witten-
Morse theory on B̌0 following Gross-Siebert’s idea [28]. We start by choosing some convenient affine
coordinates um,i’s (or simply ui’s, if there is no confusion) on U for each Fourier mode m.

Notations 4.1. For each Fourier mode m ∈M \ {0}, we choose affine coordinates (u1, . . . , un) for
U with the properties that u1 is along −m. We will denote the remaining coordinates by um,⊥ :=
(u2, . . . , un). We further require that the coordinates ui’s for m and km is the same with k ∈ Z+

for convenience.
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Given a wall w = (m,P,Θ) as above, we choose u2 to be the coordinate normal to P and pointing
into H+. We consider a 1-form depending on } ∈ R>0 given by

(4.3) δm = δm,} :=

(
1

}π

) 1
2

e−
u2

2
} du2,

which has the property that
∫
L δm = 1 + O(e−c/}) for any line L ∼= R intersecting P transversally.

This gives a bump form which can be viewed as a smoothing of the delta 1-form over P , as shown

in Figure 4. We will sometimes write δm = e−
u2

2
} µm, where µm :=

(
1
}π
) 1

2 du2, to avoid repeated

appearances of the constant
(

1
}π
) 1

2 .

Figure 4. δm concentrating along P

Definition 4.2. Given a wall w = (m,P,Θ) where Log(Θ) is as in (4.1), we let

(4.4) Π := −δm · Log(Θ) = −δm
∑
j,k≥1

ajkz
km∂̌nt

j ∈ Ĝ1(U)

be the ansatz associated to the wall w, by viewing G∗ as a module over Ω∗(U).

Remark 4.3. Our ansatz depends on the choice of the affine coordinates (u1, . . . , un) because δm
does so, but the property that it has support concentrated along the tropical hyperplane P is an
abstract notion which does not depend on the choice of coordinates, as we will see shortly.

Proposition 4.4. The ansatz Π satisfies the Maurer-Cartan (MC) equation ∂̄Π + 1
2 [Π,Π] = 0.

Proof. In fact we will show that both terms ∂̄Π and 1
2 [Π,Π] vanish. First we have ∂̄(δmz

km∂̌n) =

(dδm)zkm∂̌n = 0 from the fact that d(δm) = 0 which is obvious from (4.3). Next we show that[
δmz

k1m∂̌n, δmz
k2m∂̌n

]
= 0 for any k1, k2. This is simply because δm = e−

u2
2
} µm and µm is a

covariant constant form (with respect to the affine connection), so we have
[
δmz

k1m∂̌n, δmz
k2m∂̌n

]
=

µm ∧ µm
[
e−

u2
2
} zk1m∂̌n, e

−u
2
2
} zk2m∂̌n

]
= 0. �

4.2. Relation with the wall crossing factor. Since X̌0(U) ∼= U × Tn has no non-trivial defor-
mations, the element Π̌ must be gauge equivalent to 0. In this subsection, we will explain how the
semi-classical limit of the gauge is related to the wall crossing factor Log(Θ).

4.2.1. Solving for the gauge ϕ. So we are going to solve the equation eϕ ∗0 = Π for ϕ ∈ Ĝ∗(U) with
desired asymptotic behavior. Using the definition in [43, Section 1] for gauge action, we are indeed
solving

(4.5) −
(
eadϕ − Id

adϕ

)
∂̄ϕ = Π.
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Solutions ϕ to (4.5) is not unique. We will make a choice by choosing a homotopy operator Ĥ. Since
G∗(U) =

⊕
m(Ω∗(U)zm) ⊗Z N is a tensor product of N with a direct sum, it suffices to define a

homotopy operator Ĥm for each Fourier mode m contracting Ω∗(U) to its cohomology H∗(U) ∼= C.

Definition 4.5. We fix a based point q ∈ H−. By contractibility, we have the map ρq : [0, 1]×U → U
satisfying ρq(0, ·) = q and ρq(1, ·) = Id, which contracts U to {q}.

This defines a homotopy operator Ĥm : Ω∗(U)zm → Ω∗(U)[−1]zm by Ĥm(αzm) :=
∫ 1

0 ρ
∗
q(α)zm.

We also define the projection P̂m : Ω∗(U)zm → H∗(U)zm by setting P̂m(αzm) = α|qzm for α ∈
Ω0(U) and 0 otherwise, and ιm : H∗(U)zm → Ω∗(U)zm by setting ιm : H∗(U)zm → Ω∗(U)zm to be
the embedding of constant functions on U at degree 0 and 0 otherwise.

These operators can be put together to define operators on G∗(U), G∗N (U) or Ĝ∗(U) and they are

denoted by Ĥ, P̂ and ι respectively.

Remark 4.6. The based point q is chosen so that the semi-classical limit of the gauge ϕ0 (as }→ 0)

behaves like a step-function across the wall P . There are many possible choices of Ĥ, corresponding
to choices of ρq for this purpose. In Definition 5.12, we will write down another particular choice
(suitable for later purposes) in the case when the open subset U is spherical (see Section 11).

In the rest of this section, we will fix q ∈ H− in the half space H− and impose the gauge fixing

condition P̂ϕ = 0 to solve for ϕ satisfying (4.5); in other words, we look for a solution satisfying

ϕ = Ĥ∂̄ϕ+ ∂̄Ĥϕ = Ĥ∂̄ϕ to solve the equation (4.5) order by order; here Ĥϕ = 0 by degree reasons.
This is possible because of the following lemma which we learn from [43].

Lemma 4.7. Among all solutions of eϕ ∗ 0 = Π, there exists a unique one satisfying P̂ϕ = 0.

Proof. Notice that for any σ = σ1 + σ2 + · · · ∈ t · Ĝ∗(U) with ∂̄σ = 0, we have eσ ∗ 0 = 0, and hence
eϕ•σ ∗ 0 = Π is still a solution for the same equation. With ϕ • σ given by the Baker-Campbell-
Hausdorff formula as ϕ • σ = ϕ + σ + 1

2{ϕ, σ} + · · · , we can then solve the equation P̂ (ϕ • σ) = 0

order by order under the assumption that ∂̄σ = 0. �

Under the gauge fixing condition P̂ϕ = 0, setting

(4.6) ϕs+1 := −Ĥ

Π +
∑
k≥0

adkϕs

(k + 1)!
∂̄ϕs


s+1

,

where the subscript s + 1 on the RHS means taking the coefficient of ts+1 and ϕs := ϕ1 + · · ·ϕs,
defines ϕ = ϕ1 + ϕ2 + · · · inductively.

Remark 4.8. Notice that

∂̄

Π +
∑
k≥0

adkϕs

(k + 1)!
∂̄ϕs


s+1

= 0,

so the operator Ĥ, which is defined by integration along paths, is independent of the paths chosen
upon applying to these terms.

Remark 4.9. We also observe that the terms ϕs’s vanish on the direct summand (Ω∗(U)zm̂) ⊗Z
N whenever m̂ 6= km. Furthermore, we can see that each ∂̄ϕs (and all its derivatives) decay

exponentially as Os,K(e−cs,K/}) on any compact subset K ⊂ H− away from P .

We are going to analyze the behavior of ϕ as } → 0 to show that it admits an asymptotic
expansion with leading order term exactly given by ψ on X̌0(U) \ p̌−1(P ).
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4.2.2. Asymptotic analysis for the gauge ϕ. Observe that when we are considering a single wall
w = (m,P,Θ), the Maurer-Cartan solution Π and hence the gauge ϕ will be non-trivial only for
the summand (Ω∗(U)zm̂) ⊗Z N where m̂ = km for some k ∈ Z>0. We use the affine coordinates
u = (u1, . . . , un) from Notations 4.1 for each component U for all these summands.

By Remark 4.8, when dealing with closed 1-forms, we can replace the operator Ĥm̂ by the path
integral over any path with the same end points. Let us consider the path %u defined by

%u = %u1,um,⊥(t) =

{
((1− 2t)u0

1 + 2tu1, u
0
m,⊥) if t ∈ [0, 1

2 ],

(u1, (2t− 1)um,⊥ + (2− 2t)u0
m,⊥) if t ∈ [1

2 , 1],

where u0 = q (see the left picture of Figure 9). From now on, we will assume that %u is contained

in the contractible open set U by shrinking U if necessary. Then we define the operator Î by

(4.7) Î(α) =:

∫
%u

α.

By what we just said, we have Ĥm̂(αzm̂) = Î(α)zm̂ = (
∫
%u
α)zm̂ for closed 1-forms α.

We are going to apply Î, instead of Ĥ, to the closed 1-formΠ +
∑
k≥0

adkϕs

(k + 1)!
∂̄ϕs


s+1

to solve for ϕs+1 because this could somewhat simplify the asymptotic analysis below.

First of all, the first term ϕ1 can be explicitly expressed as ϕ1 =
∑

k a1kÎ(δm)zkm∂̌n, where δm is

the 1-form defined in (4.3) and ∂̌n is the affine vector field defined in (2.6).10 Since

Î(δm) =

∫
%u

δm =

(
1

}π

) 1
2
∫
%u

e−
u2

2
} du2 =

{
1 +Oloc(}) if u ∈ H+,
Oloc(}) if u ∈ H−,

we see that ϕ1 has the desired asymptotic expansion, with leading order term given by the coefficient
of t1 in ψ given in (4.2), where the notation Oloc(}) means the following:

Notations 4.10. We say that a function f(x, }) on an open subset U ×R>0 ⊂ B0×R>0 belongs to
Oloc(}l) if it is bounded by CK}l for some constant CK (independent of }) on every compact subset
K ⊂ U .

Next we consider the second term ϕ2. Notice that
[
zk1m∂̌n, z

k2m∂̌n
]

= 0 for all positive k1, k2.
Therefore we have

(4.8) [ϕ1,Π1] = −
∑
k1,k2

a1k1a1k2

(
Î(δm)(∇∂nδm)∂̌n − δm∇∂n(Î(δm))∂̌n

)
z(k1+k2)m,

where Πs refers to the coefficient of ts in Π and ∂n was introduced in (2.7).

To compute the order of } in each term in (4.8), we first have |Î(δm)| ≤ 2 from the definition of

δm in (4.3), and using the formula δm = ( 1
}π )

1
2 (e−

u2
2
} du2), we get

|Î(Î(δm)∇∂nδm)| = }
4π

∣∣ ∫
%u

Î(δm)∇gjknj ∂
∂xk

(δm)
∣∣ ≤ C}1/2

∣∣ ∫
%u

(∇gjknj ∂
∂xk

e−
u2

2
} du2)

∣∣ ≤ C}1/2.

This follows from the fact that ∇(u2)2 vanishes along P up to first order, giving an extra }1/2 upon

integrating against e−
u2

2
} . Similarly, we can show that |Î

(
δm∇∂n(Î(δm))

)
| ≤ C}1/2. Therefore we

10Note that there is a factor }
4π

in front of the expression of ∂̌n in (2.6), which will become important later when

we count the } orders in the asymptotic expansions.
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have

ϕ2 =


∑
k≥1

a2kz
km∂̌n +

∑
k≥1

Oloc(}1/2)zkm∂̌n on p̌−1(H+),∑
k≥1

Oloc(}1/2)zkm∂̌n on p̌−1(H−),

where the notation Oloc(}1/2)zkm∂̌n means a finite sum of terms of the form φzkm∂̌n with φ ∈
Oloc(}1/2).

We would like to argue that the same kind of asymptotic formula holds for a general term ϕs as

well. To study the order of } in derivatives of the function e−
u2

2
} , we need the following stationary

phase approximation (see e.g. [15]).

Lemma 4.11. Let U ⊂ Rn be an open neighborhood of 0 with coordinates x1, . . . , xn. Let ϕ : U →
R≥0 be a Morse function with unique minimum ϕ(0) = 0 in U . Let x̃1, . . . , x̃n be a set of Morse
coordinates near 0 so that ϕ(x) = 1

2(x̃2
1 + · · ·+ x̃2

n). For every compact subset K ⊂ U , there exists a
constant C = CK,N such that for every u ∈ C∞(U) with supp(u) ⊂ K, we have

(4.9) |(
∫
K
e−ϕ(x)/}u)− (2π})n/2

(
N−1∑
k=0

}k

2kk!
∆̃k(

u

=
)(0)

)
| ≤ C}n/2+N

∑
|α|≤2N+n+1

sup |∂αu|,

where ∆̃ =
∑ ∂2

∂x̃2
j
, = = ±det(dx̃dx) and =(0) = (det∇2ϕ(0))1/2. In particular, if u vanishes at 0 up

to order L, then we can take N = dL/2e and get |
∫
K e
−ϕ(x)/}u| ≤ C}n/2+dL/2e.

We will keep track of the order of } in solving the general equation (4.6), and will see that the
leading order contribution of ϕs+1 simply comes from −H(Πs+1). From the above calculation, we
learn that for the 1-form δm defined in (4.3), any differentiation ∇∂̌n(δm) will contribute an extra

vanishing of order }1/2, and hence can be considered as an error term. Systematic tracking of these
} orders during the iteration (4.6) is necessary. So we extract such properties of δm which we need
later in the following lemma.

Given a wall P ⊂ U , there is an affine foliation {Pq}q∈N of U , where each Pq is a tropical
hyperplane parallel to P and N is an affine line transversal to P which parametrizes the leaves, as
shown in Figure 5. Given any point p ∈ P and a neighborhood V ⊂ U containing p, there is an
induced affine foliation {(PV,q)}q∈N on V .

Lemma 4.12. Using u2 as a coordinate for N so that q = u2 ∈ N (recall that specific affine
coordinates (u1, . . . , un) in U have been chosen in Notations 4.1), and considering the function
g := (u2)2, we have the integral estimate∫

N
ur2

(
sup
PV,u2

|∇j(e−
g
} )|

)
du2 ≤ Cj,r,V }−

j−r
2

+ 1
2

for any j, r ∈ Z≥0.

Proof. First we notice that ∇j(e−g/}) consists of terms of the form }−M
(∏M

i=1(∇sig)
)
e−g/}, where∑

i si = j. We see that ∇l
(∏M

i=1(∇sig)
)
|P ≡ 0 for l ≤

∑M
i=1 max(0, 2− si) =: L. We observe that

the terms contributing to the lowest } power are either of the form }−b
j+1

2
cur2
∏b j+1

2
c

i=1 (∇sig)e−g/}

having si ≤ 2, or of the form }−jur2
∏j
i=1(∇sig)e−g/} having si = 1. In both cases, applying the

stationary phase approximation in Lemma 4.11 and counting the vanishing order along P , we obtain∫
N u

r
2

(
supPV,q |∇

j(e−
g
} )|
)
du2 ≤ Cj,r,V }1/2+(r+j)/2−j = Cj,r,V }(r−j)/2+1/2. �
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The reader may notice that taking the supremum supPV,u2
in Lemma 4.12 is redundant because

g is constant along the leaves of the foliation {(PV,q)}q∈N ; we write it in this way in order to match
Definition 4.19 below.

Remark 4.13. The order }−
j−r

2
+ 1

2 which appears in Lemma 4.12 is related to a similar weighted
L2 norm in [30].

4.2.3. Differential forms with asymptotic support. Motivated by the procedure of tracking the }
orders as in Lemma 4.12, we would like to formulate the notion of a differential k-form having
asymptotic support on a closed codimension k tropical polyhedral subset P ⊂ U ; by a tropical
polyhedral subset we mean a connected locally convex subset which is locally defined by affine
linear equations or inequalities over Q, as in the codimension 1 case above (Definition 3.3). Before
doing so, we first need to define the notion of a differential k-form having exponential decay, or more
precisely, having exponential order O(e−c/}); the error terms which appear in our later discussion
will be of such shape:

Notations 4.14. We will use the notation Ω∗}(B0) (similarly for Ω∗}(U)) to stand for Γ(B0 ×
R>0,

∧∗ T ∗B0), where the extra R>0 direction is parametrized by }.

Definition 4.15. We defineW−∞k (U) ⊂ Ωk
}(U) to be those differential k-forms α ∈ Ωk

}(U) such that

for each point q ∈ U , there exists a neighborhood V of q where we have ‖∇jα‖L∞(V ) ≤ Dj,V e
−cV /}

for some constants cV and Dj,V . The association U 7→ W−∞k (U) defines a sheaf over B0 which is

denoted by W−∞k .

We will also consider differential forms which only blow up at polynomial orders in }−1:

Definition 4.16. We define W∞k (U) ⊂ Ωk
}(U) to be those differential k-forms α ∈ Ωk

}(U) such that

for each point q ∈ U , there exists a neighborhood V of q where we have ‖∇jα‖L∞(V ) ≤ Dj,V }−Nj,V
for some constant Dj,V and Nj,V ∈ Z>0. The association U 7→ W∞k (U) defines a sheaf over B0

which is denoted by W∞k .

Notice that the sheaves W±∞k in Definitions 4.15 and 4.16 are closed under application of ∇ ∂
∂x

,

the deRham differential d and wedge product of differential forms. We also observe the fact that
W−∞k is a differential graded ideal of W∞k ; this will be useful later in Section 5.2. In particular,
we can consider the sheaf of differential graded algebras W∞∗ /W−∞∗ , equipped with the deRham
differential.

The following lemma will be useful in Section 5.3 (readers may skip it until Section 5.3):

Lemma 4.17. (1) Suppose that α ∈ (W∞k /W
−∞
k )(U) =W∞k (U)/W−∞k (U) (note that the sheaves

W±∞∗ are both soft sheaves) satisfies dα = 0 in (W∞k+1/W
−∞
k+1)(U). Then for any compact

family of smooth (k + 1)-chain {γu}u∈K in U , we have

|
∫
∂γu

α̂| ≤ DK,α̂e
−cK,α̂/}

for any u ∈ K, where α̂ is any choice of lifting of α to W∞k (U).

(2) For any α ∈ (W∞1 /W−∞1 )(U) and a fixed based point x0 ∈ U , the path integral fα :=
∫ x
x0 α̂,

defined locally by first choosing a contractible compact subset K ⊂ U , then a family of paths
% : [0, 1] ×K → U joining x0 to x ∈ K, and also a lifting α̂ of α to W∞1 (U), gives a well-
defined element in (W∞0 /W−∞0 )(U), meaning that for different choices of K, % and α̂, the
path integrals only differ by elements in W−∞0 (U).

Proof. For the first statement, the equation dα = 0 in (W∞k /W
−∞
k )(U) means that we have dα̂ = β

for some β ∈ W−∞k+1(U). Stokes’ Theorem then implies that
∫
∂γu

α̂ =
∫
γu
β = OK,β(e−cK,β/}).
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For the second statement, we first fix a point x ∈ U and a contractible compact subset K ⊂ U
such that x ∈ int(K), and also a lifting α̂ with dα̂ = β ∈ W−∞2 (U). Suppose that we have two
families of paths %1, %2 : [0, 1] ×K → U parametrized by K. Using contractibility of U , we have a
homotopy h : [0, 1]2×K → U between %1 and %2 satisfying h(0, ·) = %0, h(1, ·) = %1, h(·, 0) = x0 and
h(·, 1) = idK . Therefore we have %1 − %0 = ∂h, and hence the difference of the two path integrals is
given by ∫

%1(·,x)
α̂−

∫
%0(·,x)

α̂ =

∫
h(·,x)

dα̂ =

∫
h(·,x)

β =

∫
[0,1]2

h∗(β).

