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ABSTRACT. In 2002, Fukaya [16] proposed a remarkable explanation of mirror symmetry detailing
the SYZ conjecture [41] by introducing two correspondences: one between the theory of pseudo-
holomorphic curves on a Calabi-Yau manifold X and the multi-valued Morse theory on the base
B of an SYZ fibration p : X — B, and the other between deformation theory of the mirror X
and the same multi-valued Morse theory on B. In this paper, we prove a reformulation of the
main conjecture in Fukaya’s second correspondence, where multi-valued Morse theory on the base
B is replaced by tropical geometry on the Legendre dual B. In the proof, we apply techniques of
asymptotic analysis developed in [, 7] to tropicalize the pre-dgBV algebra which governs smoothing
of a maximally degenerate Calabi-Yau log variety X' introduced in [5]. Then a comparison between
this tropicalized algebra with the dgBV algebra associated to the deformation theory of the semi-flat
part Xs C X allows us to extract consistent scattering diagrams from appropriate Maurer-Cartan
solutions.

1. INTRODUCTION

Two decades ago, in an attempt to understand mirror symmetry using the SYZ conjecture [41],
Fukaya [16] proposed two correspondences:

e Correspondence I: between the theory of pseudo-holomorphic curves (instanton corrections)
on a Calabi-Yau manifold X and the multi-valued Morse theory on the base B of an SYZ
fibration p : X — B, and

e Correspondence II: between deformation theory of the mirror X and the same multi-valued
Morse theory on the base B.

In this paper, we prove a reformulation of the main conjecture [16, Conj 5.3] in Fukaya’s Correspon-
dence II, where multi-valued Morse theory on the SYZ base B is replaced by tropical geometry on
the Legendre dual B. Such a reformulation of Fukaya’s conjecture was proposed and proved in [6]
in a local setting; the main result of the current paper is a global version of the main result in loc.
cit. A crucial ingredient in the proof is a precise link between tropical geometry on an integral affine
manifold with singularities and smoothing of maximally degenerate Calabi-Yau varieties.

The main conjecture [16, Conj. 5.3] in Fukaya’s Correspondence II asserts that there exists a
Maurer-Cartan element of the Kodaira-Spencer dglLa associated to deformations of the semi-flat
part X of X that is asymptotically close to a Fourier expansion ([16, Eq. (42)]), whose Fourier
modes are given by smoothenings of distribution-valued 1-forms defined by moduli spaces of gradient
Morse flow trees which are expected to encode counting of nontrivial (Maslov index 0) holomorphic
disks bounded by Lagrangian torus fibers (see [16, Rem. 5.4]). Also, the complex structure defined
by this Maurer-Cartan element can be compactified to give a complex structure on X. At the same
time, Fukaya’s Correspondence I suggests that these gradient Morse flow trees arise as adiabatic
limits of loci of those Lagrangian torus fibers which bound nontrivial (Maslov index 0) holomorphic
disks. This can be reformulated as a holomorphic/tropical correspondence, and much evidence has
been found [15, 177, [33], B4L [10] @, 32] [, [3].
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The tropical counterpart of such gradient Morse flow trees are given by consistent scattering dia-
grams, which were invented by Kontsevich-Soibelman [30] and extensively used in the Gross-Siebert
program [25] to solve the reconstruction problem in mirror symmetry, namely, the construction of
the mirror X from smoothing of a maximally degenerate Calabi-Yau variety °X. It is therefore
natural to replace the distribution-valued 1-form in each Fourier mode in the Fourier expansion
[16, Eq. (42)] by a distribution-valued 1-form associated to a wall-crossing factor of a consistent
scattering diagram. This was exactly how Fukaya’s conjecture [16, Conj. 5.3] was reformulated and
proved in the local case in [6].

In order to reformulate the global version of Fukaya’s conjecture, however, we must also relate
deformations of the semi-flat part X with smoothings of the maximally degenerate Calabi-Yau
variety °X. This is because by Gross-Siebert [24] consistent scattering diagrams are related to
the deformation theory of the compact log variety X' (whose log structure is specified by slab
functions), instead of Xg. For this purpose, we consider the open dense part

"X :=p~'(Wo) C "X,

where p1: °X — B is the generalized moment map in [37] and Wy C B is an open dense subset such
that B\ Wy contains the tropical singular locus and all codimension 2 cells of B.

Equipping ° X with the trivial log structure, there is a semi-flat dgBV algebra PV:f’* governing
its smoothings, and the general fiber of a smoothing is given by the semi-flat Calabi-Yau Xy that
appeared in Fukaya’s original conjecture [16, Conj. 5.3]. However, the Maurer-Cartan elements
of PV:f’* cannot be compactified to give complex structures on X. On the other hand, in [5] we
constructed a Kodaira-Spencer—type pre-dgBV algebra PV** which controls the smoothing of °X.
A key observation is that a twisting of PV:f’* by slab functions is isomorphic to the restriction of
PV** to "X (Lemma .

