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Abstract

We discuss homological mirror symmetry for the conifold from the point of view

of the Strominger-Yau-Zaslow conjecture.

1 Introduction

The behavior of strings and branes near the tip of a cone has been studied extensively in
string theory. The case when the cone is a Gorenstein affine toric 3-fold is of particular
importance, not only from the point of view of mirror symmetry, but also for appli-
cations to geometric engineering of Seiberg-Witten theory [KKV97] and the AdS/CFT
correspondence [AGM+00].

Let Z be a Gorenstein affine toric 3-fold and ϕ : X → Z be a crepant resolution. The
convex hull △ of primitive generators of one-dimensional cones of the fan describing Z as
a toric variety is a lattice polygon, which lies on the plane

N = {n = (n1, n2, n3) ∈ N | n3 = 1}

under a suitable choice of a coordinate N ∼= Z3 on the lattice of one-parameter subgroups
of the dense torus.

If △ contains an interior lattice point, then X is derived-equivalent to the total space
KX of the canonical bundle of a 2-dimensional toric Fano stack X, and homological mirror
symmetry for X is related to homological mirror symmetry for X by suspension [Sei10].
The case when△ does not contain any interior lattice point is more elusive, and we discuss
such a case in this paper.

Let Z be the conifold, which is a synonym for a 3-dimensional ordinary double point;

Z = {(u1, v1, u2, v2) ∈ C
4 | u1v1 = u2v2}.

The lattice polygon △ for Z is the unit lattice square, which does not contain any interior
lattice points. The smoothing

Y = {(u1, v1, u2, v2) ∈ C
4 | u1v1 = u2v2 − ǫ}

of the conifold is expected to be mirror to the small resolution ϕ : X → Z (cf. e.g. [ST01,
Gro01]).

In this paper, we discuss homological mirror symmetry for the conifold from the point
of view of the Strominger-Yau-Zaslow conjecture [SYZ96]. To do this, it is convenient to

1



consider an open subvariety Y 0 of Y , which is the complete intersection in C
× × C

4 =
SpecC[z, z−1, u1, u2, v1, v2] defined by

{
u1v1 = z − a,

u2v2 = z − b.
(1.1)

Here a and b are distinct non-zero complex numbers, which we assume to be negative real
numbers for simplicity in this section.

We equip Y 0 with the restriction ω of the symplectic form on C
××C

4 obtained as the
sum of the cylindrical Kähler form on C× and the Euclidean Kähler form on C4. Then
the map

ρ : Y 0 → R3

∈ ∈

(z, u1, v1, u2, v2) 7→
(
log |z|, 1

2
(|u1|2 − |v1|2) , 12 (|u2|2 − |v2|2)

)

is a Lagrangian torus fibration, whose discriminant loci is given by the disjoint union of
two skew lines

Γ = {(log |a|, 0, λ2) ∈ B | λ2 ∈ R} ∪ {(log |b|, λ1, 0) ∈ B | λ1 ∈ R}

as shown in Figure 1.1.

λ1

λ2

|r|

Figure 1.1: The base of the SYZ fibration

The regular fibers of ρ are special with respect to the holomorphic volume form

Ω = d log z ∧ d log u1 ∧ d logu2,

and we will refer to ρ as the SYZ fibration.
The mirror X0 of Y 0 is identified in [AAK, Theorem 11.1] as the complement of a

divisor in the resolved conifold;

X0 = X \D,

X = OP1(−1)⊕OP1(−1).
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Here, the divisor D is the pull-back of the divisor {w1w2 = 0} on the conifold

Z = {(u, v, w1, w2) ∈ C
4 | uv = (1 + w1)(1 + w2)}

along the crepant resolution ϕ : X → Z. The natural projection and the inclusion of
the zero-section will be denoted by π : X0 → P1 and ι : P1 →֒ X0 respectively. Let
E ⊂ X0 be the image of ι, which is the exceptional locus of the resolution. We write
OX0(i) := π∗OP1(i) and OE(i) := ι∗OP1(i) for short.

To a strongly admissible path γ, the definition of which we defer to Section 3, one
can associate an exact non-compact Lagrangian submanifold Lγ ⊂ Y 0, which is a section
of the SYZ fibration ρ : Y 0 → R3. The SYZ transform [AP01, LYZ00] of a Lagrangian
section of an SYZ fibration is a holomorphic line bundle on the mirror, obtained as a kind
of Fourier transform.

Theorem 1.1. The SYZ transform Lγ of the Lagrangian section Lγ associated with a
strongly admissible path γ : R→ C× \∆ is the line bundle OX0(−w(γ)) on X0.

Here w(γ) denotes the winding number defined in Section 3. Let γ0 and γ1 be admis-
sible paths shown in Figure 1.2. The associated Lagrangian submanifolds of Y 0 will be
denoted by L0 := Lγ0 and L1 := Lγ1 , whose winding numbers are 0 and −1 respectively.
Let W be the wrapped Fukaya category of Y 0 consisting of L0 and L1.

L0

L1

Figure 1.2: Non-compact Lagrangians

S0

S1

Figure 1.3: Compact Lagrangians

Theorem 1.2. There is an equivalence

DbW ∼= Db cohX0 (1.2)

of triangulated categories sending Li to OX0(i) for i = 0, 1.

There is a natural choice of a pair (S0, S1) of Lagrangian 3-spheres in Y 0 which are
dual to (L0, L1); they are T 2-fibrations over the paths shown in Figure 1.3.

Theorem 1.3. The SYZ transforms of the Lagrangian 3-spheres S0 and S1 are the line
bundles OE and OE(−1) on the exceptional locus E respectively.

Let F0 be the Fukaya category of Y 0 consisting of S0 and S1, and coh0X
0 be the

abelian category of coherent sheaves supported on the exceptional locus of the resolution
ϕ : X → Z.
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Theorem 1.4. There is an equivalence

DbF0
∼= Db coh0X

0 (1.3)

of triangulated categories sending S0 and S1 to OE and OE(−1) respectively.
This paper is organized as follows: We review the construction of the SYZ mirror for

the smoothed conifold from [AAK] in Section 2. In Section 3, we discuss the construction
of Lagrangian submanifolds in Y 0 from paths on the z-plane. In Section 4, we recall the
definition of the SYZ transform from [AP01, LYZ00] and prove Theorems 1.1 and 1.3.
In Section 5, we give an explicit description of the derived category of coherent sheaves
on the resolved conifold. In Section 6, we study the wrapped Fukaya category of Y 0 and
prove Theorem 1.2. In Section 7, we study A∞-operations on vanishing cycles in Y 0 and
prove Theorem 1.4. In Section 8, we study Floer cohomology of immersed Lagrangian
S2 × S1. In Section 9, we discuss extension of the main results of this paper to more
general small toric Calabi-Yau 3-folds.

Acknowledgment : K. C. is supported by a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China (Project No. CUHK404412). D. P.
would like to thank Denis Auroux and Kevin Lin for their very patient explanation of
wall-crossing formulas. K. U. is supported by JSPS Grant-in-Aid for Young Scientists
No. 24740043.

2 The construction of the SYZ mirror

Recall that Y 0 is given by the complete intersection

u1v1 = z − a,

u2v2 = z − b
(2.1)

in C××C4, where a and b are distinct negative real numbers. Without loss of generality,
we assume that a < b. To construct the mirror of Y 0, it is also convenient to regard Y 0

as the complement of the anticanonical divisor

H = {(z, u1, v1, u2, v2) ∈ Y | z = 0}

in
Y = {(z, u1, v1, u2, v2) ∈ C

5 | u1v1 = z − a, u2v2 = z − b}.
In the following, we shall briefly review the construction of the mirror for Y 0 (or Y with
respect to the divisor H) following the SYZ approach in [Aur07, Aur09]; note that our
example is a special case of a much more general construction in [AAK, Section 11] (see
also [CLL12, Section 4] and [Cha13, Section 5]).

First of all, there is a Hamiltonian T 2-action on (Y 0, ω):

(eis, eit) · (z, u1, v1, u1, v2) =
(
z, eisu1, e

−isv1, e
itu2, e

−itv2
)

whose moment map is given by

φ(z, u1, v1, u1, v2) =

(
1

2

(
|u1|2 − |v1|2

)
,
1

2

(
|u2|2 − |v2|2

))
.
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This action extends to Y and preserves the anticanonical divisor H . The SYZ fibration
is given by

ρ : Y 0 → B := R>0 × R
2

∈ ∈

(z, u1, v1, u2, v2) 7→ (|z|, φ(z, u1, v1, u2, v2)) .
(2.2)

Note that we use |z| here instead of log |z| and the base is R>0 × R2 instead of R3. This
harmless change is more convenient for us because we would like to extend this map to
ρ : Y → B := R≥0 ×R2 so that the preimage of the boundary {0} ×R2 is precisely given
by the hypersurface H .

Let ~λ = (λ1, λ2) ∈ R2 and r ∈ R>0. We denote by

Lr,~λ = {(z, u1, v1, u2, v2) ∈ Y | |z| = r, φ(z, u1, v1, u2, v2) = ~λ}

the fiber of ρ over (r, ~λ) ∈ B = R>0 ×R2. Consider the double conic fibration f : Y → C

given by projection to the z-coordinate. Then Lr,~λ can be viewed as a fibration, via f ,

over the circle Cr = {z ∈ C× | |z| = r} with generic fiber T 2. The fiber Lr,~λ is singular
precisely when

(i) r = |a| and ~λ = (0, λ2); or

(ii) r = |b| and ~λ = (λ1, 0);

so the discriminant loci of ρ is the disjoint union of two skew lines

Γ = {(|a|, 0, λ2) ∈ B | λ2 ∈ R} ∪ {(|b|, λ1, 0) ∈ B | λ1 ∈ R} . (2.3)

We denote by Bsm := B \ Γ the smooth loci of the base of the SYZ fibration. When Lr,~λ

is smooth, it is a special Lagrangian torus in Y 0 with respect to the symplectic form ω
and the holomorphic volume form

Ω = d log z ∧ d log u1 ∧ d logu2.

Let
L′
r,λ1

= {(u1, v1) ∈ C
2 | |u1v1 + a| = r, |u1|2 − |v1|2 = 2λ1},

and
L′′
r,λ2

= {(u2, v2) ∈ C
2 | |u2v2 + b| = r, |u2|2 − |v2|2 = 2λ2}.

Via the map f ′ : C2 → C given by (u1, v1) 7→ u1v1 + a, we can think of L′
r,λ1

as an S1-
bundle over the circle Cr. Similarly, via the map f ′′ : C2 → C given by (u2, v2) 7→ u2v2+b,
L′′
r,λ2

can be thought of as an S1-bundle over the same circle. Then Lr,~λ is nothing but
the fibred product

Lr,~λ = L′
r,λ1
×C L′′

r,λ2
−−−→ L′′

r,λ2y f ′′

y

L′
r,λ1

f ′

−−−→ C.
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To construct the SYZ mirror, we compute the superpotential [CO06, FOOO09, FOOO10,
AAK] which counts Maslov index two holomorphic discs in Y (caution: not Y 0!) with
boundary on the Lagrangian torus fibers of ρ. Our arguments are along the same lines as
those in [Aur07, Aur09].

By composing a disc with the holomorphic map f : Y → C and applying the maximal
principle, we see that Maslov index two discs in (Y, Lr,~λ) are sections of f over the disc
bounded by Cr. Omitting subscripts for convenience, for r large, the Lagrangian L =
L′ ×C L′′ is Hamiltonian isotopic to a Lagrangian of the form

(S1(r1)× S1(r2))×C (S1(r3)× S1(r4)).

The S1(r1)× S1(r2) component bounds two families of Maslov index two discs, which we
will denote by β ′

1 and β ′
2, and the S1(r3)× S1(r4) component also bounds two families of

Maslov index two discs, which we will denote by β ′′
1 and β ′′

2 . Therefore L′ ×C L′′ bounds
four families of Maslov index two discs which we will denote by (β ′

i, β
′′
j ) for i, j = 1, 2.

Let z1, z2, z3, z4 be the weights corresponding respectively to

(β ′
1, β

′′
1 ), (β

′
1, β

′′
2 ), (β

′
2, β

′′
1 ), (β

′
2, β

′′
2 ).

Since
(β ′

1, β
′′
2 ) + (β ′

2, β
′′
1 )− (β ′

1, β
′′
1 ) = (β ′

2, β
′′
2 ),

we have the relation
z2z3/z1 = z4.

It follows that the superpotential for large r is given by

W = z1 + z2 + z3 +
z2z3
z1

.

Remark 2.1. Note that this is exactly the Hori-Vafa superpotential corresponding to the
singular toric variety

Z = {(u1, v1, u2, v2) ∈ C
4 | u1v1 − u2v2 = 0}.

In a sense, we can think of r large as corresponding to some ‘toric limit’.

Using the description of L = Lr,~λ as a fibred product, it is easy to see that

Proposition 2.2. A Lagrangian torus fiber Lr,~λ bounds a nontrivial Maslov index zero
holomorphic disc in Y if and only if r = |a| or r = |b|. In other words, there are exactly
two walls.