Taking the covariant derivatives by ∇j of this difference, we have ∇j
(∫

%1(·,x) α̂−
∫
%0(·,x) α̂

)
=∫

[0,1]2 ∇
j(h∗(β)). From the fact that β ∈ W−∞2 (U), we have |∇j(h∗(β))|(s, t, u) ≤ Dj,K,he

−cj,K,h/}

for any point (s, t, u) ∈ [0, 1]2 ×K, and therefore ‖∇j(f1,α̂ − f2,α̂)‖L∞(K) ≤ Dj,K,he
−cj,K,h/}. Hence

fα, as an element of (W∞0 /W−∞0 )(U), is independent of the choice of the family of paths %.

Now if K1,K2 are two contractible compact subsets with x ∈ int(K1 ∩K2), we can change the
family of paths parametrized by each Ki to an auxiliary one parametrized by K1 ∩K2. By above,
the path integral will only differ by elements in W−∞0 (U). Finally, for two different liftings α̂1, α̂2

of α, we have α̂1 − α̂2 ∈ W−∞1 (U) and so
∫ x
x0
α̂1 − α̂2 ∈ W−∞0 (U). This completes the proof of the

second statement. �

Notations 4.18. Let P ⊂ U be a closed codimension k tropical polyhedral subset.

(1) There is a natural foliation {Pq}q∈N in U obtained by parallel transporting the tangent space
of P (at some interior point in P ) to every point in U by the affine connection ∇ on B0.

We let νP ∈ Γ(U,
∧k(N∗P )) be a top covariant constant form (i.e. ∇(νP ) = 0) in the

conormal bundle N∗P of P (which is unique up to scaling by constants); we regard νP as a

volume form on space of leaves N if it admits a smooth structure. We also let ν∨P ∈ ∧kNP

be a volume element dual to νP , and choose a lifting of ν∨P as an element in ∧kTU (which
will again be denoted by ν∨P by abusing notations).

Figure 5. The foliation near P

(2) For any point p ∈ P , we choose a sufficiently small convex neighborhood V ⊂ U containing p
so that there exists a slice NV ⊂ V transversal to the foliation {Pq∩V } given by intersection
of {Pq}q∈N with V , i.e. a dimension k affine subspace which is transversal to all the leaves
in {Pq ∩ V }; we denote this foliation on V by {(PV,q)}q∈NV , using NV as the parameter
space. See Figure 5 for an illustration.

In V , we take local affine coordinates x = (x1, . . . xn) such that x′ := (x1, . . . , xk) parametrizes
NV with x′ = 0 corresponding to the unique leaf containing P . Using these coordinates, we
can write νP = dx1 ∧ · · · ∧ dxk and ν∨P = ∂

∂x1
∧ · · · ∧ ∂

∂xk
.
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Definition 4.19. A differential k-form α ∈ W∞k (U) is said to have asymptotic support on a closed
codimension k tropical polyhedral subset P ⊂ U if the following conditions are satisfied:

(1) For any p ∈ U \ P , there is a neighborhood V ⊂ U \ P of p such that α|V ∈ W−∞k (V ) on V.
(2) There exists a neighborhood WP of P in U such that we can write

α = h(x, })νP + η,

where νP is the volume form Notations 4.18(1), h(x, }) ∈ C∞(WP ×R>0) and η is an error
term satisfying η ∈ W−∞k (WP ) on WP (see Figure 4).

(3) For any p ∈ P , there exists a sufficiently small convex neighborhood V containing p such
that using the coordinate system chosen in Notations 4.18(2) and considering the foliation
{(PV,x′)}x′∈NV in V , we have, for all j ∈ Z≥0 and multi-index β = (β1, . . . , βk) ∈ Zk≥0, the
estimate

(4.10)

∫
x′∈NV

(x′)β

(
sup
PV,x′
|∇j(ιν∨Pα)|

)
νP ≤ Dj,V,β}−

j+s−|β|−k
2 ,

for some constant Dj,V,β and some s ∈ Z, where |β| =
∑

l βl is the vanishing order of the

monomial (x′)β = xβ1
1 · · ·x

βk
k along Px′=0.

Remark 4.20. Note that condition (3) in Definition 4.19 is independent of the choice of the convex
neighborhood V , the transversal slice NV and the choice of the local affine coordinates x = (x1, . . . xn)
(although the constant Dj,V,β may depends these choices). Therefore this condition can be checked
by choosing a sufficiently nice neighborhood V at every point p ∈ P .

Remark 4.21. The idea of putting the weight (x′)β and the differentiation ∇j in condition (3) in
Definition 4.19 comes from a similar weighted L2 norm used in [30]. In this paper, instead of L2

norms, we use a mixture of L∞ and L1 norms for the purpose of Lemma 4.22.

The estimate in condition (3) of Definition 4.19 defines the following filtration

(4.11) W−∞k · · · ⊂ W−sP ⊂ · · ·W
−1
P ⊂ W0

P ⊂ W1
P ⊂ W2

P ⊂ · · · ⊂ Ws
P ⊂ · · · ⊂ W∞k ⊂ Ωk

}(U),

where, for any given s ∈ Z, Ws
P =Ws

P (U) denotes the set of k-forms α ∈ W∞k (U) with asymptotic
support on P such that the estimate (4.10) holds with the given integer s. Note that the degree k
of the differential forms has to be equal to the codimension of P . Also note that the sets W±∞k (U)
are independent of the choice of P . This filtration keeps track of the polynomial order of } for
k-forms with asymptotic support on P , and it provides a convenient tool for us to prove and express
our results in the subsequent asymptotic analysis. In these terms, Lemma 4.12 simply means
δm ∈ W1

P (U), where P is the tropical hyperplane supporting a wall.

The filtration satisfies∇ ∂
∂xl

Ws
P (U) ⊂ Ws+1

P (U) for any l = 1, . . . , n, and (x′)βWs
P (U) ⊂ Ws−|β|

P (U)

for any affine monomial (x′)β with vanishing order |β| along P , so we have the nice property that

(4.12) (x′)β∇ ∂
∂xl1

· · · ∇ ∂
∂xlj

Ws
P (U) ⊂ Ws+j−|β|

P (U).

Lemma 4.22. For two closed tropical polyhedral subsets P1, P2 ⊂ U of codimension k1, k2 respec-
tively, we have Ws

P1
(U) ∧ Wr

P2
(U) ⊂ Wr+s

P (U) for any codimension k1 + k2 polyhedral subset P

containing P1 ∩ P2 normal to νP1 ∧ νP2 if they intersect transversally,11 and Ws
P1

(U) ∧ Wr
P2

(U) ⊂
W−∞k1+k2

(U) if their intersection is not transversal.
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Figure 6. Foliation in the neighborhood V

Before giving the proof, let us clarify that, when we say two closed tropical polyhedral subsets
P1, P2 ⊂ U of codimension k1, k2 are intersecting transversally, we mean the affine subspaces con-
taining P1, P2 and of codimension k1, k2 respectively are intersecting transversally; this definition
also applies to the case when ∂Pi 6= ∅, as shown in Figure 6.

Proof of Lemma 4.22. We first consider the case when P1 and P2 are not intersecting transversally.
Part (2) of Definition 4.19 says that we have neighborhoods WPi of Pi such that we can write
αi = hiνPi + ηi for i = 1, 2. Since νP1 ∧ νP2 = 0 in WP1 ∩WP2 by the non-transversal assumption,
we have α1 ∧ α2 ∈ W−∞k (WP1 ∩WP2) near P1 ∩ P2, and hence α1 ∧ α2 ∈ W−∞k (U) by condition (1)

in Definition 4.19 and the fact that W−∞k (U) is a differential ideal of W∞k (U).

Next we assume that P1 t P2 = Q. Let α1 ∈ Ws
P1

(U) and α2 ∈ Wr
P2

(U). Using again the fact

that W−∞k (U) is a differential ideal of W∞k (U), same reasoning as above shows that condition (1)

in Definition 4.19 holds for α1 ∧ α2 ∈ Wr+s
Q (U). Condition (2) in Definition 4.19 is also satisfied

because in this case we have νQ = νP1 ∧ νP2 in WQ = WP1 ∩WP2 . So it remains to prove condition
(3) in Definition 4.19.

Fixing a point p ∈ Q, we take an affine convex coordinate chart given by V (⊂ TpU ∼= MR)→ U
centered at 0 ∈ TpU . Then VQ := V ∩ TpQ is a neighborhood of 0 in TpQ. We take Q-affine

bases m1
2, . . . ,m

k2
2 of TpP1/TpQ and m1

1, . . . ,m
k1
1 of TpP2/TpQ respectively, and the correspond-

ing dual bases in (TpU/TpP2)∗ and (TpU/TpP1)∗. We use xi · mi =
∑ki

j=1 x
i
jm

j
i , i = 1, 2 to

stand for the natural pairing between x1 = (x1
1, . . . , x

1
k1

) ∈ (TpU/TpP1)∗ and m1
1, . . . ,m

k1
1 , and

that between x2 = (x2
1, . . . , x

2
k2

) ∈ (TpU/TpP2)∗ and m1
2, . . . ,m

k2
2 , respectively. By shrinking V

if necessary, we can write it as V =
⋃
x1∈(−δ,δ)k1

x2∈(−δ,δ)k2

(
x1 ·m1 + x2 ·m2 + VQ

)
for some small δ > 0,

as shown in Figure 6. Then we can parametrize the foliations induced by Q, P1 and P2 respec-
tively as QV,(x1,x2) = x1 ·m1 + x2 ·m2 + VQ, (P1)V,x1 = x1 ·m1 +

⋃
x2∈(−δ,δ)k2

(
x2 ·m2 + VQ

)
and

(P2)V,x2 = x2 ·m2 +
⋃
x1∈(−δ,δ)k1

(
x1 ·m1 + VQ

)
. We also extend (x1, x2) to local affine coordinates

(x1
1, . . . , x

1
k1
, x2

1, . . . , x
2
k2
, xk1+k2+1, . . . , xn) on V .

Now for α1 ∈ Wr
P1

(U) and α2 ∈ Ws
P2

(U), we first observe that we can write αi = hi(x, })dxi+ηi =

hi(x, })dxi1 ∧ · · · dxiki + ηi for i = 1, 2, and we have ∇j(h1h2) =
∑

j1+j2=j(∇j1h1)(∇j2h2). Also, any

affine monomial (x′)β (in the coordinates (x1
1, . . . , x

1
k1
, x2

1, . . . , x
2
k2

) with vanishing order |β| along Q

can be rewritten in the form (x1)β1(x2)β2 , where (xi)βi has vanishing order |βi| along Q.

11In particular we can take P = P1 ∩ P2 if codimR(P1 ∩ P2) = k1 + k2.
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Since the error terms ηi’s are not contributing when we count the polynomial order in }−1, it
remains to estimate a term of the form (x1)β1(x2)β2(∇j1h1)(∇j2h2). We have∫

(x1,x2)∈(−δ,δ)k1+k2

(x1)β1(x2)β2 sup
QV,(x1,x2)

|(∇j1h1)(∇j2h2)|dx1dx2

=

∫
x2∈(−δ,δ)k2

(x2)β2

(∫
x1∈(−δ,δ)k1

(x1)β1 sup
QV,(x1,x2)

|(∇j1h1)(∇j2h2)|dx1

)
dx2

≤
∫
x2

(x2)β2 sup
(P2)V,x2

|(∇j2h2)|

(∫
x1

(x1)β1 sup
QV,(x1,x2)

|(∇j1h1)|dx1

)
dx2

≤Dj1,V,(x1)β1}−
j1+s−|β1|−k1

2

∫
x2

(x2)β2 sup
(P2)V,x2

|(∇j2h2)|dx2

≤Dj1,V,(x1)β1Dj2,V,(x2)β2}−
j1+s−|β1|−k1

2 }−
j2+r−|β2|−k2

2 ≤ Dj,V,xβ}−
j+s+r−|β|−k

2 ,

which gives the desired estimate in condition (3) of Definition 4.19. �

For a given closed tropical polyhedral subset P ⊂ U , we choose a reference tropical hyperplane
R ⊂ U which divides the base U as U \ R = U+ ∪ U− such that P ⊂ U+, together with an affine
vector field v (meaning ∇v = 0) not tangent to R pointing into U+. We let

(4.13) I(P ) := (P + R≥0v) ∩ U
be the image swept out by P under the flow of v.

By shrinking U if necessary, we can assume that for any point p ∈ U , the unique flow line of v in
U passing through p intersects R uniquely at a point x ∈ R. Then the time-t flow along v defines a
diffeomorphism τ : W → U, (t, x) 7→ τ(t, x), where W ⊂ R×R is the maximal domain of definition
of τ (namely, for any x ∈ R, there is a maximal time interval Ix ⊂ R so that the flow line through
x has its image lying inside U). For any point x ∈ R, we denote by τx(t) := τ(t, x) the flow line of
v passing through x. Figure 7 illustrates the situation.

Figure 7. The flow along v and I(P )

We now define an integral operator I as

(4.14) I(α)(t, x) :=

∫ t

0
ι ∂
∂s

(τ∗(α))(s, x)ds.

Note that I depends on the choice of the tropical hyperplane R.
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Lemma 4.23. For α ∈ Ws
P (U), we have I(α) ∈ W−∞k−1(U) if v is tangent to P , and I(α) ∈ Ws−1

I(P )(U)

if v is not tangent to P , where I(P ) is defined in (4.13).

Proof. In order to simplify notations in this proof, we will omit τ∗ in the definition (4.14) of I by
treating τ : W → U as an affine coordinate chart.

Suppose that v is tangent to P . By condition (2) of Definition 4.19, we have a neighborhood
WP ⊂ U such that α = hνP + η. For each point x ∈ R, the path τx(t) is tangent to the foliation
{Pq}q∈N in WP whenever τx(t) ∈ WP by the tangency assumption. This means ι ∂

∂t
(νP ) = 0 in

τ−1
x (WP ) and hence we have

I(α)(t, x) =

∫
[0,t]

ι ∂
∂s
α(s, x)ds =

∫
[0,t]∩τ−1

x (U\WP )
ι ∂
∂s
α(s, x)ds+

∫
[0,t]∩τ−1

x (WP )
ι ∂
∂s
η(s, x)ds.

So we have I(α) ∈ W−∞k−1(U) by conditions (1) and (2) of Definition 4.19.

Now suppose that v is not tangent to P . Let I(WP ) :=
⋃
t≥0(WP + t · v)∩U, which gives an open

neighborhood of I(P ). Concerning condition (1) in Definition 4.19, we take τ(t0, x0) ∈ U \ I(P ),
and then a neighborhood V of τ(t0, x0) in U \ I(P ) and a neighborhood W ′P ⊂WP of P , such that,

for any point τ(t, x) ∈ V , the flow line joining τ(t, x) to R does not hit W ′P . This implies that

I(α)|V ∈ W−∞k−1(V ) since we have α|
U\W ′P

∈ W−∞k (U \W ′P ) and

I(α)(t, x) =

∫ t

0
ι ∂
∂s
α(s, x)ds =

∫
[0,t]∩τ−1

x (U\W ′P )
ι ∂
∂s
α(s, x)ds.

So condition (1) in Definition 4.19 holds for I(α).

Concerning condition (2) in Definition 4.19, we first note that v = ∂
∂t is tangent to I(P ), so by

parallel transporting the form ι ∂
∂t
νP to the neighborhood I(WP ), we obtain a volume element in

the normal bundle of I(P ), which we denote by νI(P ). For a point q ∈ I(WP ), we take a small
neighborhood V near q, and for τ(t, x) ∈ V , we write

I(α)(t, x) =

∫ t

0
ι ∂
∂s
α(s, x)ds =

∫
[0,t]∩τ−1

x (U\WP )
ι ∂
∂s
α(s, x)ds+

∫
[0,t]∩τ−1

x (WP )
ι ∂
∂s

(hνP + η)(s, x)ds

=

(∫
[0,t]∩τ−1

x (WP )
h(s, x)ds

)
νI(P ) +

∫
[0,t]∩τ−1

x (WP )
ι ∂
∂s
η(s, x)ds+

∫
[0,t]∩τ−1

x (U\WP )
ι ∂
∂s
α(s, x)ds,

where the last two terms are in W−∞k−1(V ), and condition (2) in Definition 4.19 holds for I(α)..

Concerning condition (3) in Definition 4.19, we fix a point p = τ(b, x) ∈ I(P ) and let p′ = τ(a, x) ∈
P be the unique point such that p, p′ lie on the same flow line τx. We take local affine coordinates
x = (x1, . . . , xk−1, xk, . . . , xn−1) ∈ (−δ, δ)n−1 of R centered at p′ (meaning that p′ = (a, 0)) such
that x′ = (x1, . . . , xk−1) are normal to the tropical polyhedral subset pR(τ−1(P )) ⊂ R, where
pR : W (⊂ R×R)→ R is the natural projection.

By taking δ small enough, we have τ : (a− δ, b+ δ)× (−δ, δ)n−1 → U mapping diffeomorphically
onto its image, such that it contains the part the flow line τ0|[a,b] joining p′ to p. We can also take

V = τ((b−δ, b+δ)×(−δ, δ)n−1) with τ(b, 0) = p, and arrange that V ′ = τ((a−δ, a+δ)×(−δ, δ)n−1) ⊂
WP with τ(a, 0) = p′. Notice that there is a possibility that p = p′ ∈ P and therefore a = b in the
above description which means V = V ′. Figure 8 illustrates the situation.

Recall that there is a foliation {Pq}q∈N codimension k affine subspaces parallel to P . Then the
induced foliation {Pt,x′}(t,x′)∈NV ′ of the neighborhood V ′ can be parametrized by NV ′ := (a− δ, a+

δ) × (−δ, δ)k−1. Therefore the foliation of V induced by I(P ) is parametrized as {I(P )x′}x′∈NV ,

where I(P )x′ =
⋃
t∈(b−δ,b+δ)(P0,x′ + tv) and NV = (−δ, δ)k−1.
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Figure 8. Neighborhood along the flow line τ0(t)

For α ∈ Ws
P , we consider I(α) =

∫ t
0 ι ∂∂s

α(s, x)ds in the neighborhood V , and what we need to

estimate is the term
∫
NV

(x′)β supI(P )x′
|∇jιν∨

I(P )
I(α)|νI(P ). The integral I(α) can be split into two

parts as
∫ t

0 =
∫ a−δ

0 +
∫ t
a−δ and we only have to control the second part Ia−δ(α) :=

∫ t
a−δ ι ∂∂t

α(s, x)ds

because α ∈ Ws
P (U) satisfies condition (1) in Definition 4.19, so

∫ a−δ
0 ι ∂

∂s
α(s, x)ds, as a function of

(t, x) which is constant in t, lies in W−∞k−1(U) (as the integral misses the support P of α). Writing

∇j = ∇j1⊥∇
j2
∂
∂t

, where ∇⊥(t) = 0, we have two cases depending on whether j2 = 0 or j2 > 0:

Case 1: j2 = 0. Then we have

|∇j⊥ιν∨I(P )
(Ia−δ(α))| ≤

∫ a+δ

a−δ
|∇j⊥(ιν∨Pα)|ds+

∫ b+δ

a+δ
|∇j⊥(ιν∨Pα)|ds.