Our reformulation of the global Fukaya conjecture now claims the existence of a Maurer-Cartan
element ¢ of this twisted semi-flat dgBV algebra which is asymptotically close to a Fourier expansion
whose Fourier modes give rise to the wall-crossing factors of a consistent scattering diagram. This
conjecture follows from (the proof of) our main result, stated as Theorem below, which is a

combination of Theorem the construction in and Theorem

Theorem 1.1. There exists a solution ¢ to the classical Maurer-Cartan equation (4.10) giving rise
to a smoothing of the mazimally degenerate Calabi-Yau log variety ° X1 over C[[q]], from which a
consistent scattering diagram D(¢) can be extracted by taking asymptotic expansions.

A brief outline of the proof of Theorem is now in order. First, recall that the pre-dgBV
algebra PV** which governs smoothing of the maximally degenerate Calabi-Yau variety °X was
constructed in [5, Thm. 1.1 & §3.5], and we also proved a Bogomolov-Tian-Todorov—type theorem
[B, Thm. 1.2 & §5] showing unobstructedness of the extended Maurer-Cartan equation , under
the Hodge-to-de Rham degeneracy Condition and a holomorphic Poincaré Lemma Condition
(both proven in [24], 14]). In Theorem we will further show how one can extract from the
extended Maurer-Cartan equation a smoothing of X, described as a solution ¢ € PV~11(B)
to the classical Maurer-Cartan equation

= 1

together with a holomorphic volume form ef w which satisfies the normalization condition

(11) /T Fo=1,

where T is a nearby vanishing torus in the smoothing.
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Next, we need to tropicalize the pre-dgBV algebra PV**. However, the original construction of
PV** in [5] using the Thom-Whitney resolution [43, 12] is too algebraic in nature. Here, we con-
struct a geometric resolution exploiting the affine manifold structure on B. Using the generalized
moment map 4 : °X — B [37] and applying the techniques of asymptotic analysis (in particular the
notion of asymptotic support) in [6], we define the sheaf A* of monodromy invariant tropical differ-
ential forms on B in Accoring to Definition [5.4] a tropical differential form is a smoothening of
a distribution-valued form supported on polyhedral subsets of B. Using the sheaf A*, we can take
asymptotic expansions of elements in PV** and hence connect differential geometric operations in
dgBV/dgLa with tropical geometry. In this manner, we can extract local scattering diagrams from
Maurer-Cartan solutions as we did in [6], but we need to glue them together to get a global object.

To achieve this, we need the aforementioned comparison between PV** and the semi-flat dgBV
algebra PV;’* which governs smoothing of the semi-flat part °X ¢ := p='(Wp) € °X equipped with
the trivial log structure. The key Lemma says that the restriction of PV** to the semi-flat part
is isomorphic to PV:{k precisely after we twist the semi-flat operator dy by elements corresponding
to the slab functions associated to the initial walls of the form:

¢in = - Z 5v,p X lOg(fU,p)adp;

vep
here the sum is over vertices in codimension 1 cells p’s which intersect with the essential singular
locus 8. (defined in §3.2)), J, , is a distribution-valued 1-form supported on a component of p \ 8.
containing v, 8&,, is a holomorphic vector field and f, ,’s are the slab functions associated to the

initial walls. We remark that slab functions were used to specify the log structure on °X as well as
the local models for smoothing °X in the Gross-Siebert program; see §2| for a review.

~ Now, the Maurer-Cartan solution ¢ € PV~11(B) obtained in Theorem defines a new operator
ds on PV** which squares to zero. Applying the above comparison of dgBV algebras, in §5.2.4 we
show that, after restricting to Wy, there is an isomorphism

(PY=10W0), 05) 2= (PV(Wo), 3o + [ + 61, )

for some element ¢g, where ‘s’ stands for scattering terms. From the description of A*, the element
¢s, to any fixed order k, is written locally as a finite sum of terms supported on codimension 1 walls
w’s. Also, in a neighborhood Uy, of each wall w, the operator dy + [fin + ¢s, -] is gauge equivalent
to Jp via some vector field fy, € PVS_fl’O(WO), ie.

el o fyoe 0wl = g, + [Pin + Ps, -

Employing the techniques for analyzing the gauge which we developed in [6] [7, 31], we see that the
gauge will jump across the wall, resulting in a wall-crossing factor O, satisfying

6o ] Owlc, on Uy NCyq,
e W |Cj: — .
id on Uy NC_,

where C4 are the two chambers separated by w. Then from the fact that the volume form e w is
normalized as in ((1.1)), it follows that ¢ is closed under the semi-flat BV operator Ap, and hence we
conclude that the wall-crossing factor Oy, lies in the tropical vertex group. This defines a scattering
diagram D(¢) on the semi-flat part Wy associated to ¢; see for details. Finally, we prove
consistency of the scattering diagram D(¢) in Theorem We emphasize that the consistency
is over the whole B even though the diagram is only defined on Wy, because the Maurer-Cartan
solution ¢ is globally defined on B.