Recall that we have a < b < 0 so that |b| < |a|. Let α′ denote the Maslov index
zero disc bounded by the L′ factor and α′′ the one bounded by the L′′ factor. Also let
w1 and w2 be the corresponding weights. When r is small, the Lagrangian torus L is a
fibred product of Chekanov tori L′ ×C L′′, with each factor bounding one family of discs
β ′
0 and β ′′

0 respectively. So L bounds one family of discs with relative homotopy class
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(β ′
0, β

′′
0 ). Let u be the weight corresponding to (β ′

0, β
′′
0 ). We conclude that, for small r,

the superpotential is simply given by

W = u.

To analyze the wall-crossing for counting of Maslov index two discs, we first assume
that λ1 > 0. As r increases and passes through the first wall r = |b|, the class (β ′

0, β
′′
0 )

deforms naturally to
(β ′

1, β
′′
0 ),

but it may also pick up the Maslov index zero disc α′ and deform into

(β ′
1 + α′, β ′′

0 ) = (β ′
2, β

′′
0 ).

Similarly, assuming λ2 > 0, as r passes through the second wall r = |a|, (β ′
i, β

′′
0 ) naturally

deforms to (β ′
i, β

′′
1 ) but it may also deform to (β ′

i, β
′′
1 + α′′) = (β ′

i, β
′′
2 ).

Hence, the wall-crossing formula for the first wall reads

u 7→ ẑ1(1 + w1), (2.4)

where w1 = ẑ3/ẑ1, and the wall-crossing formulas for the second wall are given by

ẑ1 7→ z1(1 + w2), ẑ3 7→ z3(1 + w2), (2.5)

where w2 = z2/z1. Composing these formulas gives

u 7→ z1 + z3 + z2 +
z2z3
z1

,

so the wall-crossing formulas do make the superpotential for r small agree with that for
r large.

Remark 2.3. We comment on transversality and orientation for the above moduli spaces
of Maslov index two discs.

For transversality, we may apply the argument in [Aur15, Lemma 7]. We briefly explain
how this argument carries over to our situation. In our situation, explicit calculation shows
that the Maslov index two discs avoid the fixed point locus of the natural T 2 action on
the total space. Therefore, for any map u, we have a short exact sequence

0→ u∗L → u∗TX → u∗TX/L → 0,

where L is a trivial rank two bundle with real boundary conditions. Let ū denote the
corresponding map to C, which as remarked above is a section over a disc. It follows that
surjectivity of the ∂̄ operator on sections of u∗TX with boundary conditions u∗

|S1(TL)

reduces to that of the ∂̄ operator on the quotient bundle u∗TX/u∗L ∼= ū∗TC with the
corresponding boundary conditions. The surjectivity of the latter operator is well-known.

Similarly, the argument in the proof of [Aur15, Corollary 8] (in particular its 4th para-
graph, which in turn rely on constructions in [FOOO09, Chapter 8] or [Cho04, Proposition
5.2]) adapts directly to determine the signs.
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Although we have assumed that λ1 > 0 and λ2 > 0, the above calculations also work
for other cases when λ1 < 0 or λ2 < 0. So letting z = ẑ1 and v = z−1

1 , the uncompleted
SYZ mirror Y̌0 of the complement Y 0 = Y \H is given by the union of three charts U1, U2

and U3, all algebraically equivalent to (C×)3 and equipped with coordinates (u, w1, w2),
(z, w1, w2) and (v, w1, w2) respectively. The wall-crossing formulas then tell us that these
charts are glued by

u→ z(1 + w1), w1 → w1, w2 → w2

from U1 to U2, and by

z → v−1(1 + w2), w1 → w1, w2 → w2

from U2 to U3.
To have a more concrete description of Y̌0, let us consider the singular variety

Z = {(u, v, w1, w2) ∈ C
4 | uv = (1 + w1)(1 + w2)}

and its crepant resolution

X = OP1(−1)⊕OP1(−1).
Let X0 = X \ D, where D is the pull-back of the divisor {w1w2 = 0} on Z along the
crepant resolution ϕ : X → Z. Then we can write

X0 = {(u, v, w1, w2, [x1 : x2]) ∈ C
2 × (C×)2 × P

1 | ux2 = (1 + w1)x1, (1 + w2)x2 = vx1}.
Observe that U1 can be embedded into X0 as the chart where u 6= 0 and with coordi-

nates (u, w1, w2). Similarly, U2 is the chart of X0 where x1/x2 6= 0 and with coordinates
(z := x1/x2, w1, w2), while U3 is the chart of X0 where v 6= 0 and with coordinates
(v, w1, w2). It is clear that these charts satisfy the above gluing relations. Now we claim
that the union of these charts is precisely given by the complement X0 \ (C1 ∪C2) where

C1 = {(u, v, w1, w2, [x1 : x2]) ∈ X0 | u = v = 0, w1 = −1, [x1 : x2] = [1 : 0]},
C2 = {(u, v, w1, w2, [x1 : x2]) ∈ X0 | u = v = 0, w2 = −1, [x1 : x2] = [0 : 1]}.

To see this, just notice that any point with u 6= 0 or v 6= 0 is covered by U1 and U3

respectively, and any point whose P1 coordinate is not equal to [1 : 0] or [0 : 1] is covered
by U2.

Hence we conclude that the uncompleted SYZ mirror of Y with respect to the anti-
canonical divisor H is the Landau-Ginzburg model (Y̌0,W ) with total space1

Y̌0 = X0 \ (C1 ∪ C2)

and superpotential
W = u.

Note that Y̌0 is an open subvariety of X0, and the superpotential W naturally extends
to X0, so the above argument also gives a natural completion of this Landau-Ginzburg
model:

1While the three charts of the uncompleted mirror Y̌0 and their gluing are correctly described in the

published version of this paper, the explicit formula for Y̌0 there is incorrect and should be modified as

described here. We thank Luis Diogo for discussions which lead us to the discovery of this error.
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Proposition 2.4 ([AAK, Section 11]). The Landau-Ginzburg model (X0,W ) is the com-
pleted, corrected SYZ mirror to Y with respect to the anticanonical divisor H. In partic-
ular, X0 is the completed, corrected SYZ mirror to Y 0 = Y \H.

Remark 2.5. It is natural to speculate that the ‘missing points’ X0 \ Y̌0 correspond to
singular fibers Lu := ρ−1(u) of the SYZ fibration ρ : Y 0 → R3, where u ∈ Γ is a point
in the discriminant locus. In Section 8, we will try to justify this speculation by some
Floer-theoretic computations.

3 Lagrangian submanifolds fibred over paths

We introduce a class of Lagrangian submanifolds in Y 0 which are fibred over paths in the
z-plane. Let us start with non-compact Lagrangian submanifolds.

Definition 3.1. A smooth path γ : R→ C× on the z-plane such that limt→−∞ |γ(t)| = 0
and limt→∞ |γ(t)| = ∞ is said to be admissible if it intersects the interval ǫ := [a, b]
transversally and does not intersect the discriminant ∆ = {a, b} of the double conic
fibration f : Y 0 → C×. The winding number w(γ) of an admissible path γ is defined as
its intersection number with ǫ. We choose the orientation so that a path intersecting ǫ
transversally once and in the counterclockwise direction contributes +1 to the intersection
number.

Let γ : R → C× \ ∆ be an admissible path. The symplectic fibration f : Y 0 → C×

induces a natural horizontal distribution given by symplectic orthogonal to the fiber.
Parallel transport with respect to this horizontal distribution gives symplectomorphisms
between the smooth fibers of f . A 3-dimensional submanifold L ⊂ f−1(γ) is Lagrangian
if and only if it is swept by the parallel transport of a Lagrangian cycle in a fiber along
γ (cf. [Aur07, Section 5.1]). Therefore, by fixing t0 ∈ R and choosing a Lagrangian cycle
A0 in the double conic fiber

f−1(γ(t0)) = (f ′)−1(γ(t0))× (f ′′)−1(γ(t0)),

one can construct a Lagrangian submanifold Lγ,A0
⊂ Y as the submanifold in f−1(γ)

swept out by the parallel transport of A0 along γ.
Notice that the winding number w(γ) and the Hamiltonian isotopy class of the La-

grangian submanifold Lγ are invariant when we deform γ in a fixed isotopy class relative
to the boundary conditions. In particular, we can always deform γ so that γ(t) lies on the
positive real axis for t < −T for some fixed T > 0. Then we consider the direct product

At := {(γ(t), u1, v1, u2, v2) ∈ f−1(γ(t)) | u1, v1, u2, v2 ∈ R},

of the real loci (see Figure 6.2) in the factors (f ′)−1(γ(t)) and (f ′′)−1(γ(t)) of the dou-
ble conic fiber f−1(γ(t)) for each t < −T . The Lagrangian cycle At is invariant under
symplectic parallel transport for t < −T . We then set

Lγ := Lγ,At
,

i.e. the submanifold in Y 0 swept out by parallel transport of At0 (for some fixed t0 < −T ).
This defines a Lagrangian submanifold in (Y 0, ω) homeomorphic to R3.
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Definition 3.2. An admissible path γ : R→ C
× \∆ is said to be strongly admissible if

• |γ| : R→ R>0 is a strictly increasing function.

• The path agrees with a straight line near z = 0 and outside of some compact set.

Remark 3.3. The second condition above is necessary for the purposes of defining
wrapped Floer cohomology and in particular for the maximum principle of the appendix
to hold.

Proposition 3.4. Let γ : R→ C×\∆ be a strongly admissible path. Then the Lagrangian
submanifold Lγ we define above is a section of the SYZ fibration ρ : Y 0 → B.

Proof. The proof is essentially the same as that of [CU13, Proposition 3.4]. The re-
striction of the moment map φ to At (for t sufficiently small), which is just the direct
product of the real loci (Figure 6.2), is injective. Since T 2 acts fiberwise and it acts
by symplectomorphisms on Y 0, the symplectic parallel transport induces T 2-equivariant
symplectomorphisms between fibers of f . So the restriction of φ to a parallel transport
of At remains injective. Together with the condition that |γ(t)| is strictly increasing, we
see that Lγ is intersecting each fiber of the SYZ fibration ρ : Y 0 → B at one point.

Remark 3.5. Given a strongly admissible path γ : R→ C×\∆, we can as well choose any
Lagrangian cycle A0 ⊂ f−1(γ(t0)) such that φ|A0

is an injective map, then the resulting
Lagrangian submanifold Lγ,A0

is also a section of the SYZ fibration.

An example is given by the path

γ0 : R→ C
×, t 7→ et,

which runs through the whole positive real axis, which is obviously strongly admissible.
The corresponding Lagrangian submanifold L0 := Lγ0 is simply the real locus in Y which
we choose as the zero-section of the SYZ fibration.

To construct compact Lagrangian submanifolds in (Y 0, ω), we consider bounded paths,
which are smooth paths σ : [0, 1] → C× starting from the critical value a of one conic
fibration and ending at the critical value b of the other conic fibration. The fiber product of
the Lefschetz thimbles of each conic fibrations along a bounded path σ gives a Lagrangian
submanifold Lσ of Y 0, which is a T 2 fibration over the bounded path. One S1-factor
collapses to a point on one end and the other S1-factor collapses to a point on the other
end, so that the total space Lσ is homeomorphic to S3.

Definition 3.6. We call a bounded path σ : [0, 1] → C× going from b to a strongly
admissible if |σ| : [0, 1] → R>0 is a strictly increasing function and σ intersects the
interval ǫ− := [−b,−a] transversally.

As in [Cha13], in order to define the SYZ transform, we need to choose a reference
path σ0, relative to which we measure the winding numbers. Since we have chosen the
Lagrangian L0 associated to the positive real axis γ0 as the zero-section of the SYZ
fibration, and we would like the Floer cohomology between the Lagrangians fibered over
the two reference paths γ0 and σ0 to have the correct dimension, we shall impose the
condition that the reference paths γ0 and σ0 intersect transversally at one point (with the
correct orientation). For this reason, we choose σ0 to be the path corresponding to the
Lagrangian 3-sphere S0 as shown in Figure 1.3.
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Definition 3.7. The winding number w(σ) of a strongly admissible bounded path σ :
[0, 1] → C× going from b to a is defined to be the winding number of the concatenation
of paths σ0 ◦ σ with respect to the counterclockwise isomorphism π1(C

∗) ∼= Z, where σ0

denotes the path σ0 with reversed orientation.

With this definition, the bounded path σ1, which corresponds to the Lagrangian 3-
sphere S1 in Figure 1.3, has winding number 1.

It is easy to see that the Lagrangian 3-sphere Lσ associated with a strongly admissible
bounded path σ : [0, 1] → C× is fibred by T 2 over the line segment (the red line in
Figure 1.1)

ℓ0 := (|b|, |a|)× {~0}
in the base B of the SYZ fibration, and the T 2 fiber degenerates to an S1 at both ends
(|a|,~0) and (|b|,~0).