The latter term can be dropped because the domain
∫ b+δ
a+δ misses the support of P , so it lies inW−∞k−1 .

For the first term, we treat
∫ a+δ
a−δ |∇

j
⊥(ιν∨Pα)|ds as a function of (t, x) on V which is constant along

the t-direction. Therefore we estimate∫
x′

(x′)β sup
I(P )x′

(∫ a+δ

a−δ
|∇j⊥(ιν∨Pα)|ds

)
νI(P ) =

∫
x′

(x′)β sup
P0,x′+bv

(∫ a+δ

a−δ
|∇j⊥(ιν∨Pα)|ds

)
νI(P )

≤
∫
x′

sup
P0,x′+bv

(∫ a+δ

a−δ
(x′)β sup

Ps,x′
|∇j⊥(ιν∨Pα)|ds

)
νI(P ) =

∫
x′

(∫ a+δ

a−δ
(x′)β sup

Ps,x′
|∇j⊥(ιν∨Pα)|ds

)
νI(P )

≤Cj,V ′,β}−
j+s−|β|−k

2 ,

where the first inequality follows from the inequality∫ a+δ

a−δ
|∇j⊥(ιν∨Pα)|ds ≤

∫ a+δ

a−δ
sup
Pt,x′
|∇j⊥(ιν∨Pα)|ds,

and the second equality is due to the fact that
∫ a+δ
a−δ supPt,x′ |∇

j
⊥(ιν∨Pα)|ds, treated as function on V ,

is constant along the leaf P0,x′ + bv. Writing j + s− |β| − k = j + (s− 1)− |β| − (k − 1), we obtain

the desired estimate so that α ∈ Ws−1
I(P )(U).
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Case 2: j2 > 0. Then we have ∇j2∂
∂t

ιν∨
I(P )

(Ia−δ(α)) = ∇j2−1
∂
∂t

(ιν∨Pα). We can rewrite it as

∇j1⊥∇
j2
∂
∂t

ιν∨
I(P )

(Ia−δ(α))(t, x) =

∫ t

a−δ
∇j(ιν∨Pα)(s, x)ds+

(
∇j2−1

∂
∂t

∇j1⊥ (ιν∨Pα)

)
(a− δ, x),

where the latter term lies in W−∞k−1 because it misses the support P of α, and the first term is
bounded by

|
∫ t

a−δ
∇j(ιν∨Pα)(s, x)ds| ≤

∫ a+δ

a−δ
|∇j(ιν∨Pα)|(s, x)ds+

∫ b+δ

a+δ
|∇j(ιν∨Pα)|(s, x)ds.

The same argument as Case 1 can then be applied to get the desired estimate. �

Remark 4.24. Lemmas 4.22 and 4.23 say that we can relate the differential-geometric operations
∧ and I to intersection and suspension of asymptotic supports. These properties are essential for
relating Maurer-Cartan solutions, which are differential-geometric in nature, to combinatorics of
scattering diagrams.

In order to apply the notion of asymptotic support to keep track of the } order in asymptotic ex-
pansions of the gauge element ϕs = ϕ1+ϕ2+· · ·+ϕs, we will restrict our attention to the dg Lie sub-
algebra (

⊕
mW∞∗ (U)zm)⊗ZN ⊂ G∗(U), whose elements are finite sums of the form

∑
m,n α

n
mz

m∂̌n,

where αnm ∈ W∞∗ (U). Restriction of Ĥ defined in Definition 4.5 to (
⊕

mW∞∗ (U)zm)⊗ZN gives the

homotopy operator Ĥ : (
⊕

mW∞∗ (U)zm)⊗ZN →
(⊕

mW∞∗−1(U)zm
)
⊗ZN defined as Ĥ

(∑
m,n α

n
mz

m∂̌n

)
=∑

m,n

∫ 1
0 ρ
∗
q(α

n
m)zm∂̌n, using ρq in Definition 4.5. We also write Î

(∑
m,n α

n
mz

m∂̌n

)
=
∑

m,n Î(αnm)zm∂̌n

when the αnm’s are 1-forms. Extending Lemma 4.22 to this dg Lie subalgebra, we have the following:

Lemma 4.25. Given m1,m2 ∈ M , n1, n2 ∈ N , and α1 ∈ Ws
P1

(U) and α2 ∈ Wr
P2

(U). If P1 of
codimension k1 intersects P2 of codimension k2 transversally, then we have

[α1z
m1 ∂̌n1 , α2z

m2 ∂̌n2 ] ∈ α1 ∧ α2z
m1+m2 ∂̌(m2,n1)n2−(m1,n2)n1

+Wr+s−1
P (U)zm1+m2 ⊗Z N

and α1 ∧ α2 ∈ Wr+s
P (U) for any codimension k1 + k2 polyhedral subset P containing P1 ∩ P2

normal to νP1 ∧ νP2. If the intersection is not transversal, then we have [α1z
m1 ∂̌n1 , α2z

m2 ∂̌n2 ] ∈
W−∞k (U)zm1+m2 ⊗Z N.

Proof. From the definition of the Lie bracket we have

[α1z
m1 ∂̌n1 , α2z

m2 ∂̌n2 ] =α1 ∧ α2z
m1+m2 ∂̌(m2,n1)n2−(m1,n2)n1

+ α1 ∧∇∂1(α2)zm1+m2 ∂̌n2 ± α2 ∧∇∂2(α1)zm1+m2 ∂̌n1

When P1 and P2 are intersecting transversally and let P as above, Lemma 4.22 says that α1 ∧α2 ∈
Wr+s
P (U), so it remains to show that the last two terms are lying in Wr+s−1

P (U)zm1+m2 ⊗Z Λ∨B0
.

Notice that we have ∇∂n1
(α1) ∈ Ws−1

P1
(U) and ∇∂n1

(α2) ∈ Wr−1
P2

(U) and hence result follows by
applying Lemma 4.22 again. When P1 and P2 are not intersecting transversally, it follows from the
non-transversal case of Lemma 4.22 that all the terms lie in W−∞k (U)zm1+m2 ⊗Z N . �

Remark 4.26. The terms zm1+m2 ∂̌(m2,n1)n2−(m1,n2)n1
which appear in Lemma 4.25 come from

[zm1 ∂̌n1 , z
m2 ∂̌n2 ] using the formula 2.8. In particular, if we have both (m1, n1) = 0 and (m2, n2) = 0

(which means that both zm1 ∂̌n1 and zm2 ∂̌n2 are elements in the tropical vertex group), then the
leading order term of [α1z

m1 ∂̌n1 , α2z
m2 ∂̌n2 ] is given by α1 ∧ α2z

m1+m2 ∂̌(m2,n1)n2−(m1,n2)n1
, and

zm1+m2 ∂̌(m2,n1)n2−(m1,n2)n1
is an element in the tropical vertex group as well. This property will

be important to us in Section 5.3.

At this point we are ready to go back to the asymptotic analysis of the gauge ϕ. Recall that
there are two integral operators: Î defined in (4.7) and I defined in (4.14). If we restrict ourselves
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to differential 1-forms, we can treat both Î and I as path integrals, where the choices of paths differ
only by a path lying inside R, as shown in Figure 9. (Indeed, the requirement that, for any point
p ∈ U , the unique flow line of v in U passing through p intersects R uniquely at a point x ∈ R when
we define I is equivalent to the condition that U contains the path %u when we define Î.)

Figure 9. The difference between I and Î

The key observation is that Lemma 4.23, which applies to the operator I, can be applied to Î as
well because R is chosen so that R∩P = ∅, and hence integration of terms with asymptotic support
on R over any path in R will produce elements in W−∞∗ (U).

We show by induction that the term Î

(∑
k≥0

adkϕs

(k+1)! ∂̄ϕ
s

)
s+1

does not contribute to the leading

} order term in ϕs+1 defined in (4.6). For that we take P to be codimension 1 hyperplane in U .

Lemma 4.27. For the gauge ϕ = ϕ1 + ϕ2 + · · · defined iteratively by (4.6), we have

ϕs ∈
⊕
k≥1

W0
I(P )(U)zkm∂̌nt

s; adlϕs(∂̄ϕ
s) ∈

⊕
k≥1

1≤j≤s(l+1)

W0
P (U)zkm∂̌nt

j

for all s ≥ 1 and l ≥ 1, where ϕs = ϕ1 + ϕ2 + · · ·+ ϕs.

Proof. We prove by induction on s. The s = 1 case concerns the term ϕ1 = −Î(Π1), and we have
adlϕ1

(∂̄ϕ1) = −adlϕ1
(Π1). Now Π1 ∈

⊕
k≥1W1

P (U)zkm∂̌nt
1 from Definition 4.2, so we have ϕ1 =

−Î(Π1) ∈
⊕

k≥1W0
I(P )(U)zkm∂̌nt

1 by Lemma 4.23. Applying Lemma 4.25 l times, together with

the fact that I(P ) and P intersect transversally, we have −adlϕ1
(Π1) ∈

⊕
k≥1

1≤j≤l+1
W0
P (U)zkm∂̌nt

j .

The key here is that all the terms are linear combinations of zkm∂̌n’s, between which the Lie bracket
vanish since m is tangent to P and n is normal to P , and hence the leading contribution in Lemma
4.25 vanishes.

Now we assume that the statement is true for all s′ ≤ s. The induction hypothesis together with
the fact that Πs+1 ∈

⊕
k≥1W1

P (U)zkm∂̌nt
s+1 imply that

∂̄ϕs+1 = −

Π +
∑
l≥0

adlϕs

(l + 1)!
∂̄ϕs


s+1

∈
⊕
k≥1

W1
P (U)zkm∂̌nt

s+1.

Applying Lemma 4.23 to ϕs+1 = −Î
(

Π +
∑

l≥0

adlϕs

(l+1)! ∂̄ϕ
s

)
s+1

then gives ϕs+1 ∈
⊕

k≥1W0
I(P )z

km∂̌nt
s+1.

The second statement follows by applying Lemma 4.25 multiple times with the same reasoning as
above. This completes the proof. �
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By Lemma 4.27, we have

(4.15) ϕs ∈ −Î(Πs) +
⊕
l≥1

Î(W0
P )(U)zlm∂̌nt

s

for all s. Lemma 4.23 tells us that Î(W0
P (U)) ⊂ W−1

I(P )(U), so −Î(Πs) ∈ W0
I(P )(U) is the only term

which contributes to the leading order in }. Since I(P ) is of codimension 0, W−1
I(P )(U) ⊂ Oloc(}1/2)

(where Oloc(}1/2) is defined in Notations 4.10). We conclude that:

Proposition 4.28. For the gauge ϕ = ϕ1 + ϕ2 + · · · defined iteratively by (4.6), we have

ϕs ∈


∑
k≥1

askz
km∂̌nt

s +
⊕
k≥1

W−1
I(P )(U)zkm∂̌nt

s on p̌−1(H+),⊕
k≥1

W−∞0 (U)zkm∂̌nt
s on p̌−1(H−);

which implies that ϕ = ψ+
∑

j,k≥1Oloc(}1/2)zkm∂̌nt
j over p̌−1(U\P ), or equivalently, ϕ̌ := F−1(ϕ) =

ψ̌ +
∑

j,k≥1Oloc(}1/2)zkm∂̌nt
j over X̌0 \ p̌−1(P ).

Remark 4.29. Recall that the ansatz in Definition 4.2 is defined by multiplying δm to the wall
crossing factor Log(Θ). But indeed the only properties that we need are δm ∈ W1

P (U), and Î(δm)
has its leading } order term given by 1 on H+.

So Proposition 4.28 still holds for any solution to the Maurer-Cartan equation in Proposition 4.4

(or more generally, to the Maurer-Cartan equation of the quotient dgLa ĝ∗/E∗(U) to be introduced
in Section 5.2.1) of the form Π ∈ −

∑
j,k≥1(ajkδjk +W0

P (U))zkm∂nt
j with ∂̄Π = 0 such that each

δ
(i)
jk ∈ W

1
Pi

(U) and can be written as δ
(i)
jk = (π})−1/2e−

x2

} dx in some neighborhood WPi of Pi, where

x is some affine linear function on WPi such that Pi is defined by x = 0 locally and ινPidx > 0.

5. Maurer-Cartan solutions and scattering diagrams

In this section, we interpret the local scattering process, which produces a consistent extension
S(D) of a scattering diagram D consisting of two non-parallel walls, as arising from semiclassical
limits (as }→ 0) of a solution of the Maurer-Cartan (MC) equation.

5.1. Solving Maurer-Cartan equations in general. Let us begin by reviewing the process of
solving MC equations in a general dgLa (G∗, ∂̄, [·, ·]). We will apply Kuranishi’s method [38] to
solve the MC equation using a homotopy which retracts G∗ to its cohomology and acts as the gauge
fixing (see e.g. [35]).

Suppose that we are given an input Π = Π1 + Π2 + · · · ∈ G1 ⊗m satisfying ∂̄Π = 0, where
Πk ∈ G1 ⊗mk is homogeneous of degree k in t. We attempt to find Ξ = Ξ2 + Ξ3 + · · · ∈ G1 ⊗m,
where Ξk ∈ G1 ⊗mk is homogeneous of degree k in t, such that Φ := Φ1 + Φ2 + · · · ∈ G1 ⊗m,
where each term Φk := Πk +Ξk ∈ G1 ⊗mk is homogeneous of degree k in t, gives a solution of the
following MC equation, i.e.

(5.1) ∂̄Φ +
1

2
[Φ,Φ] = 0.

We assume that there are chain maps ι, P and homotopy H

(5.2) H∗(G∗)
ι

++G∗

P
mm Hcc ,
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such that P ◦ ι = Id, and Id − ι ◦ P = ∂̄H + H∂̄. Then, instead of the MC equation, we look for
solutions Φ of the equation

(5.3) Φ = Π− 1

2
H[Φ,Φ].

This originates from a method of Kuranishi [38] used to solve the MC equation of the Kodaira-
Spencer dgLa. His method can be generalized to a general dgLa as follows (see e.g. [43])

Proposition 5.1. Suppose that Φ satisfies the equation (5.3). Then Φ satisfies the MC equation
(5.1) if and only if P[Φ,Φ] = 0.

In general, the k-th equation of the above equation (5.3) is given by

(5.4) Ξk +
∑
j+l=k

1

2
H[Φj ,Φl] = 0,

and Ξk (recall that Ξ = Φ − Π) is uniquely determined by Ξj , j < k. In this way, the solution Ξ
to (5.3) is uniquely determined.

There is a beautiful way to express the unique solution Ξ as a sum of terms involving the input
Π over directed trees (reminiscent of a Feynman sum). To this end, we will introduce the notions
of a directed tree and a directed tree with ribbon structure, following [20].

Definition 5.2. A (directed) k-tree T consists of the following data:

• a finite set of vertices T̄ [0] together with a decomposition T̄ [0] = T
[0]
in tT [0] t{vo}, where T

[0]
in ,

called the set of incoming vertices, is a set of size k and vo is called the outgoing vertex (we

also write T
[0]
∞ := T

[0]
in t {vo}),

• a finite set of edges T̄ [1], and
• two boundary maps ∂in, ∂o : T̄ [1] → T̄ [0] (here ∂in stands for incoming and ∂o stands for

outgoing)

satisfying all of the following conditions:

(1) Every vertex v ∈ T [0] is trivalent, and satisfies #∂−1
o (v) = 2 and #∂−1

in (v) = 1.

(2) Every vertex v ∈ T [0]
in has valency one, and satisfies #∂−1

o (v) = 0 and #∂−1
in (v) = 1; we let

T [1] := T̄ [1] \ ∂−1
in (T

[0]
in ).

(3) For the outgoing vertex vo, we have #∂−1
o (vo) = 1 and #∂−1

in (vo) = 0; we let eo := ∂−1
o (vo)

be the outgoing edge and denote by vr ∈ T [0]
in t T [0] the unique vertex (which we call the root

vertex) with eo = ∂−1
in (vr).

(4) The topological realization |T̄ | :=
(∐

e∈T̄ [1] [0, 1]
)
/ ∼ of the tree T is connected and simply

connected; here ∼ is the equivalence relation defined by identifying boundary points of edges
if their images in T [0] are the same.

Two k-trees T1 and T2 are isomorphic if there are bijections T̄
[0]
1
∼= T̄

[0]
2 and T̄

[1]
1
∼= T̄

[1]
2 preserving

the decomposition T̄
[0]
i = T

[0]
i,intT

[0]
i t{vi,o} and boundary maps ∂i,in and ∂i,o. The set of isomorphism

classes of k-trees will be denoted by Tk. For a k-tree T , we will abuse notations and use T (instead
of [T ]) to denote its isomorphism class.

Definition 5.3. A ribbon structure on a k-tree is a cyclic ordering of ∂−1
in (v) t ∂−1

o (v) for each

v ∈ T [0]. Equivalently, it can be regarded as an embedding |T | ↪→ D of |T | into the unit disc D ⊂ R2

mapping T
[0]
∞ to ∂D, from which the cyclic ordering is induced by the clockwise orientation on D.

We will use T to denote a ribbon k-tree, and T to denote the k-tree underlying T.
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Two ribbon k trees T1 and T2 are isomorphic if they are isomorphic as k-trees and the isomor-
phism preserves the cyclic ordering. The set of isomorphism classes of ribbon k-trees will be denoted
by RTk. We will again abuse notations by using T to denote an isomorphism class of ribbon k-trees.

Definition 5.4. Given a ribbon k-tree T ∈ RTk, we label the incoming vertices by v1, . . . , vk ac-
cording to its cyclic ordering (or the clockwise orientation on D if we use the embedding |T | ↪→ D).
We define the operator lk,T : L[1]⊗k → L[1] by

(1) aligning the inputs ζ1, . . . , ζk ∈ L at the vertices v1, . . . , vk respectively,

(2) applying m2 at each vertex in T[0], where m2 : L[1]⊗L[1]→ L[1] is the the graded symmetric

operator on L[1] (= L shifted by degree 1) defined by m2(α, β) := (−1)ᾱ(β̄+1)[α, β] (here ᾱ
and β̄ denote degrees of the elements α, β ∈ L respectively), and

(3) applying the homotopy operator −H to each edge in T[1].

We then define lk : L[1]⊗k → L[1] by lk :=
∑

T∈RTk
1

2k−1 lk,T.

The operation lk,T can be symmetrized to give the following operation Ik,T associated to a k-tree
T ∈ Tk:

Definition 5.5. Given a k-tree T ∈ Tk, let T ∈ RTk be a ribbon tree whose underlying tree is

T = T . We consider the set Σk := {σ | σ : T
[0]
in → {1, . . . , k}}. Then we define the operator

Ik,T : Symk(L[1])→ L[1] by

Ik,T (ζ1, . . . , ζk) :=
∑
σ∈Σk

(−1)χ(σ,~ζ)lk,T(ζσ(1), . . . , ζσ(k));

here the sign (−1)χ(σ,~ζ) is determined by the rule that, when the permutation (ζ1, . . . , ζk) 7→ (ζσ(v1), . . . , ζσ(vk))
is decomposed as a product of transpositions, each transposition interchanging ζi and ζj contributes

(−1)(ζ̄i+1)(ζ̄j+1) (where ζ̄i denotes the degree of ζi ∈ L). Note that Ik,T is independent of the choice

of the ribbon tree T. We then define Ik : Symk(L[1])→ L[1] by Ik =
∑

T∈Tk
Ik,T
|Aut(T )| , where |Aut(T )|

is the order of the automorphism group of a k-tree T .