Remark 1.2. Our notion of scattering diagrams (Definition is a little bit more relaxed than
the usual notion defined in [30, 25]. The only difference is that we do not require the generator of
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the exponents of the wall-crossing factor to be orthogonal to the wall. This simply means that we are
considering a larger gauge equivalence class (or equivalently, a weaker gauge equivalence), which is
natural from the point of view of both the Bogomolov-Tian-Todorov Theorem and mirror symmetry
(in the A-side, this amounts to flexibility in the choice of the almost complex structure). We also
have a different, but more or less equivalent, formulation of the consistency of a scattering diagram;

see Definition [5.17 and §5.3.1] for details.

Along the way of proving Fukaya’s conjecture, besides figuring out the precise relation between
the semi-flat part X and the maximally degenerate Calabi-Yau log variety °XT, we also find the
correct description of the Maurer-Cartan solutions near the singular locus, namely, they should be
extendable to the local models prescribed by the log structure (or slab functions), as was hinted by
the Gross-Siebert program. This is related to a remark by Fukaya [16, Pt. (2) after Conj. 5.3].

Another important point is that we have established in the global setting an interplay between
the differential-geometric properties of the tropical dgBV algebra and the scattering (and other
combinatorial) properties of tropical disks, which was speculated by Fukaya as well ([16, Pt. (1)
after Conj. 5.3]) although he considered holomorphic disks instead of tropical ones.

Furthermore, by providing a direct linkage between Fukaya’s conjecture with the Gross-Siebert
program [23| 24, 25] and Katzarkov-Kontsevich-Pantev’s Hodge theoretic viewpoint [27] through
PV** (recall from [5] that a semi-infinite variation of Hodge structures can be constructed from
PV** using the techniques of Barannikov-Kontsevich [2}, 1] and Katzarkov-Kontsevich-Pantev [27]),
we obtain a more transparent understanding of mirror symmetry through the SYZ framework.

Remark 1.3. After completing the proof of (our reformulated version of) Fukaya’s conjecture, a
future direction is to apply the framework in this paper and [0, 5] to develop a local-to-global approach
to understand genus 0 mirror symmetry. In view of the ideas of Seidel [40] and Kontsevich [29], and
also recent breakthroughs by Ganatra-Pardon-Shende [22], 21, 20] and Gammage-Shende [19} 18], we
expect that the sheaf of Lo algebras on the A-side mirror to (the Lo, enhancement of) PV** can
also be constructed by gluing local models. More precisely, a large volume limit of the Calabi-Yau
manifold X can be specified by removing from it a normal crossing divisor D which represents the
Kihler class of X. This gives rise to a Weinstein manifold X \ D, and produces a mirror pair
X\ D < °X at the large volume/complex structure limits. In [I8], Gammage-Shende constructed a
Lagrangian skeleton A(®) C X \ D from a combinatorial structure ® called fanifold, which can be
extracted from the integral tropical manifold B equipped with a polyhedral decomposition P (here we
assume that the gluing data s is trivial). They also proved an HMS statement at the large limits. We
expect that an A-side analogue of PV** can be constructed from the Lagrangian skeleton A(®) in
X \ D by gluing local models. A local-to-global comparsion on the A-side and isomorphisms between
the local models on the two sides are then expected to yield an isomorphism of Frobenius manifolds.
This program will be taken up in future works.
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LIST OF NOTATIONS

lattice, M4 := M ®z A for any Z-module A

dual lattice of M, N4 := N ®z A for any Z-module A

integral tropical manifold equipped with a polyhedral decomposition
lattice generated by integral tangent vectors along o

relative interior of a polyhedron 7

open neighborhood of inte(7)

lattice generated by normal vectors to 7

fan structure along 7

complete fan in Q; g constructed from S;