4 SYZ transforms

Let x1 = −λ1, x2 = −λ2 and x3 be affine coordinates (action coordinates) on the smooth
locus Bsm of the SYZ fibration; note that x1 = −λ1 and x2 = −λ2 are globally de-
fined coordinates. We denote by Λ∨ ⊂ T ∗Bsm the family of lattices locally generated by
dx1, dx2, dx3, and let

ω0 := dx1 ∧ dξ1 + dx2 ∧ dξ2 + dx3 ∧ dξ3

be the standard symplectic structure on the quotient T ∗Bsm/Λ∨ of the cotangent bundle
T ∗Bsm by Λ∨, where (ξ1, ξ2, ξ3) denote the fiber coordinates on T ∗Bsm. Since we have a
global Lagrangian section L0 (the zero-section) of the SYZ fibration ρ : Y → B, there
exists a fiber-preserving symplectomorphism [Dui80]

Θ : (T ∗Bsm/Λ∨, ω0)
∼=−→ (ρ−1(Bsm), ω)

so that L0 is mapped to the zero section of T ∗Bsm/Λ∨.
We take an open cover {Ui} of Bsm such that each Ui is contractible. As we have

seen in Section 2, the SYZ mirror X0 is obtained by gluing the open pieces TUi/TUi ∩
Λ together according to the wall-crossing formulas (2.4), (2.5) (and then extending by
analytic continuation). Let y1, y2, y3 be the coordinates on TBsm which are dual to the
angle coordinates ξ1, ξ2, ξ3 on T ∗Bsm/Λ∨. The local complex coordinates on X0 are then
given by w1 = exp 2π(x1 +

√
−1y1), w2 = exp 2π(x2 +

√
−1y2) and exp 2π(x3 +

√
−1y3).

Let L ⊂ Y 0 be a Lagrangian cycle, given as the quotient of a translate of the conormal
bundle N∗S of an integral affine linear subspace S ⊂ B by the lattice N∗S ∩ Λ∨, and
equipped with a flat U(1)-connection ∇. The SYZ transform of (L, Y 0) is given by a pair
(C, ∇̌) consisting of the complex submanifold C, which is given by gluing the open pieces

T (S ∩ Ui)/T (S ∩ Ui) ∩ Λ

according to the wall-crossing formulas (2.4), (2.5), and a U(1)-connection ∇̌, the (0, 2)-
part of the curvature two form of which is trivial and hence defines a holomorphic line
bundle Ľ over C ⊂ X0.
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Definition 4.1. We define the SYZ transform of the Lagrangian submanifold L equipped
with the flat U(1)-connection ∇ to be the holomorphic line bundle Ľ over the complex
submanifold C ⊂ X0.

We refer the reader to the original papers [LYZ00, AP01] for more details and the
precise formulas; see also [Cha13].

By Proposition 3.4, the non-compact Lagrangian submanifold Lγ associated with a
strongly admissible path γ : R→ C

× is a section of the SYZ fibration ρ : Y 0 → B, so its
SYZ transform should produce a holomorphic line bundle over X0. Via the symplecto-
morphism Θ, we can write Lγ as a section of T ∗Bsm/Λ∨

Lγ = {(x1, x2, x3, ξ1, ξ2, ξ3) ∈ T ∗Bsm/Λ∨ | ξj = ξj(x1, x2, x3) for j = 1, 2, 3},

where ξj = ξj(x1, x2, x3) (j = 1, 2, 3) are smooth functions on Bsm. The condition that
Lγ being Lagrangian is then equivalent to saying that the functions ξ1, ξ2, ξ3 satisfy the
relations

∂ξj
∂xl

=
∂ξl
∂xj

for j, l = 1, 2, 3.
The restriction of the Lagrangian section Lγ to an open set Ui ⊂ Bsm is transformed

to a family of connections {∇̌ξ(x) | x ∈ Ui} which patch together to give a U(1)-connection
over Ui that can locally be written as

∇̌Ui
= d+ 2π

√
−1(ξ1dy1 + ξ2dy2 + ξ3dy3)

over the open piece TUi/TUi ∩ Λ ⊂ X0. Since the (0, 2)-part of the curvature two
form for each connection vanishes and the wall-crossing formulas are holomorphic, these
connections glue together to give globally a holomorphic line bundle Ľγ over X0.

Notice that the isomorphism class of Ľγ is unchanged when we deform Lγ in a fixed
Hamiltonian isotopy class (or deforming γ in a fixed homotopy class relative to the bound-
ary conditions limt→−∞ |γ(t)| = 0 and limt→∞ |γ(t)| =∞). Therefore, we will regard this
as defining the SYZ transform of the Hamiltonian isotopy class of the Lagrangian sub-
manifold Lγ as an isomorphism class of holomorphic line bundle over X0.

As an immediate example, the SYZ transformation of the zero section L0 gives the
structure sheaf OX0 over X0.

To compute (the isomorphism class of) the line bundle Ľγ, note that the degree of its
restriction to the exceptional curve E ∼= P1 in X0 is given by

deg Ľγ|E =

∫

E

√
−1
2π

F∇̌ = −
∫

E

dξ3 ∧ dy3 = −(ξ3(|b|,~0)− ξ3(|a|,~0)).

We have the second equality because y1, y2 are constant (and xi = λi = 0 for i = 1, 2)
on E. Hence the isomorphism class of the line bundle Ľγ is completely determined by
the increment of the angle coordinate ξ3 on the Lagrangian section Lγ from (0, 0, |b|) to
(0, 0, |a|) (which is measured with reference to the path γ0).

Proof of Theorem 1.1. Arguing as in the proof of [CU13, Theorem 1.1], we first deform
γ so that γ(log |b|) = −b and γ(log |a|) = −a and γ(t) ∈ R>0 for t 6∈ (log |b|, log |a|)
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(up to a re-parametrization if necessary). We then further deform γ|(log |b|,log |a|) to the
concatenation of γ0|(log |b|,log |a|) (the positive real axis) with a loop winding around the
circle C|a| = {z ∈ C× | |z| = |a|} for w(γ) times. Along γ0, the angle coordinate
ξ3 is constantly zero, and ξ3 increases by one when we wind around C|a| once in the

counterclockwise direction. Hence, the increment ξ3(|b|,~0) − ξ3(|a|,~0) is precisely given
by the winding number w(γ). This completes the proof of Theorem 1.1.

Let γ0 and γ1 be admissible paths shown in Figure 1.2 which have winding numbers 0
and −1 respectively. Their associated Lagrangian submanifolds are denoted by L0 := Lγ0

and L1 := Lγ1 respectively. By Theorem 1.1, the SYZ transform of Li is precisely given
by the line bundle OX0(i) for i = 0, 1.

Next we consider a strongly admissible bounded path σ : [0, 1] → C× going from b
to a. Recall that the corresponding compact Lagrangian 3-sphere Lσ is a T 2-fibration
over the line segment ℓ0 = (|b|, |a|)× {~0} in the base B = R>0 × R2 of the SYZ fibration
ρ : Y 0 → B such that the T 2-fiber degenerates to an S1 over the endpoints (|a|,~0) and
(|b|,~0) of ℓ0.

Let L◦
σ = Lσ ∩ ρ−1(ℓ0), i.e. Lσ with the two S1’s over the end points of ℓ0 removed.

Then L◦
σ is (the quotient by a lattice of) a translate of the conormal bundle of ℓ0. Recall

that the coordinates w1, w2 on X0 are given by w1 = exp 2π(x1 +
√
−1y1) and w2 =

exp 2π(x2 +
√
−1y2). We equip Lσ with the flat U(1)-connection

∇0 = d− π
√
−1(dξ1 + dξ2).

Then the SYZ transform of (Lσ,∇0) produces the complex submanifold in X0 defined by
x1 = x2 = 0, y1 = y2 = 1/2 or simply w1 = w2 = −1, which is precisely the exceptional
locus E ∼= P1 ⊂ X0 (cf. [Cha13, Section 2]).

We also get the U(1)-connection

∇̌ = d+ 2π
√
−1ξ3(x3,~0)dy3

on E which defines a holomorphic line bundle over E whose degree can be computed as

∫

E

√
−1
2π

F∇̌ = −
∫

E

dξ3 ∧ dy3 = −(ξ3(|a|,~0)− ξ3(|b|,~0)) = −w(σ).

We have the last equality because the increment of the angle coordinate ξ3 is measured
relative to the reference path σ0 which is computed by the winding number of the loop
σ0 ◦ σ and this is by definition w(σ). This proves the following:

Theorem 4.2. The SYZ transform of the compact Lagrangian 3-sphere Lσ associated to
a strongly admissible bounded path σ : [0, 1]→ C× is given by the line bundle OE(−w(σ))
over the exceptional locus E ⊂ X0.

Theorem 1.3 is an immediate consequence of Theorem 4.2 since the bounded paths
defining S0 and S1 have winding numbers 0 and 1 respectively.
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5 Coherent sheaves on the resolved conifold

Let C
× acts on C

4 = SpecC[x, y, t1, t2] in such a way that α ∈ C
× maps (x, y, t1, t2) to

(αx, αy, α−1t1, α
−1t2). It is convenient to realize the resolved conifold as the quotient

X = (C4 \ Σ)/C× (5.1)

where Σ := {(x, y, t1, t2) ∈ C4 | x = y = 0}. In these coordinates, the morphism

ϕ : X → Z = {(u, v, w1, w2) ∈ C
4 | uv = (1 + w1)(1 + w2)}

to the conifold is given by

u = xt1, v = yt2, w1 = xt2 − 1, w2 = yt1 − 1.

Definition 5.1. An object E in a triangulated category T is a tilting object if

• E is acyclic in the sense that Extk(E , E) = 0 for any k 6= 0, and

• E is a classical generator, in the sense that the smallest, thick, triangulated subcat-
egory generated by E is all of T .

Note that any classical generator E generates T in the sense that Homk(E , A) = 0 for
some A ∈ T and all k ∈ Z implies A ∼= 0 (cf. e.g. [BvdB03, Section 2.1]). The proof
of the following theorem can be found in [TU10, Lemma 3.3], and goes back at least to
[Ric89, Bon89]:

Theorem 5.2. Let E be a tilting object in the derived category Db cohX of coherent
sheaves on a smooth quasi-projective variety X. Then Db cohX is equivalent to the
bounded derived category of finitely-generated right modules over Hom(E , E).

The following is well-known (cf. e.g. [VdB04]):

Theorem 5.3. The direct sum OX ⊕OX(1) is a tilting object in Db cohX, whose endo-
morphism algebra is described by the quiver

O O(1)

x

y

t1

t2

with relations

I = (xt1y − yt1x, xt2y − yt2x, t1xt2 − t2xt1, t1yt2 − t2yt1). (5.2)

Let {Pa,i1,i2}(a,i1,i2)∈Z×N2 be the basis of Hom(OX ,OX) ∼= Hom(OX(1),OX(1)) ∼=
Γ(OX) defined by

Pa,i1,i2 =

{
u−awi1

1 w
i2
2 a < 0,

vawi1
1 w

i2
2 a ≥ 0.
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Similarly, we define the bases {Qa,i1,i2}(a,i1,i2)∈(Z+ 1

2
)×N2 and {Ra,i1,i2}(a,i1,i2)∈(Z+ 1

2
)×N2 of

Hom(OX ,OX(1)) and Hom(OX(1),OX) as

Qa,i1,i2 =

{
xu−a−1/2wi1

1 w
i2
2 a < 0,

yva−1/2wi1
1 w

i2
2 a ≥ 0.

and

Ra,i1,i2 =

{
t1u

−a−1/2wi1
1 w

i2
2 a < 0,

t2v
a−1/2wi1

1 w
i2
2 a ≥ 0.

respectively.
We have the following elementary algebra calculation.

Proposition 5.4 (cf. [Pas14, Proposition 4.5]). The composition of Pa,i1,i2 is given by

Pb,j1,j2 · Pa,i1,i2 =

k∑

s1,s2=0

(
k

s1

)(
k

s2

)
Pa+b,i1+j1+s1,i2+j2+s2 (5.3)

where

k =

{
min{|a|, |b|} a and b have different signs,

0 otherwise.

The composition of Pa,i1,i2 and Qb,j1,j2 is given by

Qb,j1,j2 · Pa,i1,i2 =

k∑

s1,s2=0

(
k

s1

)(
k

s2

)
Qa+b,i1+j1+s1,i2+j2+s2 (5.4)

where

k =

{
min{|a|, |b| − 1/2} a and b have different signs,

0 otherwise,

and similarly for the composition of Pa,i1,i2 and Rb,j1,j2. The composition of Qa,i1,i2 and
Rb,j1,j2 is given by

Rb,j1,j2 ·Qa,i1,i2 =

k1∑

s1

k2∑

s2=0

(
k1
s1

)(
k2
s2

)
Pa+b,i1+j1+s1,i2+j2+s2 (5.5)

where

k1 =





min{|a| − 1/2, |b| − 1/2}+ 1 a < 0 and b > 0,

min{|a| − 1/2, |b| − 1/2} a > 0 and b < 0,

0 otherwise,

k2 =





min{|a| − 1/2, |b| − 1/2} a < 0 and b > 0,

min{|a| − 1/2, |b| − 1/2}+ 1 a > 0 and b < 0,

0 otherwise.
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The mirror X0 is the complement X \D of the divisor D = {w1w2 = 0} on X .