Setting

(5.5) Ξ :=
∑
k≥2

1

k!
Ik(Π, . . . ,Π) =

∑
k≥2

lk(Π, . . . ,Π),

then

(5.6) Φ := Π +Ξ =
∑
k≥1

1

k!
Ik(Π, . . . ,Π) =

∑
k≥1

lk(Π, . . . ,Π),

is the unique solution to the equation (5.3) obtained from recursively solving (5.4)

The equality between the two sums in (5.5) (and hence those in (5.6)) follows from the facts that
the inputs are all the same and of degree 1, and simple combinatorial arguments in counting of
trees. Also note that the sums in (5.6) are finite sums (mod mN+1) for every N ∈ Z>0 because
Π = Π1 + Π2 + · · · and Πk ∈ G1 ⊗R mk so that, modulo mN+1, there are only finitely many trees
and finitely many Πk’s involved.

Remark 5.6. Both the operators Ik,T and lk,T will be used, but for different purposes: lk,T does not
involve automorphisms of trees, so it will be used in Section 5.2.3 to simplify some of the notations;
while Ik,T is conceptually more relevant to operations on dgLa’s, as we will see later.

Remark 5.7. Sum-over-trees formulas similar to 5.6 appear quite often in the literature, in partic-
ular in applications of the homological perturbation lemma [36] and study of L∞ (or A∞) structures
[20].
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5.2. Scattering of two non-parallel walls. Suppose we are given two non-parallel walls w1 =
(m1, P1,Θ1), and w2 = (m2, P2,Θ2) where P1, P2 are oriented tropical hyperplanes intersecting in
a codimension 2 tropical subspace Q := P1 ∩ P2 in an affine convex coordinate chart U ⊂ B0. The

ansatz in Definition 4.2 gives two Maurer-Cartan (abbrev. MC) solutions Πwi ∈ Ĝ1(U), i = 1, 2,

but their sum Π := Πw1 + Πw2 ∈ Ĝ1(U) does not solve the MC equation (5.1).

As we mentioned in the Introduction, the method of Kuranishi [38] with a specific choice of the

homotopy operator allow us to construct from Π a MC solution Φ of Ĝ1(U) up to errors terms with

exponential order in }−1, i.e. terms of the form O(e−c/}).12 More precisely, we will construct MC

solutions of the dgLa ĝ∗/E∗(U), which is a quotient of a sub-dgLa of Ĝ∗(U), and show that they
naturally give rise to consistent scattering diagrams.

We will first introduce the dgLa ĝ∗/E∗(U) in Section 5.2.1 and construct a specific homotopy op-
erator H in Section 5.2.2, before starting the asymptotic analysis of the MC solutions we constructed
in Sections 5.2.3 and 5.2.4. The key results are Theorem 5.25 and Lemma 5.35.

5.2.1. Solving the MC equation modulo error terms with exponential order in }−1.

Definition 5.8. We define a dg-Lie subalgebra in G∗N (U) by

g∗N (U) :=

(⊕
m

W∞∗ (U)zm

)
⊗Z Λ∨B0

(U)⊗C (R/mN+1),

where W∞∗ (U) ⊂ Ω∗}(U) is the space of differential forms with polynomial }−1 order defined in 4.16.

A general element of g∗N (U) is a finite sum of the form
∑

j

∑
m,n α

n
jmz

m∂̌nt
j , where αnjm ∈ W∞∗ (U).

We have the inverse limit ĝ∗(U) := lim←−g∗N (U).

There is a dg-Lie ideal E∗N (U) of g∗N (U) containing exponentially decay errors terms in }−1:

(5.7) E∗N (U) :=

(⊕
m

W−∞∗ (U)zm

)
⊗Z Λ∨B0

(U)⊗C (R/mN+1),

where W−∞∗ (U) ⊂ Ω∗}(U) is the space of differential forms with exponential }−1 order as in 4.15.

Then we take the quotient

(5.8) g∗N (U)/E∗N (U) =

(⊕
m

(
W∞∗ (U)/W−∞∗ (U)

)
zm

)
⊗Z Λ∨B0

(U)⊗C (R/mN+1)

and define the dgLa ĝ∗/E∗(U) as the inverse limit ĝ∗/E∗(U) := lim←−(g∗N (U)/E∗N (U)).

Remark 5.9. The advantage of working with the quotient W∞∗ /W−∞∗ is that, given any element
α ∈ Ws

P (U) and any cut off function χ (independent of }) such that χ ≡ 1 in a neighborhood of
P , we have α = χα in the quotient Ws

P (U)/W−∞∗ (U), so an element in Ws
P (U)/W−∞∗ (U) can be

treated as a delta function supported along P .

Lemma 5.10. For the dgLa g∗N (U)/E∗N (U) in a contractible open subset U , we have H>0(g∗N (U)/E∗N (U)) =
0 and

H0(g∗N (U)/E∗N (U)) =

(⊕
m

H0(W∞∗ (U)/W−∞∗ (U))zm

)
⊗Z Λ∨B0

(U)⊗C (R/mN+1)

where

H0(W∞∗ (U)/W−∞∗ (U)) =
{f : R>0 → R | |f(})| ≤ C}−N for some C and N}
{f : R>0 → R | |f(})| ≤ Ce−c/} for some c and C}

.

12Π is not a MC solution even up to such errors terms.
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The proof of the above Lemma 5.10 relies on construction of homotopy operator. We will give
the proof using the homotopy operator H constructed in Section 5.2.2 when U is a spherical neigh-
borhood as described in Notation 5.11; the proof of a general contractible U works exactly in the
same way by using the homotopy operator constructed from the map ρx0 : [0, 1] × U → U which
contracts U to a point x0.

5.2.2. Construction of the homotopy operator. Recall from Section 5.1 that a homotopy operator H
(sometimes called a propagator) is needed for gauge fixing if we want to apply Kuranishi’s method
to solve the MC equation. To define this (and other operators), we may need to shrink U to a
spherical neighborhood as follows.

Notations 5.11. Suppose that we have two non-parallel walls wi = (mi, Pi,Θi) (i = 1, 2) inter-
secting transversally in a codimension 2 tropical subspace Q := P1 ∩ P2 in an affine convex open
subset V ⊂ B0. We fix a point q0 ∈ Q. By reversing the orientations on Pi’s (and replacing Θi by
Θ−1
i accordingly) if necessary, we can choose the oriented normals of P1 and P2 to be −m1 = −νP2

and −m2 = νP1 . We orient the rank 2 normal bundle NQ by the ordered basis {−m1,−m2}. By
identifying an open neighborhood of the zero section in the normal bundle NQ with a tubular neigh-
borhood of Q in B0, we see that the two walls are dividing V ∩ NQ into 4 quadrants; this can be
visualized in the 2-dimensional slice V ∩NQq0 in V ∩NQ, as shown in Figure 10

Figure 10. The slice V ∩NQq0 in V ∩NQ.

Now we fix local affine coordinates in V near q0, and choose an affine flat metric gV with the
property that m1, m2 and TQ are perpendicular to each other. Then we choose a point x0 in the
third quadrant in NQq0 (see Figure 10) with x0 /∈ (P1 ∪ P2) and a ball U ⊂ V (defined using
the metric gV ) centered at x0 which contains q0. We fix this neighborhood U centered at x0 and
call it a spherical neighborhood; see Figure 11. From this point on, we will work with a spherical
neighborhood U ⊂ B0 for the rest of this paper.

Since TU = ΛB0 ⊗Z R and Γ(U,ΛB0) ∼= M , we can identify an element 0 6= m ∈M with an affine
vector field m ∈ Γ(U,ΛB0) ⊂ Γ(U, TU) (with respect to the affine structure on B0). We denote by
U⊥m the tropical hyperplane perpendicular to m with respect to the metric gV . Then U⊥m divides U
into two half-spheres U+

m and U−m, which are named so that −m is pointing into U+
m. The property

that m1, m2 and TQ are perpendicular to each other then implies that

(5.9) Q ∩ U ⊂ U+
a1m1+a2m2

for all (a1, a2) ∈ (Z≥0)2 \ {0}; see Figure 11.

To define a homotopy operator on g∗N (U), we will first define one on the direct sum
⊕

mW∞∗ (U)zm

and extend it by taking tensor product. For each m ∈ M , recall that we have ∂̄(αzm) = d(α)zm,
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Figure 11. The spherical neighborhood U .

where d is the deRham differential on U . So the cohomology H∗(W∞∗ (U)zm, ∂̄) = {f : R>0 →
R | |f(})| ≤ C}−N for some C and N} is represented by functions depending only on } and with
polynomial growth in }−1.

We are going to construct a homotopy operatorHm onW∞∗ (U)zm which retracts to its cohomology
H∗(W∞∗ (U)zm) = H∗(W∞∗ (U))zm. The hyperplane U⊥m we chose above is playing the role of the
reference hyperplane R when we define the operator I in (4.14) in Section 4.2.3. In the current
situation, we need a family of reference hyperplanes U⊥a1m1+a2m2

, and the condition (5.9) is to ensure

that we can define Hm in the same way as I and apply Lemma 4.23 for each m = a1m1 + a2m2.

Now for 0 6= m ∈ M , as in Lemma 4.23, we use flow lines along the affine vector field −m to
define a diffeomorphism τm : Wm → U, where Wm ⊂ R × U⊥m is the maximal domain of definition
of τ . Under the diffeomorphism τm, we obtain affine coordinates (t =: um,1, um,2, . . . , um,n) on U
such that x0 = (0, . . . , 0). Note that these coordinates satisfy the condition in Notations 4.1 and we
will set um,⊥ := (um,2, . . . , um,n). For m = 0 ∈ M , we will choose an arbitrary set of local affine
coordinates (u0,1, u0,2, . . . , u0,n) in defining the homotopy operator H.

In the coordinates (um,1, . . . , um,n), we decompose a differential form α ∈ W∞∗ (U) uniquely as

(5.10) α = α0 + dum,1 ∧ α1,

where ι ∂
∂um,1

α0 = ι ∂
∂um,1

α1 = 0. We define a contraction ρm,⊥ : R× U⊥m → U⊥m by ρm,⊥(r, um,⊥) :=

rum,⊥.

Definition 5.12. We define the homotopy operator Hm :W∞∗ (U)zm →W∞∗−1(U)zm by Hm(αzm) :=
(Im,er(α) + Im(α)) zm, where we set

Im,er(α)(um,1, um,⊥) :=

∫ 1

0
ρ∗m,⊥(α0(0, ·)) =

∫ 1

0

(
ι ∂
∂r
ρ∗m,⊥(α0|U⊥m)

)
dr,

Im(α)(um,1, um,⊥) :=

∫ um,1

0
α1(s, um,⊥)ds

using the decomposition of differential forms α ∈ W∞∗ (U) specified in (5.10).

We define the projection Pm :W∞∗ (U)zm → H∗(W∞∗ (U))zm by by

Pm(αzm) :=

{
(α|x0)zm for α of degree 0,

0 otherwise,
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where α|x0 is evaluation of α at the point x0 and is to be treated as a constant function along U , and
the operator ιm : H∗(W∞∗ (U))zm → W∞∗ (U)zm by ιm(αzm) := ι(α)zm, where ι : H∗(W∞∗ (U)) ↪→
W∞∗ (U) is the embedding of constant functions over U at degree 0 and 0 otherwise.

We will abuse notations by treating Hm, Pm and ιm as acting on the spacesW∞∗ (U) and H∗(W∞∗ (U)).

Proposition 5.13. The operator Hm is a homotopy retract of W∞∗ (U)zm onto its cohomology
H∗(W∞∗ (U))zm, i.e. we have Id− ιmPm = ∂̄Hm +Hm∂̄.

The integral operator Hm preserves W−∞∗ (U) because the path integrals preserve terms with
exponential decay in } as one can see from Definition 4.15. Also, we have the natural identifications

H∗(W∞∗ (U), d) = {f : R>0 → R | |f(})| ≤ C}−N for some C and N},

H∗(W−∞∗ (U), d) = {f : R>0 → R | |f(})| ≤ Ce−c/} for some c and C},

under which we see that the operators Pm and ιm can be descended to the quotient:

Pm :W∞∗ (U)/W−∞∗ (U)→ H∗(W∞∗ (U), d)/H∗(W−∞∗ (U), d),

ιm : H∗(W∞∗ (U), d)/H∗(W−∞∗ (U), d)→W∞∗ (U)/W−∞∗ (U),

again in view of Definition 4.15. Therefore, Proposition 5.13 holds in the quotientW∞∗ (U)/W−∞∗ (U)
as well.

Definition 5.14. We define the operators H :=
⊕
Hm, P :=

⊕
Pm and ι :=

⊕
ιm acting on the

direct sum
⊕

mW∞∗ (U)zm and its cohomology. These operators extend naturally to the tensor prod-
uct g∗N (U) = (

⊕
mW∞∗ (U)zm)⊗Z Λ∨B0

(U)⊗C (R/mN+1) and descend to the quotient g∗N (U)/E∗N (U)
(since E∗N (U) is a dg ideal of g∗N (U)). We then take the inverse limit to define the operators H, P
and ι acting on ĝ∗/E∗(U).

Remark 5.15. We remark that the homotopy operators defined above depend on the choices of U ,
the affine coordinates, etc, and so does the MC solution Φ that we are going to construct. However,
the scattering diagram D(Φ) associated to Φ is independent of these choices.

Proof of Lemma 5.10. We prove this lemma for each direct summand (W∞∗ (U)/W−∞∗ (U))zm, which
will be identified with (W∞∗ (U)/W−∞∗ (U)) so that the Witten differential ∂̄ becomes the usual
deRham differential d. We have the following operators

Hm :W∞∗ (U)/W−∞∗ (U)→W∞∗−1(U)/W−∞∗−1 (U)

Pm :W∞∗ (U)/W−∞∗ (U)→ {f : R>0 → R | |f(})| ≤ C}−N for some C and N}
{f : R>0 → R | |f(})| ≤ Ce−c/} for some c and C}

ιm :
{f : R>0 → R | |f(})| ≤ C}−N for some C and N}
{f : R>0 → R | |f(})| ≤ Ce−c/} for some c and C}

→ W∞∗ (U)/W−∞∗ (U)

defined in Definition 5.14. By descending the formula in Proposition 5.13 to the quotient by
W−∞∗ (U), we have I − ιm ◦ Pm = ∂̄Hm + Hm∂̄. The result follows by a natural extension of this
homotopy equation to g∗N (U). �

5.2.3. Asymptotic analysis of Maurer-Cartan solutions. Going back to the two given non-parallel
walls w1 = (m1, P1,Θ1), w2 = (m2, P2,Θ2). Recall that each wall crossing factor Θi is of the form

Log(Θi) =
∑

j,k≥1 a
(i)
jkw

kmi ∂̌nit
j , where ni ∈ Λ∨B0

(U) ∼= N is the unique primitive element satisfying

ni ∈ (TPi)
⊥ and (νPi , ni) < 0, and νPi ∈ TU a normal to Pi so that the orientation on TPi⊕R · νPi

agrees with that on U (see Definition 3.3). As in Remark 4.29 in Section 4, we assume that the two

inputs Π(1),Π(2) associated to the walls w1,w2 are of the following form:
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Assumption 5.16. We assume that there are two MC solutions Π(1),Π(2) of ĝ∗/E∗(U),13 which
can be represented by elements in ĝ∗(U) of the form

(5.11) Π(i) ∈ −
∑
j,k≥1

a
(i)
jk (δ

(i)
jk +W0

Pi(U))zkmi ∂̌nit
j

with a
(i)
jk 6= 0 only for finitely many k’s for each fixed j, and each δ

(i)
jk ∈ W

1
Pi

(U) can be written as

δ
(i)
jk = (π})−1/2e−

η2

} dη in some neighborhood WPi of Pi for some affine linear function η on WPi

such that Pi is defined by η = 0 locally and ινPidη > 0.

For convenience, we will abuse notations and use Π(i) ∈ ĝ∗(U) to denote its class in ĝ∗/E∗(U) as
well. We will also denote by

(5.12) Π̆(i) := −
∑
j,k≥1

a
(i)
jk δ

(i)
jk z

kmi ∂̌nit
j

the leading order term of the input Π(i) for i = 1, 2. Then we have

(5.13) Π̆(i) ∈

⊕
k≥1

W1
Pi(U)zkmi ∂̌ni

 [[t]]; Π(i) − Π̆(i) ∈

⊕
k≥1

W0
Pi(U)zkmi ∂̌ni

 [[t]].

We now solve the MC equation of the dgLa ĝ∗/E∗(U) by solving the equation (5.3) with the input

data Π := Π(1) + Π(2). Using the homotopy operator H and applying the sum over trees formula
(5.6), we obtain an element

(5.14) Φ :=
∑
k≥1

1

k!
Ik(Π, . . . ,Π) =

∑
k≥1

lk(Π, . . . ,Π),

in ĝ∗(U), whose class in ĝ∗/E∗(U) will also be denoted by Φ.

Lemma 5.17. The solution Φ constructed from the input Π = Π(1) + Π(2) using the equation (5.3)

and the homotopy operator H defined in Definition 5.14 is a MC solution in ĝ∗/E∗(U), i.e. we have

P[Φ,Φ] = 0 in ĝ∗/E∗(U).

We postpone the proof of Lemma 5.17 to Section 5.2.3. From Lemmas 5.17 and 5.10, we obtain

a unique element ϕ ∈ ĝ∗/E∗(U) satisfying eϕ ∗ 0 = Φ and P(ϕ) = 0 in ĝ∗/E∗(U) using Lemma 4.7.

To start the asymptotic analysis of Φ and ϕ, we first decompose the Lie bracket [·, ·] on ĝ∗/E∗(U)
into three types of operators:

Definition 5.18. For α = fzm∂̌n and β = gzm
′
∂̌n′ where f, g ∈ W∞∗ (U), we decompose the Lie

bracket [·, ·] into three operators \, ] and [ defined by

\(α, β) := (−1)f̄(ḡ+1)fg[zm∂̌n, z
m′ ∂̌n′ ],

](α, β) := (−1)f̄(ḡ+1)f(∇∂ng)zm+m′ ∂̌n′ ,

[(α, β) := (−1)(f̄+1)ḡg(∇∂n′f)zm+m′ ∂̌n;

here f̄ and ḡ denote the degrees of f and g respectively. These operators extend by linearity to
g∗N (U) by treating a general element as a polynomial on the basis {zmtj}, and descend to the quotient

g∗N (U)/E∗N (U), and can be further extended to ĝ∗(U) and ĝ∗/E∗(U) by taking inverse limits.