K.o0 =R>0S;(c NU;) is a cone in ¥, corresponding to o

lattice of integral tangent vectors of B at x

monodromy polytope of 7, dual monodromy polytope of 7

sheaf of affine functions on B

sheaf of piecewise affine functions on B with respect to P

sheaf of multi-valued piecewise affine functions on B with respect to P
strictly convex multi-valued piecewise linear function

localization of the fan ¥, at 7

local affine scheme associated to 7 used for open gluing

group of piecewise multiplicative maps on 7713,

number encoding the change of 1 € PM(7) across p through v
closed stratum of °X associated to 7

cone defined by the strictly convex function ¢, : ¥ — R representing ¢
monoid of integral points in C;

parameter for a toric degeneration

line bundle on °X p having slab functions f, as sections

local slab function associate to p in the chart V(v)

toric morphism induced from the monodromy polytope A;(7)

toric monoid describing the local model of toric degeneration near z € X,
toric monoid isomorphic to Pr. /(0 + Prg)

normal fan of a polytope 7

generalized moment map

(resp. essential) tropical singular locus in B

surjective map with v(Z) C 8

good cover (Condition of B with V,, := v=1(W,) being Stein
k*P-order local smoothing model of V,

sheaf of kt-order holomorphic relative log polyvector fields on by,
sheaf of k*P-order holomorphic log de Rham differentials on kVL

sheaf of k''-order holomorphic relative log de Rham differentials on kyl,
kth-order relative log volume form on ¥V},

BV operator on *G,

local sheaf of k*-order polyvector fields

local sheaf of k''-order de Rham forms
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kFpv+=*  Def. 4.13 global sheaf of k*-order polyvector fields from gluing of ¥ PV 5*’s
FA** Def. [4.13| global sheaf of k*-order de Rham forms from gluing of ¥ A} "’s

A* Def. [5.5]  global sheaf of tropical differential forms on B

Wo §5.2.1 semi-flat locus

kG;‘f §5.2.1 sheaf of kt'-order semi-flat holomorphic relative vector fields

kK:f §5.2.1 sheaf of k*™P-order semi-flat holomorphic log de Rham forms

kh eqt. (5.2) sheaf of k*"-order semi-flat holomorphic tropical vertex Lie algebras

kPV:f’* Def. .7 sheaf of k*-order semi-flat polyvector fields

kA:f’* Def. |5.7]  sheaf of k*"-order semi-flat log de Rham forms

kTL:f Def. [5.10| sheaf of k*P-order semi-flat tropical vertex Lie algebras
(w,Ow) Def. |5.11] wall equipped with a wall-crossing factor

(b,Op) Def. |5.12] slab equipped with a wall-crossing factor

D Def. [5.14] scattering diagram

Wo(D) §5.3.1 complement of joints in the semi-flat locus

i §5.3.1 the embedding i : Wy(D) — B

kO §5.3.1 kth-order wall-crossing sheaf associated to D

Notation 1.4. We wusually fix a rank s lattice K together with o strictly convex s-dimensional
rational polyhedral cone Qr C Krp = K ®z R. We call Q := Qr N K the universal monoid. We
consider the ring R := C[Q], a monomial element of which is written as ¢™ € R for m € Q, and
the mazximal ideal m := C[Q \ {0}]. Then *R := R/mF*' is an Artinian ring, and we denote
by R = @k kR the completion of R. We further equip R, *R and R with the natural monoid
homomorphism Q — R, m +— ¢, which gives them the structure of a log ring (see [25, Definition
2.11]); the corresponding log analytic spaces are denoted as St kSt and St respectively.

Furthermore, we let Q% := R®c \" Kc, ngf =*R®c N"Kc and ng = R@c N*Kc (here
Kc = K ®z C) be the spaces of log de Rham differentials on ST, kst and ST respectively, where we
write 1 ® m = dlogq™ for m € K; these are equipped with the de Rham differential O satisfying
(¢™) = ¢™dlogg™. We also denote by Og: := R ®c K¢, Ogi and és’“ respectively, the spaces
of log derivations, which are equipped with a natural Lie bracket [-,-]. We write O, for the element
1 ®@ n with action 0,,(¢™) = (m,n)g™, where (m,n) is the natural pairing between K¢ and K.

2. GROSS-SIEBERT’S CONE CONSTRUCTION OF MAXIMALLY DEGENERATE CALABI-YAU VARIETIES

This section is a brief review of Gross-Siebert’s construction of the maximally degenerate Calabi-
Yau variety X from the affine manifold B and its log structure from slab functions [23} 24, 25].

2.1. Integral tropical manifolds. We first recall the notion of integral tropical manifolds from
[25, §1.1]. Given a lattice M, a rational convexr polyhedron o is a convex subset in Mg given by a
finite intersection of rational (i.e. defined over Mg) affine half-spaces. We usually drop the attributes
“rational” and “convex” for polyhedra. A polyhedron o is said to be integral if all its vertices lie
in M; a polytope is a compact polyhedron. The group Aff(M) := M x GL(M) of integral affine
transformations acts on the set of polyhedra in Mg. Given a polyhedron o C Mg, let A,r C Mg
be the smallest affine subspace containing o, and denote by A, := A;r N M the corresponding
lattice. The relative interior inty(o) refers to taking interior of o in Ay r. There is an identification
Ty = Ay for the tangent space at € intye(0). Write o = o \ intye(0). Then a face of o is the
intersection of do with a hyperplane. Codimension one faces are called facets.
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Let LPoly be the category whose objects are integral polyhedra and morphisms consist of the
identity and integral affine isomorphisms 7 — ¢ identifying 7 as a face of o. An integral polyhedral
complex is a functor P — LPoly from a finite category P such that for every 7,0 € P, there is at
most one arrow 7 — . By abuse of notation, we write o € P for an integral polyhedron in the image
of the functor. From an integral polyhedral complex, we obtain a topological space B := @aeﬂi o
via gluing of the polyhedra along faces. We further assume that:

(1) the natural map o — B is injective for each o € P, so that ¢ can be identified with a closed
subset of B called a cell, and a morphism 7 — ¢ can be identified with an inclusion of
subsets;

(2) a finite intersection of cells is a cell; and

(3) B is a connected orientable topological manifold of dimension n without boundary and such
that HY(B,Q) = 0.

The set of k-dimensional cells is denoted by P and the k-skeleton by PI=H. For every 7 € P,
we define its open star by
W:UWW%
oDT
which is an open subset of B containing int.(7). A fan structure along T € PIn—kl is a continuous
map S; : U, — R¥ such that

e S710) = intye(7),
e for every o D 7, the restriction ST\intre(g) is an affine submersion onto its image, and
e the collection of cones {K,0 := R>0S;(c NU;)}so- forms a complete finite fan ..

Two fan structures along 7 are equivalent if they differ by composition with an integral affine
transformation of R*. If S, is a fan structure along 7 and ¢ O 7, then U, C U, and there is a fan
structure along o induced from S, via composition with the quotient map R* — R¥ /RS, (0 NU,) =
R

U, = U, — RF - RL
Via S, the lattice Q, of normal vectors is identified with Z*, and we may write Sr : Uy — Q. R.

Definition 2.1 ([25], Def. 1.2). An integral tropical manifold is an integral polyhedral complex
(B, ?) together with a fan structure S; along each T € P such that whenever T C o, the fan structure
induced from S; is equivalent to S, .

Taking sufficiently small mutually disjoint open subsets W, C U, for v € Pl and intye (o) for
o € P there is an integral affine structure on Upepior Wo U Uyepin intre(o). This defines an affine
structure which can be extended to B outside of a closed subset of codimension two. We will describe
the monodromy transformations and the precise singular locus of the affine structure below.

Definition 2.2 ([23], Def. 1.43). An integral affine function on an open subset U C B is a
continuous function ¢ on U which is integral affine on U N int,(o) for o € P and on UNW, for
v e PO We denote by Aff g (or simply Aff ) the sheaf of integral affine functions on B.

A piecewise integral affine function (abbrev. as PA-function) on U is a continuous function ¢ on
U which can be written as ¢ = 1 + SE(@) on U NU; for every T € P, where v € Aff(UNU;) and
@ 1s a piecewise linear function on Q. r with respect to the fan 3,. The sheaf of PA-functions on B
is denoted by PLyp.

There is a natural inclusion Aff < PLyp, and we let MPLp be the quotient:
0— Aff - PLp > MPLy — 0.
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Locally, an element ¢ € I'(B, MPLyg) is a collection of piecewise affine functions {¢y} such that on
each overlap U NV, the difference oy |y — ¢v |y is an integral affine function on U NV

Definition 2.3 ([23], Def. 1.45 and 1.47). The sheaf MPLyp is called the sheaf of multi-valued piece-
wise affine functions (abbrev. as MPA-funtions) of the pair (B,?P). A section ¢ € H°(B, MPLy)
is said to be (strictly) convex if for any vertex {v} € P, there is a (strictly) convex representative
Yy on U,.

The set of all convex multi-valued piecewise affine functions gives a sub-monoid of H°(B, MPLyp)
under addition, denoted as H°(B, MPLp,N), and we let @ be the dual monoid.

Definition 2.4 ([23], Def. 1.48). The polyhedral decomposition P is said to be regular if there erists
a strictly convex multi-valued piecewise linear function ¢ € HY(B, MPLy).

We always assume that P is regular with a fixed strictly convex ¢ € HY(B, MPLyp).