Corollary 5.5. The direct sum OX0 ⊕OX0(1) is a tilting object in Db cohX0.

Proof. The fact that OX0 ⊕OX0(1) is a classical generator follows immediately from the
fact that OX ⊕OX(1) is a classical generator and the equivalence

Db cohX/Db cohD X
∼−→ Db cohX0

of triangulated categories [Orl11, Lemma 2.2]. The acyclicity of OX0 ⊕ OX0(1) follows
from the acyclicity of OX ⊕OX(1) and the description

Hk(OX0(i)) = lim−→
(
Hk(OX(i))

w1w2−−−→ Hk(OX(i))
w1w2−−−→ Hk(OX(i))

w1w2−−−→ · · ·
)

of the cohomology as a direct limit [Sei08a, (1.13)].

The derived categoryDb coh0X of coherent sheaves onX supported on the exceptional
locus E of the resolution ϕ : X → Z is generated by OE and OE(−1)[1], which are Koszul
dual to OX and OX(1) in the sense that

Hom0(OX ,OE) = C, Hom0(OX ,OE(−1)[−1]) = 0,

Hom0(OX(1),OE) = 0, Hom0(OX(1),OE(−1)[1]) = C.

The endomorphism A∞-algebra of OE ⊕ OE(−1) is Koszul dual to the endomorphism
algebra of OX ⊕ OX(1). A convenient way to describe it is given by the dimer model
shown in Figure 5.1.

Figure 5.1: The dimer model

t1

t2

y

y

t1

t2

x
0

1

Figure 5.2: The corresponding quiver

It is a graph G drawn on the real 2-torus consisting of two nodes and four edges.
One node is painted in black, and the other is painted in white. The dual graph of G is
combinatorially identical to G, and we turn each edge of the dual graph into an arrow by
giving the orientation such that the white node is on the right of the arrow. This makes
the dual graph of G into the quiver Q = (V,A) shown in Figure 5.2 with two vertices
V = {0, 1} and four arrows A = {x, y, t1, t2}. For each arrow a in the quiver, there are two
paths p+(a) and p−(a) from the target of a to the source of a; the former goes around the
white node, and the latter goes around the black node. Then we can equip the quiver with
the relation such that p+(a) is equivalent to p−(a) for all arrows; I = (p+(a)− p−(a))a∈A.
One can easily see that this relation is identical to the one in (5.2).

Now the endomorphism A∞-algebra of OE ⊕OE(−1)[1] is described as follows [FU10,
Definition 2.1 and Proposition 2.2]:
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• The vertices 0 and 1 of Q correspond to objects OE and OE(−1)[1] respectively.

• For a pair v and w of vertices, the space of morphisms is given by

Homi(v, w) =





C · idv i = 0 and v = w,

span{a | a : w → v} i = 1,

span{a∨ | a : v → w} i = 2,

C · id∨
v i = 3 and v = w,

0 otherwise.

• Non-zero A∞-operations are

m2(x, idv) = m2(idw, x) = x

for any x ∈ Hom(v, w),
m2(a, a

∨) = id∨
v

and
m2(a

∨, a) = id∨
w

for any arrow a from v to w,

mk(a1, . . . , ak) = a0.

for any cycle (a0, . . . , ak) of the quiver going around a white node, and

mk(a1, . . . , ak) = −a0.

for any cycle (a0, . . . , ak) of the quiver going around a black node.

• The pairing
〈•, •〉 : Hom(w, v)⊗Hom(v, w)→ C[3]

defined by
〈a∨, a〉 = 〈id∨

v , idv〉 = 1

and zero otherwise makes the endomorphism A∞-algebra into a cyclic A∞-algebra
of dimension three.

17



To be more explicit, one has

Homi(OE,OE) =





C · idOE
i = 0,

C · id∨
OE

i = 3,

0 otherwise,

Homi(OE(−1)[1],OE(−1)[1]) =





C · idOE(−1)[1] i = 0,

C · id∨
OE(−1)[1] i = 3,

0 otherwise,

Homi(OE(−1)[1],OE) =





C · x⊕ C · y i = 1,

C · t∨1 ⊕ C · t∨2 i = 2,

0 otherwise,

Homi(OE,OE(−1)[1]) =





C · t1 ⊕ C · t2 i = 1,

C · x∨ ⊕ C · y∨ i = 2,

0 otherwise,

with A∞-operations

m3(y, t1, x) = −t∨2 , m3(t2, y, t) = −x∨, m3(x, t2, y) = −t∨1 , m3(t1, x, t2) = −y∨,
m3(y, t2, x) = t∨1 , m3(t1, y, t2) = x∨, m3(x, t1, y) = t∨2 , m3(t2, x, t1) = y∨,

and

m2(x, x
∨) = id∨

OE
, m2(y, y

∨) = id∨
OE

, m2(s
∨, s) = id∨

OE
, m2(t

∨
1 , t1) = id∨

OE
,

m2(t2, t
∨
2 ) = id∨

OE(−1)[1], m2(t1, t
∨
1 ) = id∨

OE(−1)[1], m2(x
∨, x) = id∨

OE(−1)[1], m2(y
∨, y) = id∨

OE(−1)[1] .

All the other non-zero A∞-operations just say that idOE
and idOE(−1)[1] are the identity

elements for m2.

6 Wrapped Fukaya category

We prove Theorem 1.2 in this section. For technical reasons, Floer theory on a non-
compact fibration such as the one we are considering requires a modification of the sym-
plectic form so that

• the symplectic monodromy is trivial along the horizontal boundary of the fibration.

• the flow of the Hamiltonians Hi below fiber over the flow in the base for Hamiltonian
vector-field of Hb in the base.

We refer the reader to the appendix for a more detailed discussion of the geometric setup
for Floer cohomology of fibrations. We set a =

√
−1 and b = −

√
−1 as in Figure 6.1 for

convenience in this section. We take wrapping Hamiltonians of the forms

Hi = Hb +Hf1,i +Hf2,i, (6.1)
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where the Hamiltonian Hb is an admissible Hamiltonian in the base (see the appendix for
this definition) and wraps the z-plane as shown in Figure 6.3, and the fiber Hamiltonians
Hfi,i are admissible Hamiltonians in the fiber which wrap the fiber either as in Figure 6.4
or Figure 6.5. We assume that each Hi is Lefschetz admissible in the sense of Section A.2
or McLean [McL09]. Let φt : Y

0 → Y 0 be the time t flow by the wrapping Hamiltonian
Hi. The wrapped Floer cohomology is defined as

HomWi
(Lj , Lk) = lim

t→∞
HomF(φtLj , Lk)

where HomF(φtLj , Lk) is the ordinary Floer cohomology.

Remark 6.1. Our choice of Hamiltonian is slightly different from that in [AS10], but is
very suitable for analyzing fibrations. In the appendix, we provide some details concerning
wrapped Floer cohomology as well as the relationship between the two approaches. It
is also important to note that, while we don’t construct A∞-operations on our wrapped
Floer cohomology, all of our wrapped Floer groups are concentrated in degree zero and
thus any such enhancement would actually be quasi-isomorphic to its cohomology algebra.

γ0

γ1

Figure 6.1: The paths on the base Figure 6.2: The Lagrangian on the fiber

γ0
γ1

σ1(γ0)

Figure 6.3: Wrapping the base

Figure 6.4: Wrapping
the fiber by Hf,1

Figure 6.5: Wrapping
the fiber by Hf,2
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Proposition 6.2. There is a ring isomorphism

1⊕

i,j=0

HomW1
(Li, Lj)

∼−→
1⊕

i,j=0

Hom (OX(i),OX(j)) . (6.2)

Proof. Let us first consider the composition

Hom(φn(L0), L0)⊗ Hom(φm+n(L0), φn(L0))→ Hom(φm+n(L0), L0). (6.3)

In the appendix, the product in wrapped Floer cohomology is defined using solutions to
a perturbed holomorphic curve equation. The argument of [Pas14, Proposition 7.2] allows
us to show that, in this situation, this is equivalent to the usual product in Lagrangian
Floer theory which counts J-holomorphic triangles with boundary on L0, φn(L0), and
φm+n(L0).

The intersection points in φn(L0) ∩ L0 can be labeled as pa,i1,i2 as in Figure 6.6. We
view the z-plane as a cylinder, which is obtained by identifying the horizontal edges of the
rectangle in Figure 6.6. We choose a coordinate on the rectangle in such a way that the
top right and the bottom left corners have coordinates (1, 1) and (−1,−1) respectively.

Intersections between the Lagrangians φn(L0) and L0 are parameterized by triplets of
integers (a, i1, i2). The integer a ∈ [−n + 1, n− 1] parametrizes the intersection point of
the z-projections σn(γ0) and γ0 of the Lagrangians φn(L0) and L0. The integers i1 and
i2 in [0, ⌊(n − |a|)/2⌋] parametrize the intersection points on the fiber just as in [Pas14,
Section 3.3.4].

γ0

σn(γ0)

p0,i1,i2

p−1,i1,i2

pn−1,i1,i2

p1,i1,i2

p−n+1,i1,i2

γ1q1/2,i1,i2
q−1/2,i1,i2 qn−1/2,i1,i2

q−n+1/2,i1,i2 q−3/2,i1,i2 qn−3/2,i1,i2

Figure 6.6: Intersections of Lagrangians

Our arguments will be based upon the following adaptation of Pascaleff’s theorem
[Pas14, Proposition 4.4] to this setting. Its proof followsmutatis-mutandis from Pascaleff’s
paper.

Lemma 6.3. Let L, L′, and L′′ be Lagrangian submanifolds of Y 0 fibered over paths γ, γ′

and γ′′ in C×. Assume that a holomorphic triangle u : D2 → C× bounded by γ, γ′ and γ′′

with vertices o ∈ γ ∩ γ′, o′ ∈ γ′ ∩ γ′′ and o′′ ∈ γ ∩ γ′′ intersects the discriminants a and b
in C× exactly d1 and d2 times respectively. Then holomorphic sections over u contributes
to the triangle product Hom(L′, L′′)⊗Hom(L, L′)→ Hom(L, L′′) as

m2(o
′
j1,j2

, oi1,i2) =

d1∑

s1=0

d2∑

s2=0

(
d1
s1

)(
d2
s2

)
o′′i1+j1+s1,i2+j2+s2

,
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where oi1,i2 ∈ L∩L′ is the intersection point above o ∈ γ ∩ γ′, which is the i1-th one from
the bottom in the u1v1-direction and the i2-th one from the bottom in the u2v2-direction.

The universal cover of the cylinder in Figure 6.6 is an infinite strip {(s, t) ∈ R2 | −1 ≤
s ≤ 1}. A lift of the z-projection γ0,n of the wrapped Lagrangian φn(L0) to the universal
cover is given by a line with slope n, passing through (0, k) with k ∈ Z. The discriminants
of the conic fibrations are given by (0, 1/4) and (0,−1/4) respectively. The projection of
the intersection point pb,j1,j2 ∈ Hom(φn(L0), L0) has the s-coordinate b/n, and we choose
the lift to the universal cover to be (b/n, 0).

Consider the lift of γ0,n passing through (b/n, 0). The induced lift of the inter-
section point corresponding to pa,i1,i2 ∈ Hom(φm+n(L0), φn(L0)) will have coordinate
(a/m, na/m − b). If we then take the lift of γ0,m+n passing though this point, it in-
tersects with the lift of γ0 at ((a + b)/(m + n), 0) as shown in Figure 6.7 or Figure 6.8
depending on the order of a and b.

σm+n(γ0) σn(γ0)

γ0
( b
n
, 0)( a+b

m+n
, 0)

( a
m
, n
m
a− b)

Figure 6.7: The case a < b

σm+n(γ0)σn(γ0)

γ0
( b
n
, 0) ( a+b

m+n
, 0)

( a
m
, n
m
a− b)

Figure 6.8: The case b < a

In either case, one can see from Figure 6.9 or Figure 6.10 that the triangle hits both
of the discriminants (0,−1/4 + Z) and (0, 1/4 + Z) k times, where k is min{|a|, |b|} if a
and b has different signs and 0 otherwise. Then one has

m2(pb,j1,j2, pa,i1,i2) =
k∑

s1,s2=0

(
k

s1

)(
k

s2

)
pa+b,i1+j1+s1,i2+j2+s2 (6.4)

by Pascaleff’s formula, in agreement with (5.3).

(0, 0)

(0, b)

Figure 6.9: The case 0 < b < −a

(0, b)

(0, a+ b)

Figure 6.10: The case 0 < −a < b
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Next we consider the composition

Hom(φn(L1), L0)⊗ Hom(φm+n(L0), φn(L1))→ Hom(φm+n(L0), L0).