13Obviously MC solutions of the dg-Lie subalgebra ĝ∗(U) ⊂ KSX̌0
(U)[[t]] descend to the quotient to give MC

solutions of ĝ∗/E∗(U).
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Next we will decompose the operation lk defined in Definition 5.4 according to the above decom-
position of the Lie bracket [·, ·], the powers of the formal variable t and the Fourier modes {zm}.
For this purpose, we need to introduce the notion of a labeled k-tree:

Definition 5.19. A labeled ribbon k-tree is a ribbon k-tree T together with

• a labeling of each trivalent vertex v ∈ T [0] by \, ] or [, and

• a labeling of each incoming edge e ∈ ∂−1
in (T [0]

in ) by a pair (me, je), where me = kmi (for some
k > 0 and i = 1, 2) specifies the Fourier mode and je ∈ Z>0 specifies the order of the formal
variable t (corresponding to the input term zkmitje in ĝ∗(U)).

Similarly, we define a labeled k-tree as a k-tree T together with a labeling of the trivalent vertices
T[0] by \ or ]+ [ (as only symmetric operations are allowed if there is no ribbon structure) and the

same labeling of the incoming edges ∂−1
in (T

[0]
in ) as above. We use T to denote the underlying labeled

k-tree of a labeled ribbon k-tree T .

Two labeled ribbon k-trees T1 and T2 (resp. two labeled k-trees T1 and T2) are said to be isomorphic
if they are isomorphic as ribbon k-trees (resp. k-trees) and the isomorphism preserves the labeling.
The set of isomorphism classes of labeled ribbon k-trees (resp. labeled k-trees) will be denoted by LRTk

(resp. LTk). As before, we will abuse notations by using T (resp. T) to stand for an isomorphism
class of labeled ribbon k-trees (resp. labeled k-trees).

Notations 5.20. For a labeled ribbon k-tree T (resp. labeled k-tree T), there is an induced labeling of

all the edges in T [1] (resp. T[1]) by the rule that at any trivalent vertex v ∈ T [0] (resp. v ∈ T[0]) with
two incoming edges e1, e2 and one outgoing edge e3, we set (me3 , je3) := (me1 , je1) + (me2 , je2). We
also write (mT , jT ) (resp. (mT, jT)) for the labeling of the unique edge eo attached to the outgoing
vertex vo.

Definition 5.21. Given a labeled ribbon k-tree T , we label the incoming vertices by v1, . . . , vk accord-
ing to its cyclic ordering. We define the operator (similar to Definition 5.4) lk,T : (ĝ∗(U)[1])⊗k →
ĝ∗(U)[1], for inputs ζ1, . . . , ζk by

(1) extracting the coefficient of the term zmei tjei in ζi and aligning it as the input at vi,

(2) applying the operators \, ] or [ to each trivalent vertex v ∈ T [0] according to the labeling,

(3) and applying the homotopy operator −H to each edge in T [1].

The operator lk,T descends to ĝ∗/E∗(U) and will be denoted by the same notation.

Notations 5.22. We decompose the set LRTk of isomorphism classes of labeled ribbon k-trees into
two parts: LRTk = LRTk0 t LRTk1, where LRTk0 consists of trees whose trivalent vertices are all labeled
by \ and LRTk1 := LRTk \ LRTk0. We then consider the operators

lk,0 :=
∑
T ∈LRTk0

1

2k−1
lk,T , lk,1 :=

∑
T ∈LRTk1

1

2k−1
lk,T .

It is easy to see that for each labeled ribbon k-tree T , the labeling mT associated to the unique
outgoing edge is of the form mT = l(a1m1 + a2m2) for some l ∈ Z>0 and (a1, a2) ∈ (Z≥0)2

prim,

where (Z≥0)2
prim denotes the set of all primitive elements in (Z≥0)2 \ {0}, so the solution Φ can be

decomposed as a sum of Fourier modes parametrized by (Z≥0)2
prim.

Notations 5.23. We let ma := a1m1 + a2m2 for a = (a1, a2) ∈ (Z≥0)2
prim. Note that we have

m(1,0) = m1 and m(0,1) = m2. For each a ∈ (Z≥0)2
prim, we let Pa be the tropical half-hyperplane

Pa = Q−R≥0 ·ma. We equip each Pa with a normal νPa such that {−ma, νPa} agrees with orientation
given by {−m1,−m2} on NQ, and this gives an orientation on Pa such that the orientation of
TPa ⊕ R · νPa agrees with that of B0 (so that νPa satisfies the condition in Definition 3.3 as well).
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Definition 5.24. Given the input Π = Π(1) + Π(2) ∈ ĝ∗(U), we put Ψ :=
∑

k≥1 lk,0(Π̆, . . . , Π̆) =∑
a∈(Z≥0)2

prim
Ψ (a), where

Ψ (a) ∈
⊕
k≥1

1≤j≤N

∑
n∈Λ∨B0

(U):n⊥ma

W∞∗ (U) · zkma ∂̌ntj (mod mN+1)

for each a ∈ (Z≥0)2
prim, and z :=

∑
k≥1(lk(Π, . . . ,Π)− lk,0(Π̆, . . . , Π̆)) =

∑
a∈(Z≥0)2

prim
z(a), where

z(a) ∈
⊕
k≥1

1≤j≤N

∑
n∈Λ∨B0

(U)

W∞∗ (U) · zkma ∂̌ntj (mod mN+1)

for each a ∈ (Z≥0)2
prim.

Then we have Φ = Ψ + z, where Ψ are the leading } order terms and z are the error terms,
as } → 0. We also put Φ(a) := Ψ (a) + z(a). The key result on the asymptotic analysis of Φ is the
following:

Theorem 5.25. For each a ∈ (Z>0)2
prim, we have

Ψ (a) ∈

⊕
k≥1

W1
Pa(U)zkma ∂̌na

 [[t]]; z(a) ∈

⊕
k≥1

∑
n∈Λ∨B0

(U)

W0
Pa(U)zkma ∂̌n

 [[t]],

where na ∈ Λ∨B0
(U) is the unique primitive normal to Pa such that (νPa , na) < 0.

Proof. According to the definitions of Ψ (a) and z(a) in Definition 5.24, this theorem is equivalent to
the following statements:

lk,T (Π̆, . . . , Π̆) ∈ W1
Pa

(U)zmT ∂̌nat
jT if T ∈ LRTk0,

lk,T (Π, . . . ,Π)− lk,T (Π̆, . . . , Π̆) ∈
∑

nW0
Pa

(U)zT ∂̌nt
jT if T ∈ LRTk0,

lk,T (Π, . . . ,Π) ∈
∑

nW0
Pa

(U)zT ∂̌nt
jT if T ∈ LRTk1.

The condition na ⊥ Pa in the first statement follows from a simple induction argument using the
formula (2.8); see the proof of Lemma 5.35 for more details. All other statements follow from Lemma
5.27 below. �

To state Lemma 5.27, we fix a labeled ribbon k-tree T whose incoming edges are e1, . . . , ek with
labeling (me1 , je1), . . . , (mek , jek) respectively.

We then consider the operation lk,T ((α1∂̌n1)zme1 tje1 , . . . , (αk∂̌nk)zmek tjek ) for given α1, . . . , αk ∈
W∞∗ (U) and n1, . . . , nk ∈ Γ(U,Λ∨B0

), defined in exactly the same way as in Definition 5.21, and treat

it as an operation on α1∂̌n1 , . . . , αk∂̌nk via the formula

(5.15) lk,T (α1∂̌n1 , . . . , αk∂̌nk)zmT tjT := lk,T ((α1∂̌n1)zme1 tje1 , . . . , (αk∂̌nk)zmek tjek ),

which will further be abbreviated as lk,T (~α, ~n) := lk,T (α1∂̌n1 , . . . , αk∂̌nk), where we put ~α :=
(α1, . . . , αk) and ~n := (n1, . . . , nk).

Notations 5.26. Given a labeled ribbon k-tree T and suppose that for each incoming edge ei, we
have assigned a closed codimension 1 tropical polyhedral subset Pei, which is either one of the two
initial hyperplanes P1, P2 or one of the half-hyperplanes Pa’s introduced in Notation 5.23. We then
inductively assign a (possibly empty) tropical hyperplane or half-hyperplane Pe to each edge e ∈ T[1]

as follows:

If é1 and é2 are two incoming edges meeting at a vertex v with an outgoing edge é3 for which
Pé1 and Pé2 are defined beforehand, we set Pé3 := (Q − R≥0mé3) ∩ U if both Pé1 and Pé1 are
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non-empty and they intersect transversally at Q := Pé1 ∩ Pé1 and Pé3 := ∅ otherwise (recall that
transversal intersection between two closed tropical polyhedral subsets, including the case when they
have nonempty boundaries, was defined right before the proof of Lemma 4.22).

We denote the hyperplane or half-hyperplane associated to the unique outgoing edge eo by PT .
Note that if PT 6= ∅, then PT = Pa for some a ∈ (Z≥0)2

prim.

Lemma 5.27. Given a labeled ribbon k-tree T , each of whose incoming edges ei is assigned with a
closed codimension 1 tropical polyhedral subset Pei, which is either one of the two initial hyperplanes
P1, P2 or one of the half-hyperplanes Pa’s introduced in Notation 5.23. Also given α1, . . . , αk ∈
W∞∗ (U) and n1, . . . , nk ∈ Γ(U,Λ∨B0

) and suppose that αi has asymptotic support (Definition 4.19)

on Pei with either αi ∈ W1
Pei

(U) or αi ∈ W0
Pei

(U) for each i = 1, . . . , k, then we have
lk,T (~α, ~n) ∈ W1

PT
(U)⊗Z Λ∨B0

(U) if T ∈ LRTk0, PT 6= ∅ and αi ∈ W1
Pei

(U) for all i,

lk,T (~α, ~n) ∈ W0
PT

(U)⊗Z Λ∨B0
(U) if T ∈ LRTk0, PT 6= ∅ and ∃i such that αi ∈ W0

Pei
(U),

lk,T (~α, ~n) ∈ W0
PT

(U)⊗Z Λ∨B0
(U) if T ∈ LRTk1 and PT 6= ∅,

lk,T (~α, ~n) ∈ W−∞1 (U)⊗Z Λ∨B0
(U) if PT = ∅.

For the purpose of the induction argument used to prove Lemma 5.27, we will temporarily relax
the condition that mei = kmi for i = 1, 2 on the labeling of the incoming edges ei’s in Definition
5.19 and replace it by the condition that mei = kma for some k > 0 and some a ∈ (Z≥0)2

prim.

Proof. We prove by induction on the number of vertices of a labeled ribbon k-tree T . The initial
step is trivial because LRT1 = LRT1

0 and l1,0 is the identity.

We illustrate the induction step by considering the simplest non-trivial case, namely, when we
have a labeled ribbon 2-tree T with only one trivalent vertex v, two incoming edges e1, e2 and
one outgoing edge eo meeting v. Suppose that the incoming edges e1, e2 are assigned labeling
(me1 , je1), (me2 , je2) and inputs α1∂̌n1z

e1tje1 , α2∂̌n2z
e2tje2 respectively.

If T ∈ LRTk0 (i.e. with labeling \ at every v ∈ T [0]) and PT 6= ∅, then we have

lk,T (~α, ~n) = lk,T (α1∂̌n1 , α2∂̌n2) = −HmT (α1 ∧ α2)∂̌nT ,

where nT = (me2 , n1)n2− (me1 , n2)n1 is given by the formula (2.8) (here we are viewing HmT as an
operator on W∞∗ (U) as in Definition 5.12).

The first case is when α1, α2 ∈ W1
Pei

(U). Since PT 6= ∅, the walls Pe1 and Pe2 are intersecting

transversally at Q, so we have α1 ∧ α2 ∈ W2
Pe1∩Pe2

(U) = W2
Q(U) by Lemma 4.22. Recall the

decomposition HmT = ImT + ImT ,er in Definition 5.12. For the second integral ImT ,er, its domain

of integration lies inside the hyperplane U⊥mT which does not intersect Q by our choice of the
spherical neighborhood U in Notations 5.11 (see (5.9) and Figure 11), so it produces terms in
W−∞∗ (U). For the first integral ImT , applying Lemma 4.23 gives −ImT (α1 ∧ α2) ∈ W1

PT
(U), where

PT = (Q− R≥0mT ) ∩ U as described in notation 5.26. This proves the first case.

For the second case, either α1 ∈ W0
Pe1

(U) or α2 ∈ W0
Pe1

(U), so we have α1 ∧ α2 ∈ W1
Q(U) by

Lemma 4.22. The rest of the argument is the same as in the first case.

In the third case, we have T ∈ LRTk1 and PT 6= ∅. This means that either ] or [ is applied at v;
we will only give the proof for the case when ] is applied because the other case is similar. In such a
case, we have lk,T (α1∂̌n1 , α2∂̌n2) = −HmT (α1 ∧ (∇∂n1

α2))∂̌n2 . Now ∇∂n1
(α2) ∈ W0

Pe2
(U) by (4.12)

and (2.7), so we get α1 ∧ (∇∂n1
α2) ∈ W1

Q(U) and the rest of the proof is same as in the first case.

Finally, for the fourth case we have PT = ∅, meaning that Pe1 and Pe2 not intersecting transver-
sally. Then we have α1 ∧ α2 ∈ W−∞2 (U) by Lemma 4.22 and the integral operator HmT preserves
W−∞∗ (U) by its definition in Definition 4.15. This completes the proof of labeled ribbon 2-tree.
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Next, suppose that we have a general labeled ribbon k-tree T , and vr ∈ T [0] is the unique
trivalent vertex adjacent to the unique outgoing edge eo. Assuming that é1 and é2 are the incoming
edges connecting to vr so that the edges é1, é2, eo are arranged in clockwise orientation. We split
T at vr to obtain two trees T1, T2 with outgoing edges é1, é2 and k1, k2 incoming edges respectively
such that k = k1 + k2 We split the inputs (~α, ~n) into two accordingly as ~α1 = (α1, . . . , αk1),
~n1 = (n1, . . . , nk1) and ~α2 = (αk1+1, . . . , αk), ~n2 = (nk1+1, . . . , nk). We then consider the operation
lki,Ti(~αi, ~ni) associated to each Ti.

If one of PTi ’s is empty, say, if PT1 = ∅, then lk1,T1(~α1, ~n1) ∈ W−∞1 (U)⊗Z Λ∨B0
(U) by the induction

hypothesis. Hence we also have lk,T (~α, ~n) ∈ W−∞1 (U) ⊗Z Λ∨B0
(U) since W−∞∗ (U) is a dg-Lie ideal

of W∞∗ (U) and Hm preserves W−∞∗ (U).

So it remains to consider the case when PTi 6= ∅ for i = 1, 2. Note that T ∈ LRTk0 if and only if

Ti ∈ LRTki0 for both i = 1, 2 and the labeling of the root vertex vr is also \, and PT 6= ∅ if and only

if Pé1 intersects Pé2 transversally at Q. The induction step is completed by replacing αi∂̌ni with
lki,Ti(~αi, ~ni) for i = 1, 2 and using the same argument as in the case for labeled ribbon 2-tree.

�

Proof of Lemma 5.17. Recall that the spherical neighborhood U was chosen so that x0 6∈ Pa for any
a ∈ (Z≥0)2

prim, where x0 is the center of U (see Notations 5.11, (5.9) and Figure 11). By Theorem

5.25, we have a neighborhood V ⊂ U of x0 such that V is compact and Φ|V ∈ E∗N (V ) (mod mN+1)
for every N ∈ Z>0. This implies that [Φ,Φ]|V ∈ E∗N (V ) (mod mN+1) for every N ∈ Z>0 since E∗N (V )
is closed under the bracket [·, ·]. As the operator P preserves E∗N (V ), we have P[Φ,Φ]|V ∈ E∗N (V )

(mod mN+1) for every N ∈ Z>0. But then this means that P[Φ,Φ] = 0 in ĝ∗/E∗(U) since P is the
evaluation at x0 ∈ V ⊂ U . �

5.2.4. Leading } order terms of a Maurer-Cartan solution. Recall from Section 5.2.3 that the leading
order term Ψ (constructed in Definition 5.24) is a sum over labeled ribbon trees in LRTk0 (i.e. those

with only \ labeling on trivalent vertices; see Notation 5.22) with inputs Π̆(i) (defined in (5.12)).
This operation is closely related to the tropical vertex group as well as tropical counting. We are
going to discuss the precise correspondence in this subsection.

For this purpose, it would conceptually be more appropriate to use labeled trees rather than
labeled ribbon trees, because tropical trees are not equipped with ribbon structures. As in the case of
labeled ribbon k-trees, we split the set of isomorphism classes of labeled k-trees into two components
LTk = LTk0 t LTk1, where LTk0 consists of those whose trivalent vertices are all labeled by \ and LTk1 :=
LTk \LTk0. Then given a labeled k-tree T ∈ LTk0 and taking an arbitrary labeled ribbon k-tree T with

T = T, we can define the operation Ik,T by Ik,T(ζ1, . . . , ζk) :=
∑

σ∈Σk
(−1)χ(σ,~ζ)lk,T (ζσ(1), . . . , ζσ(k)),

as in Definition 5.5.

Nonetheless, we prefer to work with labeled ribbon k-trees T instead to simplify the formulas.
There is a combinatorial relation 1

k!|Aut(T)|Ik,T(Π̆, . . . , Π̆) =
∑
T =T

1
2k−1 lk,T (Π̆, . . . , Π̆), where the

sum is over all labeled ribbon k-trees T with underlying labeled k-tree T = T and |Aut(T)| is the

order of the automorphism group of T. Furthermore, since Π̆ ∈ ĝ∗/E∗(U) has cohomological degree
1, we have

(5.16)
1

k!|Aut(T)|
Ik,T(Π̆, . . . , Π̆) =

#{T = T}
2k−1

lk,T0(Π̆, . . . , Π̆),

for an arbitrary labeled ribbon k-tree T0 with underlying labeled k-tree T0 = T. We will obtain
results for Ik,T by working with lk,T through equation (5.16) in this section.

Given T ∈ LRTk0 with PT 6= ∅ (recall from Notations 5.26 that PT is the wall attached to the
unique outgoing edge eo), we have an alternative way to describe the operation lk,T . Recall that
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T [1] is the set of edges excluding the incoming edges (but including the outgoing edge) by Definition
5.2. We let τ es be the flow of the affine vector field −me for time s (s ∈ R≤0 so it is flowing backward

in time), where (me, je) is the labeling of the edge e ∈ T [0].

Definition 5.28. Given a sequence of edges e = (e0, e1, . . . , el), as a path which starts from e0

and ends at el following the direction of the tree T , we define a map τ e : We → U, by τ e(~s, x) =

τ e0s0 ◦ τ
e1
s1 ◦ · · · ◦ τ

el
sl

(x), where sj is the time coordinate for the flow of −mej , T
[1]
e is the subset

{e0, e1, . . . , el} ⊂ T [1] and We ⊂ R|T
[1]
e |
≤0 × U is the maximal domain such that the image of the

flow τ e lies in U . It can also be extended naturally to a map τ̂ e : Ŵe → R|T
[1]\T [1]

e |
≤0 × U, where

Ŵe := R|T
[1]\T [1]

e |
≤0 ×We, by taking direct product with R|T

[1]\T [1]
e |

≤0 . Notice that this definition does not
depend on the ribbon structure on T , so it can be regarded as a definition for a labeled k-tree T := T .