2.2. Monodromy, positivity and simplicity. To describe monodromy, we consider two maximal
cells o1 and two of their common vertices v. Taking a path v going from vy to v_ through o,
and then from v_ back to v4 through o_, we obtain a monodromy transformation 7. As in [23,
§1.5], we are interested in two cases. The first case is when vy is connected to v_ via a bounded
edge w € P, Let d,, € A,, be the unique primitive vector pointing to v_ along w. For an integral

tangent vector m € T, := T, 7B, the monodromy transformation T is given by
(2.1) T (m) =m+ (m,n*"" )d
for some ng,™7" € Q. no. C Ty, where (-,-) is the natural pairing between Ty, and Tj; . The

second case is when o and o_ are separated by a codimension one cell p € PI"~1. Let dp € Q7 be
the unique primitive covector which is positive on ;. The monodromy transformation is given by

(2.2) T\ (m) = m+ (m, dp>m5+

V-

for some m{ ,_ € A;, where 7 C p is the smallest face of p containing vy. In particular, if we fix
both vy € w C p C o+ one obtain the formula

(2.3) Ty(m) = m+ kyp{m, d,)d,

for some integer k.

Definition 2.5 ([23], Def. 1.54). We say that (B,P) is positive if ky, > 0 for all w € P and
p € P,

Following [23] Definition 1.58], we package the monodromy data into polytopes associated to
e PH for 1 < k < n—1. The simplest case is when p € P~ whose monodromy polytope is
defined by fixing a vertex vy € p and let

(2.4) A(p) := Conv{m? | vep, vePNc ApR,

vov
where Conv refers to taking convex hull. It is well-defined up to translation and independent of the
choice of vy. Edges in A(p) can be identified with those w such that k., = 1. The normal fan of
p in A;R will be a refinement of the normal fan of A(p). Similarly, when w € P, one defines the
dual monodromy polytope by fixing oy D w and let

(2.5) A(w) := Conv{n?’ | 0 Dw, o € P} QR

Again, this is well-defined up to translation and independent of the choice of og. The fan ¥, in
Q. r will be a refinement of the normal fan of A(w). For 1 < dimg(7) < n — 1, a combination of
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monodromy and dual monodromy polytopes is needed. We let P1(7) = {w | w € P W 7} and
Pn1(r)={p| pePPU p>7} Foreach pc P, 1(7), we choose a vertex vy € p and let

Ay(1) :=Conv{mf , |veT, ve (]3[0]} C Arg.

VoV

Similarly, for each w € P1(7), we choose op D 7 and let
Aw(T) :=Conv{n?? |o DT, o€ CP[”*”} - Q;R

Both of these are well-defined up to translation and independent of the choices of vy and o respec-
tively.

Definition 2.6 ([23], Def. 1.60). We say (B,?P) is simple if for every T € P, there are disjoint
subsets

Ql,...,ﬂpCfPl(T), Rl,...,RpCan_l(T)
such that

(1) forw e Pi(1) and p € Pp_1(7), Kup # 0 if and only if w € Q; and p € R; for some 1 < i < p;

(2) A,(T) is independent (up to translation) of p € R; and will be denoted by A;(7); similarly,
A, (1) is independent (up to translation) of w € Q; and will be denoted by A;(T);

(3) if e1,...,ep denotes the standard basis in 7P, then

A(T) := Conv (U A(T) % {e¢}> . Ar) <U ) x {e;} )

i=1 e

are elementary polytopes in (Ar @ ZP)p and (Ui & ZP)y respectively.

We need the following stronger condition in order to apply [24, Thm. 3.21] in a later stage:

Definition 2.7. We say (B, P) is strongly simple if it is simple and for every T € P, both A(T)
and A(T) are standard simplices.

Throughout this paper, we always assume that (B, P) is positive and strongly simple. In partic-
ular, both A;(7) and A;(7) are standard simplices of positive dimensions, and Ax, () @+ @ A, ()
(resp. Ax () ® - ® AR () forms an internal direct summand of Ar (resp.Q7).

2.3. Cone construction by gluing open affine charts. In this subsection, we recall the cone
construction of the maximally degenerate Calabi-Yau °X = X (B, P, s), following [23] and [25] §1.2].
For this purpose, we take K = Z and () to be the positive real axis in Notation Throughout
this paper, we will work in the category of analytic schemes.

We will construct "X as a gluing of affine analytic schemes V (v) parametrized by the vertices of
P. For each vertex v, we consider the fan X, and take

V(U) = Specan(C[EUDa

where Spec,,, means analytification of the algebraic affine scheme given by Spec; here, the monoid
structure for a general fan > C My is given by

p+q if p,q € M are contained in a cone of X,
ptq= .
otherwise,

and we set z>° =1 in taking Spec(C[X]).
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To glue these affine analytic schemes together, we need affine subschemes {V(7)} associated to
7 € P with v € 7 and natural embeddings V(w) < V(1) for v € w C 7. First, for 7 € P such that
v € 7, we consider the localization of 3, at T given by