A lift of the z-projection γ1,n of the wrapped Lagrangian φn(L1) to the universal cover is
given by a line with slope n passing through (0, k+1/2) with k ∈ Z. The intersections of
the curves on the z-planes are as in Figure 6.7 or Figure 6.8 again, with γ0,n replaced with
γ1,n and a and b being half-integers. One can see from Figure 6.9 and Figure 6.10 that the
triangle hits the discriminants at (0,−1/4+Z) and (0, 1/4+Z) for k1 times and k2 times
respectively, where k1 = min{|a| − 1/2, |b| − 1/2}+ 1 and k2 = min{|a| − 1/2, |b| − 1/2}
if a and b have different signs, and k1 = k2 = 0 otherwise. Then one has

m2(rb,j1,j2, qa,i1,i2) =

k1∑

s1=0

k2∑

s2=0

(
k

s1

)(
k

s2

)
pa+b−1,i1+j1+s1,i2+j2+s2. (6.5)

This is in complete agreement with (5.5). Other compositions can be calculated similarly,
and Proposition 6.2 is proved.

The choice of partial wrapping function Hfi,1 corresponds to the fact that the mirror
of the resolved conifold X is in fact the Landau-Ginzburg model (Y 0, u1+u2). See [AAK]
for more discussion. Since wrapping by Hfi,2 corresponds to multiplication by wi, one
obtains the following:

Corollary 6.4. There is a ring isomorphism

1⊕

i,j=0

HomW2
(Li, Lj)

∼−→
1⊕

i,j=0

Hom (OX0(i),OX0(j)) . (6.6)

Theorem 1.2 is an immediate consequence of Corollary 5.5, Corollary 6.4, and Theo-
rem A.3.

7 Mirror symmetry for vanishing cycles

For a path γ : [0, 1]→ C× on the z-plane, the union

Sγ :=
⋃

t∈[0,1]

{
(γ(t), u1, v1, u2, v2) ∈ Y 0

∣∣ |u1| = |v1|, |u2| = |v2|
}

(7.1)

gives a compact Lagrangian submanifold of Y 0, which has boundaries in general. Let S0

and S1 be Lagrangian 3-spheres in Y 0, which are obtained in this way from the paths
shown in Figure 1.3. We prove Theorem 7.1 below in this section. Theorem 1.4 follows
immediately since Db coh0X

0 is generated by OE and OE(−1) as a triangulated category.

Theorem 7.1. Let F0 be the Fukaya category of Y 0 consisting of S0 and S1. Then F0 is
quasi-equivalent to the full subcategory of (the dg enhancement of) Db cohX0 consisting
of OE and OE(−1).
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Proof. First note that the union S0 ∪ S1 is exact in the sense that the symplectic form ω
vanishes on π2(Y

0, S0 ∪ S1). To see this, one can look at the exact sequence

· · · → π2(Y
0)→ π2(Y

0, S0 ∪ S1)→ π1(S0 ∪ S1)→ π1(Y
0)→ · · ·

of homotopy groups; the symplectic form ω vanishes on the image of π2(Y
0) since Y 0 is

an exact symplectic manifold, whereas the group π1(S0 ∪ S1) ∼= Z injects to π1(Y
0).

The exactness of S0 ∪ S1 allows us to use the chain model for the Fukaya category of
the plumbing by Abouzaid [Abo11, Appendix A]. Let Q1 and Q2 be a pair of graded exact
Lagrangian submanifolds in an exact symplectic manifold equipped with a trivialization
of the canonical bundle. Assume that Q1 and Q2 intersect cleanly along a submanifold
B, which consists of r connected components B1, . . . , Bk;

B = Q1 ∩Q2, B = B1 ⊔ · · · ⊔ Br.

Since Q1 and Q2 are Lagrangian submanifolds intersecting cleanly along B, the normal
bundles NQ1

B and NQ2
B are isomorphic as real vector bundles. Choose closed tubular

neighborhoods Ni of Qi and triangulations Qi of Qi such that Qi induce triangulations Ni

of Ni and the isomorphism NQ1
B ∼= NQ2

B induces a cellular homeomorphism N1
∼= N2.

Let N = N 1 ⊔ · · · ⊔ N r be the decomposition of the abstract simplicial complex N =
N1
∼= N2 into connected components. Then the chain model for the Fukaya category

consisting of Qi is given by

Hom(Qi, Qi) = C∗(Qi),

Hom(Q1, Q2) =

r⊕

k=1

C∗(N k)[mk],

Hom(Q2, Q1) =

r⊕

k=1

C∗(N k, ∂N k)[−mk].

Here integers mk comes from the gradings of the Lagrangian submanifolds.
Now we apply this construction to the case when Q1 = S0

∼= S3, Q2 = S1
∼= S3,

B = B1 ⊔ B2 = S1 ⊔ S1 and N k ∼= D2 × S1;

Hom(Si, Si) ∼= C∗(S3),

Hom(S1, S0) ∼= C∗(D2 × S
1)[−1]⊕ C∗(D2 × S

1)[−1],
Hom(S0, S1) ∼= C∗(D2 × S

1, ∂D2 × S
1)[1]⊕ C∗(D2 × S

1, ∂D2 × S
1)[1].

In this formula, cochains denote simplicial cochains with respect to a suitable triangula-
tion. We have chosen the gradings on S0 and S1 in such a way that m1 = m2 = −1. We
view each copy of S3 via its Hopf decomposition

S
3 = D

2 × S
1 ∪T2 D

2 × S
1.

In our example, we can work with the smaller cellular model described below, which can
be easily seen to be that we get a quasi-isomorphic dg-category if we choose to view each
D2 as a two simplex ∆2 and S1 as the union of three one simplices ∆1 in the usual way.
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We have the cochain models

C∗(N 1) = spanC





x xy
1 yz

y z



 ,

C∗(N 2) = spanC





x xy
1 yw

y w



 ,

for C∗(N k) = C∗(D2×S1). Arrows show the differential in such a way that d(x) = z and
similarly for other arrows. The cohomological degrees are given by deg(x) = deg(y) = 1
and deg(z) = deg(w) = 2. The elements w and z are the cellular cochains which are
dual to the disc D

2 as shown in Figure 7.1. We use the same symbols x and y for those
generators which will be identified under the Hopf gluing. In the first copy of D2 × S1,
x is the cochain dual to the boundary of D2 and y is the cellular cochain dual to the S1

factor. The roles of these cochains are reversed in the second copy of D2 × S1. The chain

y

z

⋃

x

x

w y

Figure 7.1: Hopf decomposition of S3

model for one copy of C∗(∂D2 × S1) is given by

C∗(∂D2 × S
1) = spanC





x
1 xy

y



 ,

and similarly for the other copy. Accordingly, we have the chain model

C∗(S3) = spanC





xy
x yz

1 z
y xw

w





,

for C∗(S3) where d(xy) = yz+xw. Using these basic models, we construct the chain level
model for the category as follows: For C∗(S3), we take the above cochain algebra. For
the other groups, we preserve the letters corresponding to the above models to make clear
the geometric origins of the generators and use −→m to denote a morphism in Hom(S1, S0)
and ←−m to denote a morphism in Hom(S0, S1). For Hom(S0, S1) we take as a basis:

←−z ←−yz ←−w ←−xw, d = 0.
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We have that Hom(S1, S0) is the sum of two complexes,

−→u1
−→x1
−→y1 −→z1 −→xy1 −→yz1,

−→u2
−→x2
−→y2 −→w2

−→xy2 −−→xw2.

The differential is as in the model for C∗(D2 × S1). Compositions are the natural ones
described in [Abo11, Section 2.1].

Lemma 7.2. We have

m3(
−→u1,
←−z ,−→u2) =

−→x2,

m3(
←−w ,−→u1,

←−z ) =←−yz,
m3(
−→u2,
←−w ,−→u1) = −−→y1 ,

m3(
←−z ,−→u2,

←−w ) = −←−xw.

The other m3’s are determined by the natural cyclic Calabi-Yau structure.

Proof. Given a dga (V,d), we choose

• an injection i : H∗(V )→ V ,

• a projection operator P : V → i(H∗(V )) such that P|i(H∗(V )) = idi(H∗(V )), and

• a chain homotopy Q such that id−[d,Q] = P.

Then we define a series of linear maps

λn : V ⊗n → V

by setting
λ2(v1, v2) = v1 · v2

and inductively define

λn(v1, · · · , vn) := (−1)n−1[Qλn−1(v1, · · · , vn−1)]vn − (−1)n deg(v1)v1[Qλn−1(v2, · · · , vn)]

−
∑

k,l≥2

(−1)k+(l−1)(deg(v1)+···+deg(vk))[Qλk(v1, · · · , vk)][Qλl(vk+1, · · · , vn)].

for n ≥ 3. Now the operators

mn : H∗(V )⊗n → H
∗(V )

are defined by mn = P ◦ λn.

Theorem 7.3 ([Mer99]). The operators mn define the structure of an A∞-algebra on
H∗(V ) quasi-isomorphic to (V,d).
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We now compute Q in our setting. Since the differential vanishes on our model
for Hom(S0, S1), the operator Q also vanishes on Hom(S0, S1). On Hom(S0, S0) and
Hom(S1, S1), we can set

Q(z) = x, Q(w) = y, Q(yz) =
xy

2
, Q(xw) =

xy

2

and everything else to be zero. In the first summand of Hom(S1, S0), the operator Q is
given by

Q(−→z1 ) = −→x1, Q(−→yz1) = −→xy1.
A similar formula holds in the second summand.

To compute m3(
−→u1,
←−z ,−→u2), we notice that ←−z · −→u2 = 0, so that

m3(
−→u1,
←−z ,−→u2) = (1− [d,Q])(Q(−→u1 · ←−z ) · −→u2)

= (1− [d,Q])(Q(z) · −→u2)

= (1− [d,Q])(x · −→u2)

= (1− [d,Q])(−→x2)

= −→x2.

The other formulas can be calculated similarly, and Lemma 7.2 is proved.

We also have the following result:

Lemma 7.4. All A∞-operations mn for n ≥ 4 vanish.

Proof. We argue using Merkulov’s formula by showing that a higher product cannot
have a non-trivial component in any of the cohomology classes. First we notice that no
cohomology class can be written as a product of two cochains which are in the image of
Q. To avoid repeated arguments, we will demonstrate why we cannot have

mn(x1, · · · , xn) =
←−yz.

All other cases can be addressed using the same type of arguments.
The only way to write←−yz as a non-trivial product is as y ·←−z . Using Merkulov’s formula

and the above observation, we can assume without loss of generality that Qλn−1(x1, · · · , xn−1)
has non-trivial coefficient in the basis vector y and that xn has a non-trivial component
in the basis vector ←−z . This would in turn imply that λn−1(x1, · · · , xn−1) has non-trivial
coefficient in w, which is not possible unless n = 3 because w cannot be written as the
product of cochains, s1s2, where either s1 or s2 is in the image of Q.

Lemma 7.2 and Lemma 7.4 show that the A∞-operations on F0 is identical to those
for the endomorphism algebra of OE ⊕OE(−1) described in Section 5, and Theorem 7.1
is proved.

For the remainder of this section, we offer an alternative approach to Theorem 7.1,
which stands on a conjecture that we were not able to verify, but hope is not outside
the reach of current technology. Let CO : SH0(Y 0) → WF (L, L′) be the open closed
string map considered by Abouzaid [Abo10]. This makes the derived category of the
wrapped Fukaya category of Y 0 into a triangulated category over SH0(Y 0), and allows
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one to talk about the Serre functor over SH0(Y 0) in the sense of [BK04, Definition 2.5].
A triangulated category over SH0(Y 0) is Calabi-Yau if the Serre functor over SH0(Y 0)
is isomorphic to the shift functor •[n] for some n ∈ Z.

Conjecture 7.5. The morphism CO makes the derived category of the wrapped Fukaya
category of Y 0 into a Calabi-Yau category over SH0(Y 0).

Let D be a triangulated category and N ⊂ D be a full triangulated subcategory.
We will always assume that triangulated categories have enhancements in terms of dg
categories [BK90] or A∞-categories (cf. e.g. [Kel01]). The right orthogonal to N is the
full subcategory N⊥ ⊂ D consisting of objects M satisfying Hom(N,M) = 0 for any
N ∈ N . The left orthogonal ⊥N is defined similarly. The subcategory N is said to be
right admissible if the embedding I : N →֒ D has a right adjoint functor Q : D → N .
Left admissibility is defined similarly as the existence of a left adjoint functor, and N is
said to be admissible if it is both right and left admissible.