Definition 5.29. We attach a differential form νe on R|T
[1]|

≤0 to each e ∈ T̄ [1] recursively by letting

νe := 1 for each incoming edge e, and νe3 = (−1)ν̄e2νe1 ∧ νe2 ∧ dse3 (here ν̄e2 is the cohomological
degree of νe2) if v is an internal vertex with incoming edges e1, e2 ∈ T0 and outgoing edge e3 such that
e1, e2, e3 is clockwise oriented. We let νT be the differential form attached to the unique outgoing

edge eo ∈ T [1], which defines a volume form or orientation on R|T
[1]|

≤0 .

As usual, we let v1, . . . , vk be the clockwise ordered incoming vertices of T and e1, . . . , ek the
incoming edges respectively. We associate to each ei a unique sequence ei of edges in T [1] (excluding
the incoming edge ei itself) joining ei to the outgoing edge eo (including the outgoing edge eo) along
the direction of T .

Remark 5.30. The subset WT =
(⋂k

i=1 Ŵei

)
⊂ R|T

[1]|
≤0 × U, can be viewed as a moduli space of

tropical trees in U , denoted by MT (U), with prescribed slope data {me}e∈T [1] (as in Notations 5.20)

as follows (this will not be necessary for the rest of the paper): A point (~s, x) ∈ WT ⊂ R|T
[1]|

≤0 × U
will precribe the location of the vertices T [0] t {vo} of T . First, x ∈ U is the image of the outgoing

vertex vo. For any trivalent vertex v ∈ T [0], there is a unique sequence of edges e = (e0, e1, . . . , el)
connecting v to vo and τ e(~s, x) is the image of v. The images of these vertices are allowed to overlap

with each other as ~s is taken from RT [1]

≤0 . Figure 12 illustrates the generic situation.

Figure 12. WT parametrizing tropical trees in U

Recall that Definition 5.21, which defines the operator lk,T , uses the labeling (mei , jei) for each

incoming edge e ∈ ∂−1
in (T [0]

in ) to extract the coefficient of zmei tjei in Π̆ and then treat it as the input
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at vi. For the input αi∂̌ni , we have ni ∈ TP⊥ei and (νPi , ni) > 0, and αi = −δ(1)
jk or −δ(2)

jk (see

(5.12)) so that αi ∈ W1
Pei

(U). We decompose the output lk,T (~α, ~n) (defined in equation (5.15)) into

a differential form part αT ∈ W1
PT

(U) and a vector field part ∂̌nT :

(5.17) lk,T (~α, ~n) = αT ∂̌nT ,

where ∂̌nT := lk,T (∂̌n1 , . . . , ∂̌nk); note that nT ∈ Z · na if we write PT = Pa for some a ∈ (Z≥0)2
prim,

where na ∈ Λ∨B0
(U) is the unique primitive normal to PT = Pa such that (νPa , na) < 0. The following

lemma shows how αT (x) can be expressed as an integral over the space Ix :=
(
R|T

[1]|
≤0 × {x}

)
∩(⋂k

i=1 Ŵei

)
, for any x ∈ U up to error terms of exponential order in }−1.

Lemma 5.31. We have the identity

αT (x) = (−1)k−1

∫
Ix

(τ e1)∗(α1) ∧ · · · ∧ (τ ek)∗(αk)

in W∞1 (U)/W−∞1 (U), where we use the volume form νT on R|T
[1]|

≤0 for the integration on the right
hand side.

Proof. We prove the lemma by induction on the number of vertices of a labeled ribbon k-tree T (as
in the proof of Lemma 5.27). In the initial step, Ix is just the point {x} and the right hand side is
nothing but evaluation at x, so the result follows from the fact that lk,T is the identity.

As in the proof of Lemma 5.27, we illustrate the induction step by considering the simplest
non-trivial case when we are given a labeled ribbon 2-tree T with only one trivalent vertex v, two
incoming edges e1, e2 and one outgoing edge eo meeting v. Suppose that the incoming edges e1, e2

are assigned labeling (me1 , je1), (me2 , je2) and inputs α1∂̌n1z
e1tje1 , α2∂̌n2z

e2tje2 respectively. The
operator lk,T associated to T is explicitly expressed as

(5.18) αT ∂̌nT = lk,T (α1∂̌n1 , α2∂̌n2) = −HmT (α1 ∧ α2)∂̌nT ,

with nT = (me2 , n1)n2 − (me1 , n2)n1 given by the formula (2.8).

There are two cases depending on whether Pe1 and Pe2 are intersecting transversally or not, as
in proof of Lemma 5.27. In both cases we can treat α1 ∧ α2 ∈ W2

Q(U) (because if intersection is

not transversal, then we have α1 ∧ α2 ∈ W−∞2 (U) ⊂ W2
Q(U)). From Definition 5.12, we have the

decomposition HmT = ImT + ImT ,er. By our choice of the spherical neighborhood U in Notations
5.11, the domain of integration for the second integral ImT ,er is supported away from Q, so it gives
a term in W−∞1 (U). Thus we have αT ∈ −ImT (α1 ∧ α2) +W−∞1 (U).

In the current case, T [1] consists of the unique outgoing edge eo, so e1 = e2 = (eo) and hence the
map τ e1 = τ e2 : Wei → U is simply given by the flow associated to −mT = −meo . Now we have the
half space U+

mT containing Q, as shown in Figure 11. Using the coordinates (t, u⊥) on U where u⊥ are

local affine coordinates on U⊥mT , we obtain a maximal interval (au⊥ , bu⊥) for each point u⊥ on U⊥mT
such that the interval (au⊥ , bu⊥)×{u⊥} lies in U . Then the two integrals that we want to compare are

Im(α1∧α2)(t, u⊥) =
∫ t

0 ι ∂∂s
(α1∧α2)(s, u⊥)ds and

∫
I

(t,u⊥)
(τ e1)∗(α1∧α2) =

∫ t
a
u⊥
ι ∂
∂s

(α1∧α2)(s, u⊥)ds,

the difference between which is given by
∫ 0
a
u⊥
ι ∂
∂s

(α1 ∧ α2)(s, u⊥mT )ds, which produces a term in

W−∞1 (U) because it misses the asymptotic support Q of α1 ∧α2. This proves the statement for the
current case.

Next we consider the induction step. We will adapt the same notations as the induction step in the
proof of Lemma 5.27 (see Notations 5.26). So we take a general labeled ribbon k-tree T ∈ LRTk0, and

then split it at the unique vertex vr ∈ T [0] adjacent to the unique outgoing edge eo to obtain two trees
T1, T2 with incoming edges e1, . . . , ek1 and ek1+1, . . . , ek respectively. We denote by ẽ1, . . . , ẽk1 (resp.
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ẽk1+1, . . . , ẽk) the sequences of edges in T1 (resp. T2) associated to the incoming edges e1, . . . , ek1

(resp. ek1+1, . . . , ek) obtained respectively from the sequences e1, . . . , ek1 (resp. ek1+1, . . . , ek) of
edges in T by removing the unique outgoing edge eo.

By the induction hypothesis, we have (−1)k1−1αT1(x) =
∫
I1,x(τ ẽ1)∗(α1)∧· · ·∧(τ ẽk1 )∗(αk1) modulo

W−∞1 (U), where I1,x =

(
R|T

[1]
1 |
≤0 × {x}

)
∩
(⋂k1

i=1 Ŵ
(1)
ei

)
, and (−1)k2−1αT2(x) =

∫
I2,x(τ ẽk1+1)∗(αk1+1)∧

· · ·∧(τ ẽk)∗(αk) where I2,x =

(
R|T

[1]
2 |
≤0 × {x}

)
∩
(⋂k

i=k1+1 Ŵ
(2)
ei

)
; here Ŵ

(1)
ei ⊂ R|T

[1]
1 |
≤0 ×U is the domain

associated to ẽi for the tree T1 as in Definition 5.28.

Fixing a point x ∈ U , we consider the flow τ eo : Weo(⊂ R × U) → U by −meo = −mT and let
Ieox := (R≤0 × {x}) ∩Weo . From its definition, we have, for x ∈ U ,

Ix =
⋃
s∈Ieox

I1,τeos (x) × I2,τeos (x) × {s} ⊂ R|T
[1]
1 |
≤0 × R|T

[1]
2 |
≤0 × R≤0.

Using the same reasoning as in the 2-tree case, together with the fact that αT1 ∧αT2 is again having
asymptotic support on Q, we have

(−1)k−1αT (x) = (−1)k−2

∫
Ieox

(τ eo)∗(αT1 ∧ αT2)

=

∫
Ieox

(τ eo)∗
(∫
I1,τeos (x)

(τ ẽ1)∗(α1) · · · (τ ẽk1 )∗(αk1) ∧
∫
I2,τeos (x)

(τ ẽk1+1)∗(αk1+1) · · · (τ ẽk)∗(αk)
)

=

∫
⋃
s∈Ieox

I1,τeos (x)×I2,τeos (x)×{s}
(τ eo)∗

(
(τ ẽ1)∗(α1) · · · (τ ẽk)∗(αk)

)
=

∫
Ix

(τ e1)∗(α1) · · · (τ ek)∗(αk),

modulo terms in W−∞1 (U). This completes the proof of the lemma. �

Remark 5.32. Geometrically, Lemma 5.31 means that terms of the form αT ∂̌nT z
mT tjT for T ∈

LRTk0, which appear in the leading order contribution of the Maurer-Cartan solution Φ (introduced
in Definition 5.24), can be expressed as integrals over the moduli space MT (U) of tropical trees in
U .

We will see in Section 5.3 that what we essentially care about is the path integral

(5.19)

∫
%
αT = (−1)k−1

∫
I%

(τ e1)∗(α1) · · · (τ ek)∗(αk) +O(e−c%/})

along an embedded affine path % : (a, b) → U that crosses the wall PT transversally and positively
(meaning that TPT ⊕ R · %′ agrees with the orientation of B0), where we let

(5.20) I% :=
⋃

t∈(a,b)

I%(t).

Here I% is equipped with coordinates ({se}e∈T [1] , t), where (se)e ∈ R|T
[1]|

≤0 and t ∈ (a, b). We are

going to calculate the integral in (5.19) explicitly.

Recall that αi = −δ(1)
jk or −δ(2)

jk , and each αi has asymptotic support on Pei which is either P1

or P2 (supports of the two initial walls). For each i ∈ {1, . . . , k}, we take an affine coordinate ηi

associated to the corresponding δ
(i)
jk as in Definition 5.16, namely, such that {ηi = 0} = Pei and

ινPei
dηi > 0, so that we can write αi = −(π})−1/2e−

η2
i
} dηi locally near Pei .

The flow τ eo corresponding to the outgoing edge eo is an affine map τ eo |% :
⋃
t∈(a,b) I

eo
%(t) → U,

where Ieo%(t) ⊂ R≤0 is the maximal domain of backward flow associated to −meo starting from the
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point %(t). The property that % t PT is equivalent to the condition that the image of τ eo |% intersects
transversally with Q at a point q1. For each i ∈ {1, . . . , k}, we let Ni ⊂ U be the affine line through

the point q1 ∈ Q transversal to Pei . Then we consider the affine space
∏k
i=1Ni with local affine

coordinates η1, . . . , ηk. See Figure 13.

Figure 13. The lines Ni’s through q1 ∈ Q

We define the affine map

(5.21) ~τ : I% →
k∏
i=1

Ni

by requiring that (~τ)∗(ηi) = ηi(τ
ei(~s, x)), where τ ei is defined in Definition 5.28.

Lemma 5.33. There exists some constant c > 0 such that (~τ)∗(dη1 ∧ · · · ∧ dηk) = c(−1)χ(T )νT ∧ dt,
where we set (−1)χ(T ) :=

∏
v∈T [0](−1)χ(T ,v) (with the convention that (−1)χ(T ) = 1 if T [0] = ∅)

and (−1)χ(T ,v) is defined for each trivalent vertex v (attached to two incoming edges e1, e2 and
one outgoing edge e3 so that e1, e2, e3 are arranged in the clockwise orientation) by comparing the
orientation of the ordered basis {−me1 ,−me2} with that of {−m1,−m2} of NQ (cf. Notations 5.11).

In particular, ~τ is an affine isomorphism onto its image C(~τ) ⊂
∏k
i=1Ni.

Proof. Once again, we will prove by induction on the number of vertices of the labeled ribbon tree
T . The initial step concerning labeled ribbon 1-trees is trivial because in this case I% = (a, b) and
~τ = %.

As before, we will consider the next step, or the simplest nontrivial case, namely, when we are
given a labeled ribbon 2-tree T with only one trivalent vertex v, two incoming edges e1, e2 and one
outgoing edge eo meeting v, to illustrate the induction step.

We first assume that the orientation of {−me1 ,−me2} agrees with that of {−m1,−m2}. We
can treat η1, η2 as oriented affine linear coordinates on the fiber NQq1 of the normal bundle NQ.
We will use (s, t) for the coordinates of I% = Ieo% defined in (5.20). Let x0 := ~τ(0, t0) ∈ % ∩ PT
be the unique intersection point between % and PT . Then there exists a unique s0 ≤ 0 such that
q1 = ~τ(s0, t0) ∈ Pe1 ∩ Pe2 . We see that {(d~τ)(s0,t0)(

∂
∂s) = −mT 6= 0, (d~τ)(s0,t0)(

∂
∂t)} is an oriented

basis of NQq1 by the assumption that % intersects positively with PT ; in other words, (d~τ)(s0,t0) is a
linear isomorphism from T(s0,t0)I% onto NQq1 and we have (~τ)∗(dη1∧dη2) = cds∧dt for some c > 0.

In the opposite case when the orientation of {−me1 ,−me2} disagrees with that of {−m1,−m2},
η2, η1 are oriented coordinates of NQq1 . So we get (~τ)∗(dη1 ∧ dη2) = −cds ∧ dt = c(−1)χ(T )ds ∧ dt
for some c > 0, because χ(T ) = 1 in this case.
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For the induction step, we again split a general k-tree T ∈ LRTk0 at the root vertex vr to get two
trees T1 and T2, as in the proof of Lemma 5.27. Since PT 6= ∅, both PT1 and PT2 are non-empty and
they intersect transversally. We take two embedded paths %1 and %2 intersecting positively with PT1
and PT2 at q1 with coordinates ηT1 and ηT2 respectively. By the induction hypothesis, the forms

(τ ẽ1)∗(dη1) ∧ · · · ∧ (τ ẽk1 )∗(dηk1) = c1(−1)χ(T1)νT1 ∧ dηT1 and (τ ẽk1+1)∗(dηk1+1) ∧ · · · ∧ (τ ẽk)∗(dηk) =

c2(−1)χ(T2)νT2 ∧dηT2 are non-degenerate on I%1 and I%2 respectively. Therefore we have a nontrivial

product (τ ẽ1)∗(dη1)∧· · ·∧(τ ẽk)∗(dηk) = (−1)χ(T1)+χ(T2)+ν̄T2νT1∧νT2∧dηT1∧dηT2 on I%1×I%2 , where
ν̄T2 denotes the degree of the differential form νT2 .

Assuming that the orientation of {−mPT1
,−mPT1

} agrees with that of {−m1,−m2} on NQq1 , we

can treat {ηT1 , ηT2} as an oriented basis for NQq1 . Using the same argument as in the 2-tree case,
we use (s, t) as coordinates for

⋃
t∈(a,b) I

eo
%(t) and obtain the relation (τ eo |%)∗(dηT1 ∧ dηT2) = cds ∧ dt

for some c > 0. Combining with the induction hypothesis, we get

(τ e1)∗(dη1) ∧ · · · ∧ (τ ek)∗(dηk) = (τ eo |%)∗
(

(τ ẽ1)∗(dη1) ∧ · · · ∧ (τ ẽk)∗(dηk)
)

=(−1)χ(T1)+χ(T2)+ν̄T2 (τ eo |%)∗
(
νT1 ∧ νT2 ∧ dηT1 ∧ dηT2

)
=(−1)χ(T1)+χ(T2)+ν̄T2 (τ eo |%)∗

(
νT1 ∧ νT2

)
∧ ds ∧ dt = (−1)χ(T )νT ∧ dt;

here we have χ(T , vr) = 0 because we assume that the orientation of {−mPT1
,−mPT1

} agrees with

that of {−mPT1
,−mPT1

}.

Reversing the orientation condition, we will have χ(T , vr) = 1, while at the same time we get an
extra (−1) in the above formula because (τ eo |%)∗(dηT1 ∧ dηT2) = −cds ∧ dt, exactly as in the 2-tree
case. This completes the proof. �

Now I% is an open neighborhood of ~0×Im(%) in the cone R|T
[1]|

≤0 ×Im(%), and we let C(~τ) ⊂
∏k
i=1Ni

be its image under the map ~τ . The local diffeomorphism ~τ allows us to transform the integral in
(5.19) to an integral over C(~τ), so we have the identity∫

x∈%
αT = (−1)k−1

∫
C(~τ)

(α1 ∧ · · · ∧ αk) +O(e−c%/})

=(−1)χ(T )+1(π})−
k
2

∫
C(~τ)

e−
∑k
i=1 η

2
i

} dη1 · · · dηk +O(e−c%/}) = (−1)χ(T )+1 lim
ε→0

vol(C(~τ) ∩Bε)
vol(Bε)

+O(}1/2),

which computes the leading order contribution of
∫
x∈% αT ; here Bε is the ε-ball in

∏k
i=1Ni and vol

is the volume with respect to the standard metric
∑k

i=1 dη
2
i .

Remark 5.34. The meaning of the above equation is that the leading order contribution of
∫
x∈% αT

(corresponding to the effect of crossing the new wall PT ) depends on how the image C(~τ) of the
locus I% in the moduli space MT (U) of tropical trees in U intersects with the normals of the initial
walls P1, P2. Figure 14 illustrates the situation for a tree with only two incoming edges e1, e2 and
one outgoing edge, where the ansatz for the initial walls P1, P2 are drawn as in Figure 4.

The following lemma summarizes the results of this subsection:

Lemma 5.35. For a labeled ribbon k-tree T ∈ LRTk0 with PT 6= ∅, we write αT ∂̌nT = lk,T (~α, ~n) as
in (5.17). Then, for any embedded affine line % : (a, b)→ U intersecting transversally and positively
with PT , we have ∫

%
αT = (−1)χ(T )+1 lim

ε→0

vol(C(~τ) ∩Bε)
vol(Bε)

+O(}1/2),

where vol is the volume with respect to the standard metric
∑k

i=1 dη
2
i on

∏k
i=1Ni, and χ(T ) is defined

as in Lemma 5.33. Moreover, we have nT ∈ (TPT )⊥ and (−1)χ(T )(νPT , nT ) < 0.
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Figure 14. Intersection C(~τ) with Pi’s giving tropical counting

Proof. It remains to prove the last statement, which is yet another induction on the number of
vertices of the labeled ribbon tree T . The initial step is trivially true.

For the simplest non-trivial case, we look at a labeled ribbon 2-tree T with only one trivalent vertex
v, two incoming edges e1, e2 and one outgoing edge eo meeting v, as before. Since ni ∈ (TPi)

⊥ and
(νPei , ni) < 0 for i = 1, 2, we have, by the formula (2.8), nT = (me2 , n1)n2 − (me1 , n2)n1 ∈ (TPT )⊥

since PT = Q− R≥ ·mT .