18, = {K,o + Arr|o DT},
whose elements are convex, but not strictly convex, cones in T}, g. Abstractly, 7713, can be identified
(not canonically) with the fan 3, x A; g in Q; g X A, r. If 7 contains another vertex v’, one identifies
the tangent spaces T, = T, via parallel transport in ¢ D 7. This gives an identification between
the maximal cones K,0 + A;r and K,yo + A, in the fans 77138, and 77!E, respectively. These

transformations on maximal cells can be patched together to give a piecewise linear transformation
from T, to Ty, identifying the monoids 77'¥, and 77'¥,,. This defines the affine analytic scheme

V(1) := Spec,, (C[r71,]),

up to unique isomorphism. For any w C 7, there is a map of monoids w™'%, — 7713, given by

= D if p e Kyo + Ay r for some o D 7,
b oo otherwise

(though there is no fan map from w='¥, to 77!%, in general), and hence a ring map u¥. :
Clw™'%,] = C[r~'%,]. This gives an open inclusion of affine schemes

lwr 2 V(1) = V(w),
and hence a functor F': P — Sch,, defined by
F(r):=V(r), F(e):=1yr:V(r) = V(w)
for w C 7.

We can further introduce twistings of the gluing of the affine analytic schemes {V(7)},cp. Toric
automorphisms p of V(1) are in bijection with the set of C*-valued piecewise multiplicative maps
on A, N |771%,| with respect to the fan 771%,. Explicitly, for each maximal cone o € P with
T C o, there is a monoid homomorphism g, : Ay — C* such that if o/ € P also contains 7, then
Lo | Ay = Mo A, Denote by PM(7) the multiplicative group of piecewise multiplicative map on
A,N|771%,|. For w C 7, there is a natural restriction map |, : PM(w) — PM(7) given by restricting
to a maximal cell o D 7.

Definition 2.8 ([25], Def. 1.18). An open gluing data (for the cone construction) for (B,P) is a
set of data s = (Swr)wcr With s,y € PM(T) such that

(1) s7r =1 for all T € P, and
(2) if w C T Cp, then
Swp = Stp * 5w7‘|p-

Two open gluing data s,s’ are cohomologous if for any T € P, there exists t; € PM(T) such that

Swr = tr(tyls)7tsl,,, for any w C 7.

The set of cohomology classes of open gluing data is a group under multiplication, denoted as
H(P,99 ®C*). Given s € PM(7), denote also by s the corresponding toric automorphism on V (7)
which is explicitly given by s*(2™) = sy(m)z™ for m € ¢ D 7. If s is an open gluing data, then we
can define an s-twisted functor Fs : P — Sch,y, by setting Fy(7) := F(7) = V(7) on objects and
FywcCT):=F(wcCT)os,!:V(r) — V(w) on morphisms. This defines the analytic scheme

1
X =%X(B,?,s) := lim F;.
—

Gross-Siebert [23] showed that °X (B, P, s) = °X (B, P, s') as schemes when s, s’ are cohomologous.
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Remark 2.9. Given 7 € P, one can define a closed stratum i : °X, — °X of dimension
dime(°X ;) = dimg(7) by taking the toric stratum Vy,(w) corresponding to the fan 7 in V(w) =
Specy,(Clw™1%,]) for w C 7. Abstractly, it is isomorphic to the toric variety associated to the poly-
tope T C Arr. Also, for every pair w C T, there is a natural inclusion Ly, : X, = %X .. One
can alternatively construct °X by gluing along the closed strata °X;’s according to the polyhedral
decomposition; see [23], §2.2].

We recall the following definition from [23], which serves as an alternative set of combinatorial
data for encoding p € PM(7).

Definition 2.10 ([23], Def. 3.25 and [25], Def. 1.20). Let u € PM(7) and p € P with  C p.
For a vertex v € T, we define m)
fio (M

Dl prv) 1=~
where 0,0’ are the two unique mazimal cells such that c Vo’ = p, m € A, is an element projecting
to the generator in Q, = A, /A, = Z pointing to o', and m' is the parallel transport of m € A, to
Ayr through v. D(p, p,v) is independent of the choice of m.

e C*,

Let p € P4~ and oy, 0_ be two unique maximal cells such that o No_ = p. Let czp € Q7 be
the unique primitive generator pointing to o, . For any two vertices v,v" € 7, we have the formula

(2.6) D(p, p,v) = p(mh,, )~ - D, p, v")

relating monodromy data to the open gluing data, where mﬁv, € A, is as discussed in (2.2). The
formula (2.6) describes the interaction between monodromy and a fixed pu € PM(7). We shall
further impose the following lifting condition from [23 Prop. 4.25] relating s,r, Sy € PM(7) and
monodromy data:

Condition 2.11. We say an open gluing data s satisfies the lifting condition if for any two vertices
v,v' €1 C p with p € P, we have D(syr, p,v) = D(syy, p,v') whenever mb ., =0.