A subcategory N is right admissible if and only if for any X ∈ D, there exists a
distinguished triangle N → X → M → N [1] with N ∈ N and M ∈ N⊥. Such a triangle
is unique up to isomorphism, and one has Q(X) = N in this case. If N is right admissible,
then the quotient category D/N is equivalent to N⊥. Analogous statements also hold
for left admissible subcategories. A sequence (N1, . . . ,Nn) of admissible subcategories
in a triangulated category D is called a semiorthogonal decomposition Nj ⊂ N⊥

i for any
1 ≤ j < i ≤ n, and N1, . . . ,Nn generates D as a triangulated category. A semiorthogonal
decomposition will be denoted by

D = 〈N1, . . . ,Nn〉 .

An object E of D is almost exceptional if Exti(E,E) = 0 for i 6= 0 and the algebra
A := Hom(E,E) has finite homological dimension [BK04, Definition 2.1]. Let E be the
smallest full subcategory of D containing E and closed under cones and direct summands.
Then one has a semiorthogonal decomposition

D =
〈
E , E⊥

〉

as in [Bon89, Theorem 3.2]; the object N ∈ E in the decomposition N → X →M → N [1]
of an object X ∈ D is given by

N = hom•(E,X)
L

⊗A E,

and M ∈ E⊥ is the mapping cone

M = Cone

(
hom•(E,X)

L

⊗A E
ev−→ X

)

of the evaluation morphism.

An alternative proof of Theorem 7.1 assuming Conjecture 7.5. Corollary 6.4 and Corol-
lary 5.5 show that L0 ⊕ L1 is an almost exceptional object in DbW̃ , so that one has a
semiorthogonal decomposition

DbW̃ =
〈
DbW⊥, DbW

〉
. (7.2)
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Conjecture 7.5 implies that (7.2) is an orthogonal decomposition;

DbW̃ = DbW⊥ ⊕DbW. (7.3)

Since End(S0) ∼= H0(S3) ∼= C, the objects S0 is indecomposable and belongs to either
DbW or DbW⊥. The latter is impossible since Hom(L0, S0) = C. This implies that
S0 ∈ DbW, and similarly for S1. The fact

Homi(Lj, Sk) =

{
C i = 0 and j = k,

0 otherwise

shows that Si goes to OE and OE(−1) under the derived equivalence

W ∼= Db cohX0,

and Theorem 7.1 is proved.

8 Immersed Lagrangian S2 × S1

In the construction of the SYZ mirror in Section 2, we first considered the fibers away
from the discriminant locus to obtain Y̌0, and then added fibers above the discriminant
locus ‘by hand’ to obtain a partial compactification X0. It is reasonable to speculate that
points on X0 \ Y̌0 can be identified with singular fibers Lu := ρ−1(u) of the original SYZ
fibration ρ : Y 0 → R3, where u ∈ Γ is a point on the discriminant. In this section, we
give Floer cohomology computations in favor of this speculation.

Set a = −1 and b = −1/2 for simplicity, and consider a point (1, 0, λ) ∈ Γ on the
discriminant (2.3) for the SYZ fibration (2.2). The fiber L1,0,λ := ρ−1(1, 0, λ) is given by

L1,0,λ =
{
(z, u1, v1, u2, v2) ∈ Y 0

∣∣ |z| = 1, |u1| = |v1|, |u2|2 = |v2|2 + 2λ
}
.

The Lagrangian L1,0,λ is an S1 × S1-fibration over the unit circle on the z-plane shown
in Figure 8.1 such that the first S1-component degenerates to a point above z = −1.
It follows that L1,0,λ is an immersed S2 × S1, where S2 is immersed in the (z, u1, v1)-
direction in such a way that both the north pole and the south pole are mapped to
(z, u1, v1) = (−1, 0, 0), and S1 is embedded in the (u2, v2)-direction. We equip L1,0,λ with
the trivial spin structure and the grading such that the unique intersection point of L1,0,λ

and L0 has Maslov index zero. We consider the pair (L1,0,λ,∇α) of L1,0,λ and a flat U(1)
connection ∇α on the trivial complex line bundle L1,0,λ × C → L1,0,λ, where α ∈ U(1) is
the holonomy along the generator of π1(S

2 × S1) ∼= Z.

L0

L1,0,λ

Figure 8.1: The immersed Lagrangian L1,0,λ

Immersed Lagrangian Floer theory [Aka05, AJ10] gives a structure of an A∞-algebra
on H∗((L1,0,λ,∇α);C). The following lemma is a corollary of a result of Abouzaid, which
can be found in [Sei, Lemma 11.6]:
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Lemma 8.1. The A∞-algebra on H∗((L1,0,λ,∇α);C) is quasi-isomorphic to the exterior
algebra Λ∗(C3) equipped with the trivial differential.

Proof. The immersed Lagrangian L1,0,λ is exact in the sense that the symplectic form ω
vanishes on π2(Y

0, L1,0,λ), since it is homotopic to S0 ∪ S1 appearing in Theorem 7.1. It
follows that the A∞-structure on H∗((L1,0,λ,∇α);C) does not depend on ∇α and can be
computed by the chain model of Abouzaid [Abo11].

The Abouzaid model for L1,0,λ is the tensor product of the Abouzaid model for an im-
mersed Lagrangian S2 and the cochain complex C∗(S1) for a circle. Since the Abouzaid
model for the immersed S2 is quasi-isomorphic to Λ∗(C2) by [Sei, Lemma 11.6] and
the cochain complex C∗(S1) is quasi-isomorphic to Λ(C), their tensor product is quasi-
isomorphic to Λ(C2)⊗ Λ(C) ∼= Λ∗(C3).

Since the immersed Lagrangian L1,0,λ is not exact in the sense that the pull-back of
the Liouville 1-form (i.e., the 1-form θ on Y 0 such that ω = dθ) represents a non-trivial
cohomology class on H1(S2 × S1), one has to work over the Novikov field

ΛC =

{
∞∑

i=0

aiT
λi

∣∣∣∣∣ ai ∈ C, lim
i→∞

λi =∞
}

to define the Floer cohomology Hom(Li, (L1,0,λ,∇α)) for i = 0, 1. We replace the mirror
manifold X0 with the variety X0

Λ := X0 ⊗C Λ over Λ accordingly. Let pλ,α be the point
on X0

Λ given by (u, v, w1, w2, [x : y]) = (0, 0,−1, αT λ, [0 : 1]).

Lemma 8.2. The Floer cohomology Hom(L0, (L1,0,λ,∇α)) ⊕ Hom(L1, (L1,0,λ,∇α)) as a
module over ⊕1

i,j=0Hom(Li, Lj) is isomorphic to the module Hom(OX0
Λ
⊕ OX0

Λ
(1),Opλ,α)

over End(OX0
Λ
⊕OX0

Λ
(1)).

Proof. The intersection L0 ∩L1,0,λ consists of a single point qλ = (1,
√
2,
√
2, u2, v2) ∈ Y 0,

where (u2, v2) ∈ (R>0)2 is defined by u2v2 = 3/2 and u2
2 − v22 = 2λ. The A∞-operation

m2(qλ, pa,i,j) in immersed Lagrangian Floer theory is given by the virtual count

m2(qλ, pa,i,j) =
∑

φn(q)∈L1,0,λ∩φn(L0)

∑

ϕ∈[M(q)]virt

sgn(ϕ) hol(∇α, ϕ(∂D
2))T

∫ 2

D
ϕ∗ω · q

over the moduli spaceM(q) of holomorphic maps ϕ : (D2, (z0, z1, z2)) → Y0 from a disk
with three marked points on the boundary satisfying

• ϕ(z0) = φn(q), ϕ(z1) = pa,i1,i2, and ϕ(z2) = qλ,

• ϕ(∂0D
2) ⊂ φn(L0), ϕ(∂1D

2) ⊂ L0, and ϕ(∂2D
2) ⊂ L1,0,λ.

Here ∂iD
2 ⊂ ∂D2 is the interval between zi and zi+1. The sign sgn(ϕ) = ±1 comes from

the orientation on the moduli space (cf. [Sei08b, Section 11] and [FOOO09, Chapter 8]).
In immersed Lagrangian Floer theory, one counts only maps ϕ such that ϕ|∂2D2 :

∂2D
2 → L1,0,λ lifts to a map ∂2D

2 → S2 × S1. One can see from Figure 8.2 that this is
possible only for a = 0, so that

m2(qλ, pa,i,j) = 0 (8.1)
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L0

φn(L0)

p0,i1,i2
p−1,i1,i2

p1,i1,i2

L1,0,λ

qλ

φn(qλ)

L1

Figure 8.2: Intersections on the base

L0

pa,1,i2

φn(qλ)

L1,0,λ

pa,0,i2

φn(L0)

qλ

pa,−1,i2

Figure 8.3: Intersections on the fiber

L0

φn(L0)

p0,i1,i2

L1,0,λ

qλ

φn(qλ)

Figure 8.4: A triangle on the base

rλ

φn(L0)

L1,0,λ

φn(qλ)

L1

q1/2,i1,i2

Figure 8.5: Another triangle on the base

for a 6= 0 and any i, j ∈ Z. One can also see from Figures 8.2 and 8.3 that for each
(i, j) ∈ Z

2, there is a unique holomorphic triangle bounded by φn(L0), L0 and L1,0,λ

two of whose vertices are p0,i,j and qλ. The projection of this unique triangle to the
z-plane is shown in Figure 8.4. The third vertex of this triangle is φn(qλ), which is the
unique intersection point of φn(L0) and L1,0,λ. Since L0 and hence φn(L0) carry the trivial
spin structure and the trivial flat U(1)-bundle, the factor sgn(ϕ) hol(∇α, ϕ(∂D

2)) comes
entirely from the holonomy and the spin structure along ∂2D

2. Since ϕ(∂2D
2) wraps

j times along the S1-factor of S2 × S1, one has hol(∇α, ϕ(∂D
2)) = αj. The trivial spin

structure on S2×S1 induces the trivial spin structure on the S1-factor, and the non-trivial
spin structure on the equator of the S2-factor (cf. e.g. [Mil63, Page 201]). This non-trivial
spin structure contributes to the sign as sgn(ϕ) = (−1)i, cf. [Sei11, Section 9e]. This sign
can also be determined by the ring isomorphism HomW1

(L0, L0) ∼= H0 (OX0) and the
associativity. The area of ϕ(D2) is jλ up to an additive overall constant which can be
absorbed in the definition of the generator of the Floer cohomology, and one obtains

m2(qλ, p0,i,j) = (−1)i(α2T
λ)jqλ

for any i, j ∈ Z.
The intersection L1 ∩ L1,0,λ also consists of a single point rλ, and one can show

m2(rλ, p
′
0,i,j) = (−1)i(α2T

λ)jrλ for any i, j ∈ Z by exactly the same argument as above,
where p′a,i,j ∈ φn(L1) ∩ L1 are defined similarly as pa,i,j ∈ φn(L0) ∩ L0. One can also see
from Figure 8.5 and the same argument as above that the composition Hom(L1, L1,0,λ)⊗
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Hom(L0, L1)→ Hom(L0, L1,0,λ) is given by

m2(rλ, qa,i1,i2) =

{
(−1)i(α2T

λ)jqλ, a = 1/2,

0 otherwise.

The composition Hom(L0, L1,0,λ)⊗Hom(L1, L0)→ Hom(L1, L1,0,λ) can be computed sim-
ilarly, and Lemma 8.2 is proved.

9 Small toric Calabi-Yau 3-folds

Let Y 0 be the complete intersection in C× × C4 = SpecC[z, z−1, u1, u2, v1, v2] defined by
{
u1v1 = (z − a1) · · · (z − ak),

u2v2 = (z − b1) · · · (z − bl).
(9.1)

The SYZ mirror for Y 0 is the complement

X0 = X \D

of a divisor D in a crepant resolution X of the toric variety whose fan polytope is shown
in Figure 9.1.

(0, 0)

(k, 1)

(l, 0)

(0, 1)

Figure 9.1: The fan polytope

Here, the fan polytope of a toric variety is the convex hull of the primitive generators of
one-dimensional cones of the fan. The fan structure induces a polyhedral decomposition
of the fan polytope, and the fan polytope equipped with this polyhedral decomposition
is called a toric diagram.

The construction of the SYZ mirror of a complete intersection in [AAK, Section 11]
shows that primitive generators of one-dimensional cones of the fan for X are given by
(0, 1, 0), (1, 1, 0), . . . , (k, 1, 0), and (0, 0, 1), (1, 0, 1), . . . , (l, 0, 1).

One can map these points by the automorphism of N ∼= Z3 sending (n1, n2, n3) to
(n1, n2, n2+n3), so that the fan polytope is the quadrangle on the hyperplane {(n1, n2, n3) ∈
NR | n3 = 1} shown in Figure 9.1. The toric Calabi-Yau 3-fold X is small in the sense
that the resolution X → Z = SpecC[X ] does not have 2-dimensional fibers (in other
words, the toric variety X has no compact toric divisors).

It is sometimes convenient to consider a stacky resolution X of Z, whose toric diagram
is obtained by the triangulation of the fan polytope. Let consider the case when the fan
for X has two 3-dimensional cones, one of which is generated by

v1 = (0, 0, 1), v3 = (0, 1, 0), and v4 = (l, 0, 1),

31



and the other is generated by

v2 = (k, 1, 0), v3, and v4.