When the orientation of {−me1 ,−me2} agrees with that of {−m1,−m2}, we can choose −me2 as
an oriented normal to PT (here we only care about orientation so there are many different choices),
so we have (−me2 , nT ) = (−me1 , n2)(−me2 , n1) < 0 which means that (νPT , nT ) < 0 in this case.

When the orientation of {−me1 ,−me2} disagrees with that of {−m1,−m2}, we have (νPT , nT ) > 0
from the above argument as now −me1 is chosen as an oriented normal to PT . This completes the
proof of the 2-tree case.

By (once again) splitting a k-tree T ∈ LRTk0 at the root vertex vr into two trees T1 and T2, we can
prove the induction step using exactly the same argument as above with n1, n2 replaced by nT1 , nT2
respectively. �

Remark 5.36. The integral in Lemma 5.31 depends on the ribbon structure on T because the
order in taking the wedge product and the orientation of Ix given by Definition 5.29 depend on
it. Nevertheless, as Lemmas 5.33 and 5.35 show, the whole expression αT ∂̌T is independent of the
ribbon structure, as only the sign of ∂̌T depends on the ribbon structure and so does αT , and this
dependence cancels out with each other. This matches our earlier observation in equation (5.16)

that the term lk,T (Π̆, . . . , Π̆) is independent of the ribbon structure.

5.3. Consistent scattering diagrams from Maurer-Cartan solutions. In this section, we
apply the results we obtained in Sections 5.2.3 and 5.2.4 to prove Theorems 1.4 and 1.5 in the
Introduction.

5.3.1. The scattering diagram associated to the MC solution Φ. Recall that the Maurer-Cartan
solution Φ constructed in (5.14) is decomposed as a sum of Fourier modes Φ(a) = Ψ (a) + z(a) (see

Definition 5.24). The asymptotic behavior of each Φ(a) is described by Theorem 5.25 and a precise

expression for the leading order terms Ψ (a) is obtained in Lemma 5.35. Applying these results, we
are going to associate a scattering diagram D(Φ) to Φ.
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We will first construct a finite diagram D(Φ)N for each fixed N ∈ Z>0, producing a sequence
{D(Φ)N}N∈Z>0 such that D(Φ)N+1 is extension of D(Φ)N in the sense that there is an inclusion

D(Φ)N ⊂ D(Φ)N+1 identifying walls (mod mN+1) and each w ∈ D(Φ)N+1 \ D(Φ)N has a trivial
wall crossing factor (mod mN+1). Then we define D(Φ) as the limit of this sequence.

The order N scattering diagram D(Φ)N will be constructed by adding to the initial diagram
D(Φ)1 = {w1,w2} new walls wa parametrized by a finite set of a ∈ (Z>0)2

prim, where each wa is
supported on the half-hyperplane Pa = Q − R≥0 ·ma and equipped with a wall crossing factor Θa

(which could be trivial) determined from the leading order term Ψ (a) in the asymptotic expansion

of Φ(a). In order to parametrize the old and new walls by the same parameter space, we introduce
the following notations:

Notations 5.37. We set a ∈ (̃Z≥0)
2

prim := (Z≥0)2
prim ∪ {(−1, 0), (0,−1)}, and use the (rather un-

usual) convention that m(−1,0) = m(1,0) = m1 and m(0,−1) = m(0,1) = m2 for the Fourier modes

corresponding to the two initial walls w1 and w2. We use (̃Z≥0)
2

prim to parametrize the set of half-

hyperplanes Pa emanating from Q with slope −ma = −(a1m1 + a2m2) for a = (a1, a2), where we
are regarding each initial wall wi as a union of two half-hyperplanes.

For a fixed N ∈ Z>0, there will only be finitely many Fourier modes involved in the expression
for the MC solution Φ in Definition 5.24. For this purpose, we use

W(N) := {a ∈ (̃Z≥0)
2

prim | lma = mT for some l ≥ 1 and T ∈ LRTk with 1 ≤ jT ≤ N},

where (mT , jT ) is the labeling of the unique outgoing edge eo attached to the outgoing vertex vo
in T (see Definition 5.19 and Notations 5.20), to parametrize the possible walls involved in Φ
(mod mN+1).

It makes sense to regard each of the two initial walls w1,w2 as a union of two half-hyperplanes
in Notations 5.37 because of the following construction:

Definition 5.38. Given an input term Π(i) in the form of (5.11) having asymptotic support on Pi
for i = 1, 2, we take an affine coordinate function umi,1 along −mi which assumes the value 0 along
Q. Then the functions

χi,+(umi,1) :=

(
1

}π

) 1
2
∫ umi,1

−∞
e−

s2

} ds; χi,−(umi,1) := 1− χ1,+(umi,1) =

(
1

}π

) 1
2
∫ ∞
umi,1

e−
s2

} ds

have asymptotic support on {umi,1 ≥ 0} ∩ U and {umi,1 ≤ 0} ∩ U respectively, which implies that

the cut-offs Φ(1,0) := χ1,+Π(1), and Φ(−1,0) := χ1,−Π(1) have asymptotic support on {um1,1 ≥ 0}∩P1

and {um1,1 ≤ 0}∩P1 respectively as well; the cut-offs Φ(0,±1) can be defined similarly using χ2,± and
they have asymptotic support on {um2,1 ≥ 0} ∩ P2 and {um2,1 ≤ 0} ∩ P2 respectively.

From this construction, we see that both ∂̄Φ(1,0), ∂̄Φ(−1,0) (resp. ∂̄Φ(0,1), ∂̄Φ(0,−1)) have asymptotic
support on {um1,1 = 0} ∩ P1 = Q (resp. {um2,1 = 0} ∩ P2 = Q).

To prove that D(Φ)N is consistent (mod mN+1), we will remove Q = P1 ∩ P2 = Sing(D) from
the spherical neighborhood U and apply a monodromy argument on the annulus A := U \ Q by

considering the universal cover p : Ã→ A, which is endowed with the pullback affine structure from
A. We use polar coordinates (r, θ) on a fiber of the normal bundle NQ (identified with a slice of a
tubular neighborhood around Q) together with a set of affine coordinates b := (b3, . . . , bn) on Q to

get the coordinates b̂ := (b1 = r, b2 = θ, b3, . . . , bn) on Ã.14

We fix, once and for all, an angle θ0 (chosen up to multiples of 2π) such that the half-hyperplane
Rθ0 with slope θ0 through Q contains the center x0 of the spherical neighborhood U (recall that

14Note that the polar coordinates (r, θ) are not affine coordinates.
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the initial walls w1,w2 are dividing U ∩NQ into 4 quadrants and x0 lies in the 3rd quadrant; see
Figures 10 and 11) and also a base point b̂0 = (r0, θ0, b

0) ∈ Rθ0 such that p(b̂0) = x0.

Notations 5.39. For each a ∈ W(N), we associate to the wall Pa an angle θa in the branch

{(r, θ, b̂) | θ0 < θ < θ0 + 2π} to parametrize the lifting of Pa ∩ A in Ã. We identify Pa ∩ A with its

lift in Ã, and will denote it again by Pa by abusing notations.

We choose a sufficiently small ε0 and set V := {(r, θ, b) | θ0 − ε0 + 2π < θ < θ0 + 2π} so that the
open subset V − 2π = {(r, θ, b) | θ0 − ε0 < θ < θ0} stays away from all the possible walls {wa}, as
shown in Figure 15.

Figure 15.

For computation of some monodromy around Q, we consider the open subset Ã0 := {(r, θ, b) |
θ0− ε0 < θ < θ0 + 2π} ⊂ Ã. Through the covering map p : Ã0 → A, we pull back the dgLa’s g∗N (A),

E∗N (A) and g∗N (A)/E∗N (A) to Ã0, and consider g∗N (Ã0), E∗N (Ã0) and g∗N (Ã0)/E∗N (Ã0).

We write Φ̃(a) := p∗(Φ(a)), Ψ̃ (a) := p∗(Ψ (a)), z̃(a) := p∗(z(a)), and p∗(Φ) :=
∑

a∈W(N) p
∗(Φ(a)) =∑

a∈W(N) Ψ̃
(a) + z̃(a) (mod mN+1), for the pullbacks to Ã0. We then have the following lemma.

Lemma 5.40. For each a ∈ (̃Z≥0)
2

prim, the Fourier mode Φ̃(a) is itself a solution of the Maurer-

Cartan equation (5.1) of the dgLa ĝ∗/E∗(Ã0) which further satisfies ∂̄Φ̃(a) = [Φ̃(a), Φ̃(a)] = 0.

Proof. For any fixed N ∈ Z>0, Φ̃ =
∑

a∈W(N) Φ̃(a) (mod mN+1) by Definition 5.24 and W(N) is a

finite set. Now for two different a, a′ ∈W(N), we have (Pa ∩ Pa′) ∩A = ∅, and hence [Φ̃(a), Φ̃(a′)] ∈
E2
N (Ã0) which means that [Φ̃(a), Φ̃(a′)] = 0 in g2

N (Ã0)/E2
N (Ã0). Therefore each Φ̃(a) is itself a MC

solution in g∗N (Ã0)/E∗N (Ã0). Taking inverse limit shows that Φ̃(a) is a MC solution in ĝ∗/E∗(Ã0).

Furthermore, as Φ̃(a) is having asymptotic support on Pa, we have [Φ̃(a), Φ̃(a)] = 0 in ĝ∗/E∗(Ã0) by

Lemma 4.25 (because Pa intersects itself non-transversally), so ∂̄Φ̃(a) = ∂̄Φ̃(a)+ 1
2 [Φ̃(a), Φ̃(a)] = 0. �

Lemma 5.40 says that Φ̃(a) = Ψ̃ (a) + z̃(a) is a Maurer-Cartan solution in ĝ∗/E∗(Ã0) with support
concentrated along the wall Pa. Using a similar argument as the proof of Lemma 5.10, we note that

the higher cohomologies of the complex g∗N (Ã0)/E∗N (Ã0) and ĝ∗/E∗(Ã0) are all trivial. So there are

no non-trivial deformations of the dgLa ĝ∗/E∗(Ã0). In particular, the MC solution Φ̃(a) is gauge

equivalent to 0, i.e. there exists ϕa ∈ ĝ1/E1(Ã0) such that

(5.22) eϕa ∗ 0 = Ψ̃ (a) + z̃(a)
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on Ã0. As in the single wall case (Section 4.2), we need to define a homotopy operator Ĥ on

ĝ∗/E∗(Ã0) in order to fix the choice of ϕa.

We take a smooth homotopy h : [0, 1] × Ã0 → Ã0 contracting Ã0 to the fixed point b̂0 with

the property that h(1, b̂) = b̂ and h(0, b̂) = b̂0. We define the homotopy operator Ĥ : F∞∗ (Ã0) →
F∞∗−1(Ã0) by

(5.23) Ĥ(α) :=

∫ 1

0
h∗(α)

for α ∈ F∞∗ (Ã0), and we also define P̂ by the evaluation at the base point b̂0 and ι̂ by the embedding

of constant functions on Ã0, as before (cf. Section 4.2); one can see that these operators descend to

the quotient F∞∗ (Ã0)/F−∞∗ (Ã0) using the same argument as in the explanation for Definition 5.14.

We extend the above operators to the complex g∗N (Ã0)/E∗N (Ã0) as follows.

Definition 5.41. We define the operators Ĥ, P̂ and ι̂ by extending linearly the formulas Ĥ(αzm∂̌nt
j) :=

Ĥ(α)zm∂̌nt
j, P̂(αzm∂̌nt

j) := P̂(α)zm∂̌nt
j and ι̂(αzm∂̌nt

j) := ι̂(α)zm∂̌nt
j, descending to the quotient

and taking inverse limit.

Definition 5.42. Similar to the deduction of (4.6) from (4.5) [43], we solve the equation (5.22)

in ĝ∗/E∗(Ã0) iteratively to obtain the gauge: ϕa := −Ĥ
(
adϕa/(e

adϕa − Id)
)

(Ψ̃ (a) + z̃(a)) associated

to Φ̃(a) = Ψ̃ (a) + z̃(a) which satisfies the gauge fixing condition P̂(ϕa) = 0; this gauge is unique by
Lemma 4.7.

We now apply asymptotic analysis to the gauge ϕa, similar to what we have done in the single
wall case. First of all, as in Section 4.2.2 (see Remark 4.8 and the setup before Lemma 4.23), we

shall replace Ĥ by another operator Î, which is defined using an integral over affine lines transversal
to the wall Pa. For this purpose, we consider the half-space Ĥ(Pa) := {(r, θ, b) ∈ Ã0 | θ ≥ θa} in Ã0,
on which ϕa is possibly having asymptotic support. Note that θ is not an affine coordinate but we
can always express Ĥ(Pa) as a tropical half-space in Ã0 (by pulling back an affine linear function

defining Pa to Ã0 and parallel transporting to hyperplanes parallel to Pa).

We write Ψ̃ (a) =
∑∞

s=1 Ψ̃
(a)
s , z̃(a) =

∑∞
s=1 z̃

(a)
s and ϕa =

∑∞
s=1 ϕa,s according to powers of the

formal variable t. We also set ϕsa := ϕa,1 + · · · + ϕa,s, Ψ̃
(a),s := Ψ̃

(a)
1 + · · · + Ψ̃

(a)
s and z̃(a),s :=

z̃(a)
1 + · · ·+ z̃(a)

s . Then we have the following lemma, which is parallel to Lemma 4.27 in Section 4.

Lemma 5.43. The gauge ϕa has asymptotic support on the (codimension 0) tropical half-space

Ĥ(Pa) ⊂ Ã0, and we have

ϕa,s ∈
⊕
k≥1

∑
n∈Λ∨B0

(U)

F 0
Ĥ(Pa)

(Ã0) · zkma ∂̌nts,

ϕa,s + Ĥ(Ψ̃ (a)
s ) ∈

⊕
k≥1

∑
n∈Λ∨B0

(U)

F−1

Ĥ(Pa)
(Ã0) · zkma ∂̌nts,

adlϕsa(∂̄ϕsa) ∈
⊕
k≥1

1≤j≤s(l+1)

∑
n∈Λ∨B0

(U)

F 0
Pa(Ã0) · zkma ∂̌ntj

for all s ≥ 1 and l ≥ 1.

Proof. We prove by induction on s (the power of the formal variable t). In the initial case, the

equation defining ϕa,1 is ϕa,1 = −Ĥ(Ψ̃
(a)
1 + z̃(a)

1 ). We want define an integral operator to replace Ĥ
in order to apply Lemma 4.23. Since all the assertions that we need to prove are local properties,
we will work locally around any given point in Ã0.
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So we fix a point b̂1 ∈ Ã0 and choose a sufficiently small pre-compact open neighborhood K ⊂ Ã0

of b̂1, and then try to prove the initial case in K. We will also need to choose a family of piecewise
affine lines, as in the single wall case. There are two scenarios:

(1) If b̂1 ∈ Ĥ(Pa), we choose a sufficiently small pre-compact open neighborhood K of b̂1 and a

family of paths %K : [0, 1] ×K → Ã0 such that %K(0, b̂) = b̂0, %K(1, b̂) = b̂ and there exists
a partition 0 = t0 < · · · < tl−1 < tl = 1 so that only one of the intervals [ti0−1, ti0 ] has its
image possibly intersecting with Pa and that %K |[ti0−1,ti0 ] is a flow line of the affine vector

field vK pointing into Ĥ(Pa).

(2) If b̂1 6∈ Ĥ(Pa), we choose a sufficiently small pre-compact open neighborhood K of b̂1 with

K∩Ĥ(Pa) = ∅ and a family of paths %K : [0, 1]×K → Ã0 such that %K(0, b̂) = b̂0, %K(1, b̂) = b̂
and Im(%K) ∩ Pa = ∅.

Such a family always exists when K is sufficiently small. Figure 16 illustrates the difference between

the integral operators Ĥ and Îa,K . Then we set Îa,K(α)(b̂) :=
∫ 1

0 %
∗(α)(s, b̂). Applying Lemma 4.23

Figure 16.

to the piece %K |[ti0−1,ti0 ] gives

−Ĥ(Ψ̃
(a)
1 ) ∈ F 0

Ĥ(Pa)
(K) · (zkma ∂̌na)t1; −Ĥ(z̃(a)

1 ) ∈
∑

n∈Λ∨B0
(U)

F−1

Ĥ(Pa)
(K) · (zkma ∂̌n)t1,

which proves the first two assertions in the initial case.

For the third assertion, we have

∂̄ϕa,1 = −∂̄Ĥ(Ψ̃
(a)
1 + z̃(a)

1 ) = −Ψ̃ (a)
1 − z̃(a)

1 ∈
⊕
k≥1

∑
n∈Λ∨B0

(U)

F 1
Pa(Ã0) · zkma ∂̌nt1

from the gauge fixing condition in Definition 5.42. Upon repeated applications of Lemma 4.25,

we have adlϕ1
a
(z̃(a)

1 ) ∈
⊕

k≥1
1≤j≤l+1

∑
n∈Λ∨B0

(U) F
0
Pa

(Ã0) · zkma ∂̌ntj , so we only need to take care of

the term adlϕ1
a
(Ψ̃

(a)
1 ). Writing ϕa,1 = −Ĥ(Ψ̃

(a)
1 + z̃(a)

1 ) and applying Lemma 4.25 again, we see

that the only term we have to consider is adl
−Ĥ(Ψ̃

(a)
1 )

(Ψ̃
(a)
1 ) in the expression adl

−Ĥ(Ψ̃
(a)
1 +z̃(a)

1 )
(Ψ̃

(a)
1 ),

because the appearance of any of ad−Ĥ(z̃(a)
1 )

in the above expression will result in a term in
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j,k≥1

∑
n∈Λ∨B0

(U) F
0
Pa

(Ã0) · (zkma ∂̌n)tj . Concerning the term adl
−Ĥ(Ψ̃

(a)
1 )

(Ψ̃
(a)
1 ), Theorem 5.25 says

that that na ⊥ Pa in the expressions

Ĥ(Ψ̃
(a)
1 ) ∈

⊕
k≥1

F 0
Ĥ(Pa)

(Ã0) · zkma ∂̌nat1; Ψ̃
(a)
1 ∈

⊕
k≥1

F 1
Pa(Ã0) · zkma ∂̌nat1,

meaning that the leading order term of ad−Ĥ(Ψ̃ (a))(Ψ̃
(a)
1 ) given by Lemma 4.25 vanishes. Hence the

third assertion follows.

Now we assume that the assertions hold for s′ ≤ s. We consider the equation ϕa,s+1 = −Ĥ
(
Ψ̃

(a)
s+1 +

z̃(a)
s+1 +

∑
k≥0

adk
ϕsa

(k+1)! ∂̄ϕ
s
a

)
s+1

which determines ϕa,s+1 iteratively. From the induction hypothesis, we

have

z̃(a)
s+1 +

∑
k≥0

adkϕsa
(k + 1)!

∂̄ϕsa


s+1

∈
⊕
k≥1

∑
n∈Λ∨B0

(U)

F 0
Pa(Ã0) · zkma ∂̌nts+1.

Applying Ĥ (replacing Ĥ by Îa,K again) to this expression give the first two assertions of the
induction step by Lemma 4.23.