Let ϕ : Z4 → N ∼= Z3 be the homomorphism sending the i-th standard basis ei ∈ Z4 to
vi ∈ N for i = 1, . . . , 4. Then the toric stack X is the quotient

X := [(C4 \ Σ)/K],

where Σ := {(x1, x2, x3, x4) ∈ C
4 | x1 = x2 = 0} is the Stanley-Reisner locus and

K = Ker
(
ϕ⊗ C

× : (C×)4 → NC×
∼= (C×)3

)

=
{
(α1, α2, α3, α4) ∈ (C×)4

∣∣ αk
2α

l
4 = α2α3 = α1α4 = 1

}

∼= K1 ×K2.

Here K1 and K2 are the subgroups of K given by

K1 :=
{
(αk, αl, α−l, α−k) ∈ (C×)4

∣∣ α ∈ C
×
} ∼= C

×, (9.2)

K2 :=
{
(α, 1, 1, α−1) ∈ (C×)4

∣∣ α ∈ C
×, αg = 1

} ∼= Z/gZ (9.3)

where g = gcd(k, l). This shows that the toric stack X is the total space of the direct sum
of two line bundles on the quotient stack X := Xk,l := [P(k′, l′)/(Z/gZ)] of the weighted
projective line P(k′, l′) for k = gk′ and l = gl′.

The toric stack X has the following description due to Geigle and Lenzing [GL87]:
Let S = C[x1, x2] be the polynomial ring in two variables, graded by the abelian group
L = Z · ~x1 ⊕ Z · ~x2/(k~x1 − l~x2) of rank one as deg(xi) = ~xi for i = 1, 2. Then L can
naturally be identified with the group Hom(K,C×) of characters of K and one has

X ∼= [(SpecS \ 0)/K].

The Picard group of X can be identified with L, and the line bundle on X associated with
an element ~x ∈ L will be denoted by OX(~x). The canonical bundle of X is OX(~ω) for
~ω = −~x1 − ~x2, and the stack X is the total space of the direct sum

X ∼= OX(−~x1)⊕OX(−~x2)

of line bundles.
Choose ai and bj in such a way that all of them are on the unit circle and mutually

distinct. Let (γi)
k+l−1
i=0 be a collection of strongly admissible paths, such that for any con-

nected component of S1 \∆ for S1 = {z ∈ C× | |z| = 1} and ∆ = {a1, . . . , ak, b1, . . . , bl},
there is a unique i such that γi intersects it. Let W be the wrapped Fukaya category of
Y consisting of Li := Lγi for i = 0, . . . , k + l − 1. Define the collection (Li)

k+l−1
i=0 of line

bundles on X inductively by L0 = OX and

Li =

{
Li ⊗ π∗(O(~x1)) aj for some j lies between γi−1 and γi,

Li ⊗ π∗(O(~x2)) bj for some j lies between γi−1 and γi,

where π : X → X is the natural projection.

Then the proof of Theorem 1.2 can be easily adapted to prove the following:
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Theorem 9.1. There is an equivalence

DbW ∼= Db cohX 0 (9.4)

of triangulated categories sending Li to Li for i = 0, . . . , k + l − 1.

The manifold Y 0 comes in a family Y0 → S over the configuration space

S =
{
(a1, . . . , bl) ∈ (C×)k+l

∣∣ all the points a1, . . . , bl are distinct
}/

Sk ×Sl,

in such a way that Y0 is the submanifold of C× × C4 × S defined by the same equations
(9.1) as Y 0. This family is locally trivial as a family of symplectic manifolds by Moser’s
theorem. The fundamental group Ak,l := π1(S) is called the mixed annular braid group,
and the symplectic monodromy gives a homomorphism

φ : Ak,l → π0(Symp(Y 0, ω))

to π0 of the symplectomorphism group of Y 0.
Choose the point

(a1, a2, . . . , bl) = (ζk+l, ζ
2
k+l, . . . , ζ

k+l
k+l) ∈ S, ζk+l = exp(2π

√
−1/(k + l))

as a base point, and let γi be the line segment from ζ ik+l to ζ i+1
k+l . The half-twist Ti along γi

interchanges ζ ik+l and ζ i+1
k+l , and one can see that Ti for i 6= k, k+ l and (Ti)

2 for i = k, k+ l
belong to Ak,l. Let Si be the compact Lagrangian submanifold of Y 0 defined by the path
γi as in (7.1). The Lagrangian Si is homeomorphic to S3 if i = k, k + l and S2 × S1

otherwise.

• For i 6= k, k + l, we can identify a neighborhood of Si with T ∗S1 × T ∗S2, and the
symplectic monodromy along Ti is given by the symplectic Dehn twist in the T ∗S2

factor.

• For i = k, k + l, the symplectic monodromy along (Ti)
2 is the Dehn twist along the

Lagrangian Si.

It is an interesting problem to explore the relation between this action and the mixed braid
group action on the derived category of coherent sheaves on X0 studied by Donovan and
Segal [DS15].

A Lefschetz wrapped Floer cohomology

A.1 Liouville domains and wrapped Floer cohomology

An exact symplectic manifold with contact type boundary, or a Liouville domain for short,
is a pair (M, θ) of a compact manifold M with boundary and a one-form θ on M called
the Liouville one-form such that

• the two-form ω := dθ is a symplectic form on M , and
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• the Liouville vector field Z defined by ιZω = θ points strictly outward along the
boundary ∂M .

The restriction α := θ|∂M of the Liouville one-form is a contact one-form on ∂M . The
Reeb vector field R on ∂M is defined by R ∈ Kerα and α(R) = 1. The symplectic
completion M̂ of M is obtained by gluing the positive part

(∂M × [1,∞), d(rα))

of the symplectization of ∂M onto M ;

M̂ := M ∪∂M (∂M × [1,∞)) .

Let L be a compact Lagrangian submanifold L of M such that

• θ|L is exact; θ|L = df ,

• L intersects ∂M transversally, and

• θ|L vanishes to infinite order along the boundary ∂L := L ∩ ∂M .

In this setting, the completion

L̂ := L ∪∂L (∂L × [1,∞)) ,

of L is a Lagrangian submanifold of M̂ .
A Hamiltonian function H ∈ C∞(M̂) is admissible if there are constants K > 0, a > 0,

and b such that

H(x, r) = ar + b, ∀(x, r) ∈ ∂M × [K,∞) ⊂ M̂. (A.1)

The constant a is called the slope ofH . An almost complex structure J on M̂ is admissible
if it is of contact type outside a compact set;

dr = θ ◦ J, ∀(x, r) ∈ ∂M × [K,∞) ⊂ M̂. (A.2)

A Reeb chord of length w is a trajectory x : [0, w] → ∂M of the flow along R such that
x(0) ∈ L and x(w) ∈ L. An integer Reeb chord is a Reeb chord of integer length. A
Hamiltonian chord is defined similarly as a trajectory of the Hamiltonian vector field
starting and ending at L. If we write the time t Hamiltonian flow as ϕt : M̂ → M̂ , then
a Hamiltonian chord of length w corresponds to an intersection point p ∈ L ∩ ϕw(L). A
Hamiltonian chord is non-degenerate if the corresponding intersection is transversal.

Fix an admissible Hamiltonian H of unit slope. If dimM ≥ 4, then by perturbing L
by an exact symplectic isotopy if necessary, we may assume [AS10, Lemmas 8.1 and 8.2]
that

• there are no integer Reeb chords,

• all integer Hamiltonian chords are non-degenerate, and
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• no point of L is both a starting point of an integer Hamiltonian chord and an
endpoint of an integer Hamiltonian chord, which may or may not be the same
chord.

For an integer w, the set of Hamiltonian chords of length w will be denoted by Xw. The
set Xw is finite since all the integer Hamiltonian chords are non-degenerate. The action
of x ∈ Xw is defined by

AwH(x) =

∫ 1

0

(
x∗θ − wH(x(t))dt

)
+H(x(1))−H(x(0)).

The Floer complex is defined as the direct sum

CF ∗(L̂;wH) :=
⊕

x∈Xw

C[x],

equipped with the grading coming from the Maslov index. The differential δ onCF (L̂;wH)
is given by counting solutions to Floer’s equation





u : R× [0, 1]→ M̂,

u(R× {0, 1}) ⊂ L̂,

lims→±∞ u(s, ·) = x±(·),
∂su+ Jt(∂tu− wXH) = 0

up to the R-action by translation in the s-direction. Here, one has to choose a t-dependent
almost complex structure to achieve transversality in Floer’s equation. The conditions
(A.1) and (A.2) gives the maximum principle for u, which ensures the compactness of the
moduli space. The continuation map

ϕ : CF ∗(L̂;wH)→ CF ∗(L̂; (w + 1)H)

is defined as the sum
ϕ(x+) =

∑

u∈M(x−,x+)

±x−

over the setM(x−, x+) of solutions to the continuation equation





u : R× [0, 1]→ M̂,

u(R× {0, 1}) ⊂ L̂,

lims→±∞ u(s, ·) = x±(·),
∂su+ Js,t(∂tu−Xs) = 0

where Js,t is an (s, t)-dependent almost complex structure and Xs is the Hamiltonian
vector field of an s-dependent Hamiltonian Hs which coincides with (w + 1)H and wH
when s≪ 0 and s≫ 0 respectively. A standard argument in Floer theory shows that the
continuation map is a chain map, which is independent of the choice of almost complex
structures up to chain homotopy. The wrapped Floer cohomology is defined by

HW (L̂) := lim−→
w

HF (L̂;wH).
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The continuation map is defined more generally for a familyHs of admissible Hamiltonians
with monotonically decreasing slope, and satisfies the transitive law; if one divides a family
{Hs}s from H−∞ to H∞ smoothly into two, then the diagram

HF (L̂;H∞) HF (L̂;H−∞)

HF (L̂;H0)

ϕ

ϕ+ ϕ−

consisting of continuation maps commutes. We say that a family {Hp}p of admissible
Hamiltonians is cofinal if the slope of Hp goes to infinity as p goes to infinity. The
wrapped Floer cohomology can also be defined as the limit of Floer cohomologies with
respect to any cofinal family of non-degenerate admissible Hamiltonians.

The triangle product on wrapped Floer cohomology is defined by counting solutions of
the inhomogeneous Cauchy-Riemann equation





u : S → M̂,

u(∂S) ⊂ L̂,

lims→±∞ u(ǫk(s, ·)) = xk(·), k = 0, 1, 2,

(duz −Xu(z) ⊗ γz) ◦ j + Jz,u(z) ◦ (duz −Xu(z) ⊗ γz) = 0,

where

• wk ∈ N and xk ∈ Xwk for k = 0, 1, 2,

• S = D2 \ {ζ0, ζ1, ζ2} is a disk with three points on the boundary removed,

• ǫ0 : (−∞, 0]× [0, 1]→ S and ǫ1,2 : [0,∞)× [0, 1]→ S are strip-like ends,

• j is the complex structure on S,

• {Jz}z∈S is a family of almost complex structures on M̂ ,

• γ is a one-form on S satisfying

– γ|∂S = 0,

– dγ < 0 on S,

– dγ = 0 in a neighborhood of ∂S,

– (ǫk)∗γ = wkdt on the strip-like ends, and

• X ⊗ γ ∈ Hom(TS, u∗TM̂) is obtained by composing γ ∈ C∞(T ∗S) with u∗X ∈
C∞(u∗TM).

A more careful discussion on the wrapped Floer cohomology can be found in [Rit13]. To
define higher A∞-operations, one takes the homotopy colimit of the Floer cochain complex
instead of the colimit of the cohomology, and use moduli spaces of stable popsicle maps
[AS10].
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A.2 Lefschetz fibrations and wrapped Floer cohomology

This section follows McLean [McL09] closely. An exact Lefschetz fibration is a proper
map π : E → S from a compact manifold E with corners to a compact surface S with
boundary satisfying the following:

• ∂E consists of the vertical boundary ∂vE := π−1(∂S) and the horizontal boundary
∂hE := ∂E \ ∂vE meeting in a codimension 2 corner.

• π is a C∞-map with finitely many critical points Ecrit ⊂ E with critical values
Scrit ⊂ S. Every critical point is non-degenerate in the sense that the Hessian is
non-degenerate. Different critical points have distinct critical values.

• E is equipped with a one-form Θ such that Ω = dΘ is a symplectic form on Es\Ecrit

for every s ∈ S, where Es := π−1(s) is the fiber of π.

• There is a neighborhood N of ∂hE such that π|N : N → S is a product fibration
S × U , where U is a neighborhood of ∂F in F . We require that Θ|N is a pull-back
from the second factor.

• There are integrable complex structures J0 (resp. j0) defined on a neighborhood of
Ecrit (resp. Scrit) such that π is (J0, j0)-holomorphic near Ecrit.

• Ω is a Kähler form for J0 near Ecrit.

There is a natural connection for π given by the horizontal distribution defined as
the Ω-orthogonal to the tangent space to the fiber. Parallel transport with respect to
this connection gives exact symplectomorphisms between smooth fibers of π. We write a
smooth fiber of π considered as an abstract exact symplectic manifold as F .

We say that E is a compact convex Lefschetz fibration if (F,Θ|F ) is a Liouville domain.
Choose a Liouville one-form θS on the base S. Then there is a constant K > 0 such that
for all k ≥ K, one has

• ω := Ω + kπ∗ωS is a symplectic form

• the ω-dual λ of θ := Θ + kπ∗θS is transverse to ∂E and pointing outward

by [McL09, Theorem 2.15]. One can complete a compact convex Lefschetz fibration to
a complete convex Lefschetz fibration π : Ê → Ŝ in a natural way, whose base is the
completion Ŝ of the base S and whose fiber is a completion F̂ of the fiber F . The
completion Ê can be partitioned into

• E ⊂ Ê,

• A := Fe × Ŝ where Fe is the cylindrical end of F̂ , and

• B := Ê \ (A ∪ E)

as in [McL09, Figure 1].
The completion Ê is isomorphic to the completion M̂ of a Liouville domain M , ob-

tained by smoothing out the corner of E. We write the radial coordinates for cylindrical
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ends of Ê, Ŝ and F̂ as r, rS and rF . There exists a positive constant ̟ such that rS ≤ ̟r
and rF ≤ ̟r by [McL09, Lemma 5.7].

A map H : Ê → R is a Lefschetz admissible Hamiltonian if H|A = π∗HS + π∗
1HF

outside some large compact set [McL09, Definition 2.21]. Here HS and HF are admissible
Hamiltonians on Ŝ and F̂ such that HS = 0 on S ⊂ Ŝ and HF = 0 on F ⊂ F̂ respectively
[McL09, Page 1905], and π1 : A = Fe × Ŝ → Fe is the first projection.

Let γ : [0, 1] → S be a path on the base such that γ((0, 1)) ⊂ S \ Scrit. Recall that
a Lagrangian submanifold fibered over γ is a Lagrangian submanifold L of E obtained as
the trajectory of the parallel transport along γ of a Lagrangian submanifold Ls in a fiber
Es = π−1(s). We assume that L is exact, L intersects ∂E transversally, and θ|L vanishes
to infinite order along ∂L. If an endpoint of γ is in the interior of S, then it must be
a critical value of π. If exactly one endpoint of γ is in the interior of S, then L is a
Lefschetz thimble. If both endpoints of γ are in the interior of S, then L is a Lagrangian
sphere. The Lagrangian L ⊂M can be completed to a Lagrangian L̂ ⊂ M̂ by first taking
the completion L̂s := Ls ∪∂Ls

([1,∞)× ∂Ls) ⊂ Ês in the fiber direction and then taking
its parallel transport along γ̂ = γ ∪∂γ ([1,∞) × ∂γ) ⊂ Ŝ. Since L̂ ∩ A is the product

(L̂s \ Ls)× γ̂ and L̂ ∩B is the product Ls × (γ̂ \ γ), one has a maximum principle which
applies to Lefschetz admissible H :

Lemma A.1. For any Floer trajectory u : D → Ê, the functions rS ◦ u and rF ◦ u do not
admit local maxima for large rS and rF .

This allows one to define the Floer differential and the continuation map, which gives
the Lefschetz wrapped Floer cohomology

HW ∗
l (L̂) := lim−→

w

HF ∗(L̂;wH).

The Lefschetz wrapped Floer cohomology HW ∗
l (L̂) does not depend on the choice of

a Lefschetz admissible Hamiltonian just as in the case of the ordinary wrapped Floer
cohomology.

Theorem A.2. One has an isomorphism

HW ∗(L̂) ∼= HW ∗
l (L̂) (A.3)

of graded rings.

The isomorphism (A.3) is obtained by

HW ∗(L̂) ∼= lim−→
p

HF ∗(L̂; ̺p) (A.4)

∼= lim−→
p

HF ∗
[−ǫ,∞)(L̂; ̺p) (A.5)

∼= lim−→
p

HF ∗
[−ǫ,∞)(L̂;Kp) (A.6)

∼= lim−→
p

HF ∗
[−ǫ,∞)(L̂;Gp) (A.7)

∼= lim−→
p

HF ∗(L̂;Gp) (A.8)

∼= HW ∗
l (L̂), (A.9)
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which is an adaptation of the proof of [McL09, Theorem 2.22]. Here ̺p is a Hamiltonian

function on M̂ satisfying

(i) ̺p < 0 on M ,

(ii) ̺p goes to zero in the C2 norm on M as p goes to infinity,

(iii) ̺p depends only on the radial coordinate on the cylindrical end;

̺p(x, r) = hp(r), ∀(x, r) ∈ ∂M × [1,∞) ⊂ M̂.

(iv) h′
p(r) ≥ 0 and h′′

p(r) ≥ 0 for all r ∈ [1,∞),

(v) h′
p(r) = p for r ∈ [2,∞), and

(vi) for any K > 0 and any r ∈ (1,∞), there is an integer N such that

rh′
p(r)− hp(r) > K, ∀p > N.

The sequence {̺p}p is a cofinal family of admissible Hamiltonians, so that the isomorphism
(A.4) comes from the definition of the wrapped Floer cohomology.

The condition (ii) implies that for any ǫ > 0, the action of any Hamiltonian chord of
̺p in M is greater than −ǫ for sufficiently large p. The condition (iii) implies that the
Hamiltonian vector field of ̺p in the cylindrical end is h′

p(r) times the Reeb vector field on
∂M . It follows that Hamiltonian chords of length one are in one-to-one correspondence
with Reeb chords of length h′

p(r), and the action of a Hamiltonian chord (x, r) : [0, 1]→
M × [1,∞) is given by

A̺p(x, r) =

∫ 1

0

(
x∗θ − ̺(x, r))dt

)
+ f(x(1))− f(x(0)),

= rh′
p(r)− hp(r) + f(x(1))− f(x(0)).

The condition θ|∂L = 0 implies θ|L̂\L = 0, so that the primitive function f(x) =
∫ x

θ is

constant on each connected component of L̂ \ L and hence bounded. Then the condition
(vi) shows that the actions of Hamiltonian chords on the cylindrical end are positive for
sufficiently large p. As a result, one obtains the isomorphism (A.5), where HF ∗

[−ǫ,∞)(L̂; ̺p)

is the subgroup of HF ∗(L̂; ̺p) generated by chords of action greater than or equal to ǫ.
The construction of Kp from ̺p proceeds in two steps [Her00, McL09]: First one

modifies ̺p to a Hamiltonian ςp which is constant outside a large compact set κ while
only adding chords of action less than −ǫ. Then one adds to ςp a Lefschetz admissible
Hamiltonian Lp, which is zero in the region κ but has action bounded above, so that
Hamiltonian chords of Kp := Lp + ςp outside κ have action less than −ǫ. For a suitable
choice of a family of admissible almost complex structures,

• there is a bijection between Hamiltonian chords of Kp of action greater than −ǫ and
Hamiltonian chords of ̺p, and

• this bijection inducing an isomorphism of the moduli spaces of Floer trajectories.
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This gives the isomorphism (A.6). The sequence {Gp}p is a cofinal family of Lefschetz
admissible Hamiltonians such that

• there are sequences pi and qi of positive integers such that

Kpi ≤ Gqi ≤ Kpi+1

for all i, and

• all Hamiltonian chords of Gp have action greater than −ǫ.

This induces the isomorphisms (A.7) and (A.8). The isomorphism (A.9) comes from the
cofinality of {Gp}p and Theorem A.2 is proved.

A.3 Fiber products of Lefschetz fibrations

Let π1 : E1 → S and π2 : E2 → S be exact Lefschetz fibrations and consider the fiber
product

E := E1 ×S E2

E1 E2

S .

τ1 τ2

π1 π2

π

By smoothing corners, we obtain a Liouville domain M with a Liouville one-form θ =
τ ∗1Θ1 + τ ∗2Θ2 + kπ∗θS for sufficiently large k whose completion M̂ is symplectomorphic to
Ê := Ê1 ×Ŝ Ê2. We have fiberwise cylindrical coordinates rFi

, i = 1, 2 and a cylindrical
coordinate rS on the base. We say that a Hamiltonian H : E → R is fibered admissible if

H = π∗HS + τ ∗1HF1
+ τ ∗2HF2

where

• HS is an admissible Hamiltonian on Ŝ, and

• HFi
is a Hamiltonian on Êi which is

– zero on Ei ∪ Bi, and

– a pull-back of an admissible Hamiltonian of (Fi)e on Ai := (Fi)e × Ŝ.

Lagrangian submanifolds Li of Ei fibered over a common path γ : [0, 1] → S gives a
Lagrangian submanifold L := L1 ×γ L2 of E, which can be completed to a Lagrangian

submanifold L̂ of Ê. Although π : E → S is not a Lefschetz fibration but a Bott-
Morse analog of a Lefschetz fibration, the proof of Theorem A.2 can be adapted in a
straightforward way to prove the following:
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Theorem A.3. One has an isomorphism

HW ∗(L̂) ∼= lim−→
p

HF ∗(L̂; pH) (A.10)

of rings.

The right hand side does not depend on the choice of a fibered admissible Hamiltonian
H , or a cofinal family {Hp}p of fibered admissible Hamiltonians in general. One starts
with a cofinal family {̺p}p of admissible Hamiltonians, truncate outside a large compact
set κ to obtain ςp, then adds a fibered admissible Hamiltonian Lp supported outside of
κ to obtain Kp = ςp + Lp. This process can be performed without changing chords with
actions greater than −ǫ, and one obtains the isomorphism (A.10).

A.4 Symplectic cohomology and the bulk-boundary map

In view of McLean’s work, it is also natural to discuss the implication of the calculations
in this paper for symplectic cohomology. Our treatment here is less detailed because the
discussion which follows is complementary to our main topic.

Theorem A.4. Let L be an admissible Lagrangian which is also a section of the SYZ
fibration for the conifold. Then we have an isomorphism of rings SH0(M̂)→WF (L).

Proof. Consider a fibered admissible Hamiltonian H as in the main part of this paper and
assume that the discriminant points are generically positioned away from L inside of M .
For an appropriate choice of H as above, Hamiltonian orbits are precisely:

• T 3 submanifolds on M̂ , which fiber over circles in the base

• one-dimensional tori of orbits living in the fibers over the discriminant locus

Standard Morse-Bott theory allows one to find a perturbation which has exactly 2m

orbits corresponding to generators of H∗(Tm) for each submanifold of Hamiltonian orbits.
For our purposes, it will be sufficient to consider the T 3 submanifolds which fiber over
circles in the base because the orbits of the second type have grading at least 2. We will
be interested in the SH0(M̂), which is generated by the cochains arising from H0(T 3).

A priori there could be a differential

∂ : SH0(M̂)→ SH1(M̂)

However, curves contributing to this differential would necessarily preserve the free
homotopy class of the projection of the chord to C∗. An energy estimate similar to that
in [Sei, Theorem 18.10] shows that curves connecting Morse-Bott submanifolds which
live in the same fiber must live entirely within the fiber and hence there are no such
differentials.

The essential geometric idea which underlies our theorem is that generators of wrapped
Floer homology between L and φH(L) consist of a single Hamiltonian chord in each of
the T 3 submanifolds, which we may think of as being geometrically the same as the
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corresponding generator in SH0(M̂). To turn this observation into a precise statement,
we note that Abouzaid has defined a closed-open unital ring homomorphism

CO : SH∗(M̂)→WF (L).

This map is defined by counting solutions to a perturbed J-holomorphic curve equation
with one interior puncture which is required to be asymptotic to our Hamiltonian orbit.

In our setting this map can be completely calculated. More precisely the map sends
the class in H0(T 3) to the unique Hamiltonian chord of L in each submanifold worth of
orbits. The non-trivial component of our map corresponds to “local” curves, e.g. curves
which do not escape some fixed neighborhood of the orbits. Using elementary Morse-Bott
analysis, one can show that these correspond to the classical intersection T 3 ∩ L. As
before, there can be no non-trivial curves connecting different Morse-Bott submanifolds.
In particular, this map induces an isomorphism

SH0(M̂)→ WF (L).

Our computations in this paper therefore allow us to compute SH0(M̂) as well:

Corollary A.5. SH0(M̂) ∼= C[u, v, w1, w
−1
1 , w2, w

−1
2 ]/(uv = (1 + w1)(1 + w2))

Remark A.6. While finishing this paper, we noticed that Pascaleff [Pas] has very recently
proven a similar theorem in his study of log Calabi-Yau surfaces. While our notion of
Lagrangian section comes from an SYZ fibration, Pascaleff considers Lagrangian sections
of an SYZ fibration defined only in a neighborhood of the compactifying divisor for log
Calabi-Yau surfaces. It would be interesting to study the relationship between these
approaches in more detail.
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