For the third assertion, we have ∂̄ϕa,s+1 = −
(
Ψ̃

(a)
s+1 + z̃(a)

s+1 +
∑

k≥0

adk
ϕsa

(k+1)! ∂̄ϕ
s
a

)
s+1

in ĝ∗/E∗(Ã0),

again from the gauge fixing condition in Definition 5.42. Applying Lemma 4.25 as in the proof of the
initial step, we see that the essential term to be considered is adl−Ĥ(Ψ̃ (a),s+1)

(Ψ̃ (a),s+1). By Theorem

5.25 again, we have n ⊥ Pa in the following expressions

Ĥ(Ψ̃ (a),s+1) ∈
⊕
k≥1

1≤j≤s+1

F 0
Ĥ(Pa)

(Ã0) · zkma ∂̌natj ; Ψ̃ (a),s+1 ∈
⊕
k≥1

1≤j≤s+1

F 1
Pa(Ã0) · zkma ∂̌natj .

Then we can conclude that adl−Ĥ(Ψ̃ (a),s+1)
(Ψ̃ (a),s+1) ∈

⊕
k≥1

1≤j≤(s+1)(l+1)

F 0
Pa

(Ã0) · zkma ∂̌natj because

the leading order term given by Lemma 4.25 vanishes, as in the proof of the initial step. This finishes
the proof of the induction step. �

The following lemma is parallel to Proposition 4.28 in Section 4.

Lemma 5.44. Over the half-space Ĥ(Pa) \ Pa, we have

ϕa ∈ ψa +

⊕
k≥1

∑
n∈Λ∨B0

(U)

F−1

Ĥ(Pa)\Pa
(Ĥ(Pa) \ Pa) · zkma ∂̌n

 [[t]] · t,

where ψa = Log(Θa) for some element Θa of the tropical vertex group of the form ψa =
∑

j,k≥1 b
(a)
jk ·

zkma ∂̌nat
j , where b

(a)
jk ’s are constants independent of } with b

(a)
jk 6= 0 only for finitely many k’s for

each fixed j and na is the unique primitive normal to Pa satisfying (νPa , na) < 0; while over the

other half-space Ã0 \ Ĥ(Pa), we have ϕa = 0.

Proof. We first consider ϕa over Ĥ(Pa) \ Pa. From the proof of Lemma 5.43, we see that

∂̄ϕa,s = −

Ψ̃ (a)
s + z̃(a)

s +
∑
k≥0

adk
ϕs−1
a

(k + 1)!
∂̄ϕs−1

a


s

∈
⊕
k≥1

∑
n∈Λ∨B0

(U)

F 0
Pa(Ã0) · zkma ∂̌nts

for every s ≥ 1. In particular, we have ∂̄ϕa,s = 0 in ĝ∗/E∗(Ĥ(Pa) \ Pa).

Applying Lemma 5.10 to ĝ∗/E∗(Ĥ(Pa) \ Pa), we can write ϕa,s = (ι̂1 ◦ P̂1)(ϕa,s) where P̂1 is the

projection operator defined by evaluating at a point b̂1 ∈ Ĥ(Pa) \ Pa and ι̂1 is the corresponding
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embedding operator, constructed similarly as P̂ in Definition 5.41.15 By Lemma 5.43 and the
above discussion, it remains to show that the leading order term of the asymptotic expansion of

−P̂1

(
Ĥ(Ψ̃

(a)
s + z̃(a)

s +
∑

k≥0

adk
ϕs−1
a

(k+1)! ∂̄ϕ
s−1
a )s

)
is exactly of the form ψa over Ĥ(Pa) \ Pa.

Choose a neighborhood K ⊂ Ã0 of b̂1 and a family of paths %K , and using the operator Îa,K as
defined in the proof of Lemma 5.43, we see that

P̂1

Ĥ
Ψ̃ (a)

s + z̃(a)
s +

∑
k≥0

adk
ϕs−1
a

(k + 1)!
∂̄ϕs−1

a


s

 =

∫
%K(·,b̂1)

Ψ̃ (a)
s + z̃(a)

s +
∑
k≥0

adk
ϕs−1
a

(k + 1)!
∂̄ϕs−1

a


s

.

Also we have

ι̂1

∫
%K(·,b̂1)

z̃(a)
s +

∑
k≥0

adk
ϕs−1
a

(k + 1)!
∂̄ϕs−1

a


s

∈
⊕
k≥1

∑
n∈Λ∨B0

(U)

F−1

Ĥ(Pa)\Pa
(Ĥ(Pa) \ Pa) · zkma ∂̌nts.

So it remains to compute
∫
%(·,b̂1)(Ψ̃

(a)
s ).

Lemma 5.27 together with Lemma 5.35 allow us to compute the leading order term of the integral
−
∫
%(·,b̂1) Ψ̃

(a) explicitly as−
∫
%K(·,b̂1) Ψ̃

(a) =
∑

k
1

2k−1

∑
T ∈LRTk0 :PT 6=∅,mT ‖ma

∫
%K(·,b̂1) lk,T (Π̆, . . . , Π̆). From

the discussion in Section 5.2.4, we learn that lk,T (Π̆, . . . , Π̆) = αT ∂̌nT z
mT tjT for each T ∈ LRTk0.

Therefore, restricting to the interval [ti0−1, ti0 ] of %K(·, b̂1) and applying Lemma 5.35, we find that

the } order expansion of
∫
%(·,b̂1) lk,T (Π̆, . . . , Π̆) is of the form

∫
%K(·,b̂1) lk,T (Π̆, . . . , Π̆) ∈ (b

(a)
jT ,kT

+

O(}1/2))zkTma ∂̌nT t
jT , where kTma = mT (here mT , jT and nT are introduced in Definition 5.19

and the equation (5.17)). This proves the desired result over Ĥ(Pa) \ Pa.

Over the other half-space Ã0 \ Ĥ(Pa), the same reason yields ∂̄ϕa,s = 0 in ĝ∗/E∗(Ã0 \ Ĥ(Pa)).

Therefore we have ϕa,s = (ι̂ ◦ P̂)(ϕa,s) = 0 from the gauge fixing condition in Definition 5.42, where

P̂ is treated as an operator acting on ĝ∗/E∗(Ã0 \ Ĥ(Pa)). �

Now we are ready to construct the order N scattering diagram D(Φ)N for any fixed N ∈ Z>0.
Given a ∈W(N), Lemma 5.44 says that the leading order term in the asymptotic expansion of the

gauge ϕa produces the element ψa =
∑

k≥1
1≤j≤N

b
(a)
jk · z

kma ∂̌nat
j (mod mN+1) over Ĥ(Pa) \ Pa.

Definition 5.45. We define the order N scattering diagram as D(Φ)N := {wa | a ∈W(N)}, where
each newly added wall wa is supported on the tropical half-hyperplane Pa = Q − R≥0ma ⊂ U and

equipped with the wall crossing factor Θa defined by Log(Θa) :=
∑

k≥1
1≤j≤N

b
(a)
jk ·z

kma ˇ̌∂nat
j (mod mN+1).

The order N+1 diagram D(Φ)N+1 is naturally an extension of the order N diagram D(Φ)N because

Φ(a), Ψ (a) and hence ϕa are defined for all orders of t. Hence this defines a scattering diagram D(Φ)
associated to Φ.

5.3.2. Consistency of D(Φ). We are now ready to prove Theorem 1.5:

Theorem 5.46 (=Theorem 1.5). For the Maurer-Cartan solution Φ constructed in (5.14), the
associated scattering diagram D(Φ) defined in Definition 5.45 is consistent, i.e. we have the iden-
tity Θγ,D(Φ) =

∏γ
wa∈D(Φ) Θa = Id for any embedded loop γ in U \ Sing(D(Φ)) intersecting D(Φ)

generically.

Proof. Let us first recall that we are working over the open subset Ã0 = {(r, θ, b) | θ0 − ε0 < θ < θ0 + 2π} ,
in the universal cover Ã of A = U \Q, where Q = P1 ∩P2 = Sing(D(Φ)). We have also fixed a strip

15Note that P̂ and P̂1 are defined by evaluation at two different points b̂0 and b̂1 respectively.
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V = {(r, θ, b) | θ0 − ε0 + 2π < θ < θ0 + 2π} so that the strip V − 2π = {(r, θ, b) | θ0 − ε0 < θ < θ0}
stays away from all the possible walls in D(Φ); see Figure 17.

Figure 17.

It is enough to show that D(Φ)N is a consistent scattering diagram for each fixed N ∈ Z>0. Recall

from Definition 5.42 that the gauge ϕa is written as ϕa = −Ĥ
(
adϕa/(e

adϕa−Id)
) (
Ψ̃ (a) + z̃(a)

)
(mod mN+1),

and it satisfies the gauge fixing condition P̂(ϕa) = 0 and solves the equation eϕa ∗ 0 = Ψ̃ (a) + z̃(a)

in g∗N (Ã0)/E∗N (Ã0). We first show that, given any embedded loop γ in U \ Q intersecting D(Φ)
generically (see Figure 17), we have

(5.24)

γ∏
a∈W(N)

eϕa = Id (mod mN+1),

over V.

Lemma 5.47. Over Ã0, we have
(∏γ

a∈W(N) e
ϕa
)
∗0 =

∑
a∈W(N)

(
Ψ̃ (a) + z̃(a)

)
(mod mN+1), where

the (finite) product on the left hand side is taken according to the orientation of γ.

Proof of Lemma 5.47. By Lemma 5.44, we have ϕa ≡ 0 over the half-space Ã0 \ Ĥ(Pa) = {(r, θ, b) ∈
Ã0 | θ < θa} for any a ∈ W(N). So supp(ϕa′) ∩ Pa = ∅ for any a, a′ ∈ W(N) with θa < θa′ (see

Figure 17). As a result we have
[
ϕa′ , Ψ̃

(a) + z̃(a)
]
≡ 0 (mod mN+1), and we get

eϕa′ ∗ (Ψ̃ (a) + z̃(a)) =
(
Ψ̃ (a) + z̃(a)

)
−

(
eadϕa′ − Id

adϕa′

)(
dϕa′ + {Ψ̃ (a) + z̃(a), ϕa′}

)
= Ψ̃ (a′) + z̃(a′) + Ψ̃ (a) + z̃(a)

in g∗N (Ã0)/E∗N (Ã0). The lemma follows by applying this argument repeatedly according to the
anti-clockwise ordering (i.e. increasing values of θa). �

On the other hand, since Φ is a Maurer-Cartan solution of g∗N (U)/E∗N (U), whose deformations are
all trivial in view of Lemma 5.10, we can find a gauge ϕ solving the equation eϕ∗0 = Φ and satisfying
the condition P(ϕ) = 0 over U . Pulling back via p : Ã0 → A, we get p∗(ϕ) solving ep

∗(ϕ) ∗0 = p∗(Φ)
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and satisfying P̂(p∗(ϕ)) = 0 (the latter using the fact that p(b̂0) = x0) over Ã0. Then uniqueness in

Lemma 4.7 and Lemma 5.24 imply that ep
∗(ϕ) =

∏γ
a∈W(N) e

ϕa in g∗N (Ã0)/E∗N (Ã0).

But ϕ is defined over the whole spherical neighborhood U , instead of just over the annulus
A = U \ Q, so in fact

∏γ
a∈W(N) e

ϕa ∈ g∗N (Ã0)/E∗N (Ã0) is monodromy free. In particular, this tells

us that  γ∏
a∈W(N)

eϕa

 |V−2π =

 γ∏
a∈W(N)

eϕa

 |V
modulo mN+1. Note that V is chosen so that V − 2π stays away from

⋃
a∈W(N) Ĥ(Pa). Thus we

have
(∏γ

a∈W(N) e
ϕa
)
|V−2π = Id (mod mN+1) by Lemma 5.44, so we obtain the identity

(5.25)

γ∏
a∈W(N)

eϕa = Id (mod mN+1)

over the strip V.

Equation (5.25) is an identity in the Lie algebra
⊕

m∈ΛB0
(U)

1≤j≤N

∑
n∈ΛB0

(U) F
0
V(V) · zm∂̌ntj . Passing

to the quotient by the ideal
⊕

m∈ΛB0
(U)

1≤j≤N

∑
n∈ΛB0

(U) F
−1
V (V) · zm∂̌ntj gives the identity

(5.26)

γ∏
a∈W(N)

eψa = Id (mod mN+1)

in
⊕

m∈ΛB0
(U)

1≤j≤N

∑
n∈ΛB0

(U)

(
F 0
V(V)/F−1

V (V)
)
· zm∂̌ntj over V.

The embedding h(V)⊗R (m/mN+1) ↪→
⊕

m∈ΛB0
(U)

1≤j≤N

∑
n∈ΛB0

(U) F
0
V(V) · zm∂̌ntj , whose image has

trivial intersection with
⊕

m∈ΛB0
(U)

1≤j≤N

∑
n∈ΛB0

(U) F
−1
V (V) · zm∂̌ntj because coefficients of an element

in the image are all constants independent of }, so it descends to the quotient to give an embedding
h(V)⊗R (m/mN+1) ↪→

⊕
m∈ΛB0

(U)
1≤j≤N

∑
n∈ΛB0

(U)

(
F 0
V(V)/F−1

V (V)
)
· zm∂̌ntj . Therefore we obtain

γ∏
a∈W(N)

Θa = Id (mod mN+1)

from (5.26) and completes the proof of the theorem. �

5.3.3. Consistent scattering diagrams from more general Maurer-Cartan solutions. From the proof of

Theorem 5.46, we observe a general relation between Maurer-Cartan solutions of the dgLa ĝ∗/E∗(U)
with suitable asymptotic behavior and consistent scattering diagrams in U .

We work with a contractible open coordinate chart U ⊂ B0 and the dgLa’s g∗N (U)/E∗N (U) as

well as ĝ∗/E∗(U). We also fix a codimension 2 tropical subspace Q ⊂ U , which plays the role of
the common boundary of the walls.16 In order to obtain a consistent scattering diagram from a

Maurer-Cartan solution Φ of ĝ∗/E∗(U), we put two Assumptions 5.48 and 5.49 on the asymptotic
behavior of Φ, the first of which is the following.

16One can regard Q as a joint in the Gross-Siebert program [28] and we are indeed considering MC solutions near
a joint Q in B0.
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Assumption 5.48. We assume that Φ admits a (Fourier) decomposition of the form

(5.27) Φ =
∑
a∈W

Φ(a),

where we have a partition of the index set W into three subsets W = Win tWout tWun; here the
subscripts stand for incoming walls, outgoing walls and undirectional walls respectively, following
the notations in [28]. We further assume that there is an association a ∈W 7→ ma ∈ M ∼= ΛB0(U)
satisfying ma is not parallel to Q if a ∈ Win tWout, and ma is parallel to Q if a ∈ Wun and an
association

a ∈W 7→ a tropical half-hyperplane Pa containing Q in U

satisfying Pa = Q − R≤0 ·ma if a ∈ Win, Pa = Q − R≥0 ·ma if a ∈ Wout, and Pa 6= Pa′ if a 6= a′

in W,17 such that the summand Φ(a) has asymptotic support on Pa and admits a decomposition
Φ(a) = Ψ (a) + z(a), where

Ψ (a) ∈

⊕
k≥1

F 1
Pa(U)zkma ∂̌na

 [[t]]; z(a) ∈

⊕
k≥1

∑
n

F 0
Pa(U)zkma ∂̌n

 [[t]];

here na is a primitive normal to Pa.18

Under Assumption 5.48, we can solve for the gauge ϕa by the same process as in Definition 5.42
and prove the same statement as in Lemma 5.43 for each ϕa (because we have (ma, na) = 0 even
for undirectional walls).

Next, we consider the annulus A := U \Q and the universal cover p : Ã→ A, as before. We choose
a reference half-hyperplane Rθ0 of the form Rθ0 = Q−R≥0mθ0 with mθ0 ∈MR\M , so that Rθ0 cannot
overlap with any of the possible walls. Again we combine polar coordinates (r, θ) on a fiber of NQ

with affine coordinates b := (b3, . . . , bn) on Q to obtain coordinates b̂ = (b1 = r, b2 = θ, b3, . . . , bn)

on Ã. We consider the branch {(r, θ, b) | θ0 < θ < θ0 + 2π}, where θ0 is a fixed angular coordinate
for the half-hyperplane Rθ0 . For each a ∈W, we let θ0 < θa < θ0 + 2π be the angular coordinate of

the half-hyperplane Pa and set Ĥ(Pa) := {(r, θ, b) | θa ≤ θ < θ0 + 2π}.

Assumption 5.49. We assume that there exists an element ψa =
∑

j,k≥1 b
(a)
jk z

kma ∂̌nat
j , where b

(a)
jk ’s

are constants independent of } with b
(a)
jk 6= 0 only for finitely many k’s for each fixed j and na is a

primitive normal to Pa, such that

Ĥ(Ψ (a))|Ĥ(Pa)\Pa ∈ ψa +

⊕
k≥1

F−1

Ĥ(Pa)\Pa
(Ĥ(Pa) \ Pa) · zkma ∂̌na

 [[t]] · t.

For each fixed N ∈ Z>0, we choose a sufficiently small εN > 0 such that the subset VN :=
{(r, θ, b) | θ0 − εN + 2π < θ < θ0 + 2π} is disjoint from all the Pa’s. We then restrict our attention

to Ã0 := {(r, θ, b) | θ0 − εN < θ < θ0 + 2π} in order to apply a monodromy argument as in Section

5.3.1. We also fix the homotopy operator Ĥ as in Definition 5.41, together with P̂ and ι̂. Then we
can prove the same statement as in Lemma 5.44 under Assumption 5.49.

So altogether, assuming both Assumptions 5.48 and 5.49, we have Lemmas 5.43 and 5.44, and a
scattering diagram D(Φ) can be associated to the given Maurer-Cartan solution Φ in exactly the
same way as in Definition 5.45. Finally, the same proof as in Theorem 5.46 gives the following:

Theorem 5.50 (= Theorem 1.4). Suppose that we have a Maurer-Cartan solution Φ of ĝ∗/E∗(U)
satisfying both Assumptions 5.48 and 5.49. Then the scattering diagram D(Φ) associated to Φ is

17Note that there is no restriction on Pa if a ∈Wun, hence the name undirectional walls.
18Note that we do not need to specify the sign of (νPa , na) in this assumption.
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consistent, i.e. we have the following identity Θγ,D(Φ) =
∏γ

wa∈D(Φ) Θa = Id along any embedded loop

γ in U \ Sing(D(Φ)) intersecting D(Φ) generically.
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vi+340. MR 3460884

25. M. Gross, Examples of special Lagrangian fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000),
World Sci. Publ., River Edge, NJ, 2001, pp. 81–109. MR 1882328 (2003f:53085)

http://arxiv.org/abs/1401.5867


54 CHAN, LEUNG, AND MA

26. , Topological mirror symmetry, Invent. Math. 144 (2001), no. 1, 75–137. MR 1821145 (2002c:14062)
27. M. Gross, R. Pandharipande, and B. Siebert, The tropical vertex, Duke Math. J. 153 (2010), no. 2, 297–362.

MR 2667135 (2011f:14093)
28. M. Gross and B. Siebert, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no. 3,

1301–1428. MR 2846484
29. , Local mirror symmetry in the tropics, Proceedings of the International Congress of Mathematicians—Seoul

2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 723–744. MR 3728635
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