2.4. Log structures. The combinatorial data ¢ € H°(B, MPLy) enters the picture when one tries
to put a log structure on °X (see [23, §3 - 5]). For each vertex v, let U, C B be a neighborhood of
v. Represent ¢ by a strictly convex piecewise linear ¢, : U, — R and set

Cy:={(mh) e T,r®R|h>p,(m)}, P,:=C,N(T,SZ).

The projection T, & Z — Z can be regarded as the element p = (0,1) € A, ® Z, which gives rise to
a regular function ¢ := z¢ on Spec(C[P,]). We have a natural identification

V(U) = Specan((C[ZU]) = Specan((c[P’U}/Q)a

through which we can view V(v) as the boundary toric divisor in Spec,,(C[P,]) corresponding to
the holomorphic function ¢, and 7, : Spec,, (C[P,]) — Spec,,(Clg]) as a model for smoothing V' (v).
To relate these with local models for smoothing °X, we would further need ghost structures and
slab functions to specify log structures.

Let us first construct a sheaf of monoids M, called the ghost sheaf, on °X. For any 7 € P we
take a strictly convex representative @, on Q, g, and define T'(V(1),M) = P, = C. N (2, & Z),
where C; := {(m,h) € Q,r @R |h > ¢-(m)}. For any w C 7, we take an integral affine function
Yy on U, such that 1, + S5 (p,) vanishes on K,7, and agrees with S*(¢,) on all o N U, for
o D 7. This induces a map C,, — Cyr == {(m,h) € Qur ®R|h > Y,r(Mm) + @, (m)} by sending
(m, h) = (m,h + 1yr(m)), whose composition with the quotient map Q,r R — Q. r & R gives
a map C,, — C; of cones corresponding to the monoid homomorphism P, — P,. The P.’s glue
together to give the ghost sheaf M over °X. There is a well-defined section g € I'(°X, M) given by
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gluing (0,1) € C; for each 7. The pair (M, ) and the identification V (v) = Spec,,(C[P,]/q) for
each v € P define a ghost structure on °X in the sense of [23, Def. 3.16. and Ex. 3.17).

Due to presence of monodromy, the log structure on X will be log smooth only away from a
complex codimension 2 subset Z C °X not containing any toric strata. Such log structures can be

described by sections of a coherent sheaf [,Spre supported on the scheme-theoretic singular locus

0X 4 sing- We now describe the sheaf ES;;re and some of its sections called slab functions; readers are
referred to [23), §3 and 4] for more details.

For every p € P11 we consider Lp: Ox p— OX, where X p is the toric variety associated to the
polytope p C A, r. From the fact that the normal fan N, C A” ; of p is a refinement of the normal

fan Na(p) C A} g of the 7p-dimensional simplex A(p) (as in §2.2)), we have a toric morphism

(2.7) s, 90X, — P
Now, A(p) corresponds to O(1) on P'». We let N, := 5;(O(1)) on 0X,, and define
(2.8) LS = @ Lo (Np).
peip[nfl]
Sections of ES;rre can be described explicitly. For each v € P we consider the open subscheme

V(v) of °X and the local trivialization

ESP)_re @ OVP v)»

pEp

whose sections over V(v) are given by (fyp)vep. Given v,v" € 7 corresponding to V(7), these local
sections obey the change of coordinates given by

(2'9) D(SU/’T7 P U/)ilsq;:—(fv’p) = Z_mZ“/D(Svrv p,v ) ! 71(fvp)

where p O 7 and $,7, 5,7, are part of the open gluing data s. The section f := (fu,)vep is said to be
normalized if f,, takes the value 1 at the 0-dimensional toric strata corresponding to a vertex v, for
all p. We will restrict ourselves to normalized sections f of ESpre We also let Z be the zero locus
of f on XSlng

Only a subset of normalized sections of LS corresponds to log structures. For every vertex v

pre
and 7 € P2l containing v, we choose a cyclic ordering p, . . ., p; of codimension one cells containing
7 according to an orientation of Q;r. Let d,, € A} be the positively oriented normal to p;. The

condition for f = (fup)vep € ESP)}B]V(U) to define a log structure is then given by

l
(2-10) Hdpz ® fvpi’VT(v) =0®1, in A* ® F( ( ) \Z OV (v))
i=1

where the group structure on Aj is additive and that on I'(V-(v) \ Z, Oy, (v )) is multiplicative. If
= (fop)vep is a normalized section satisfying this condition, we call f,,’s the slab functions.

Theorem 2.12 ([23], Thm. 5.2). Let (B,P) be simple and positive, and let s be an open gluing
data satisfying the lifting condition (Condition . Then there exists a unique normalized section
fer(°x, LS},.) which defines a log structure on X (i.e. satisfying the condition (2.10)).

We write X1 if we want to emphasize the log structure. One can describe the log structure
explicitly using local models for smoothing °Xt. On V' c V(v)\ Z, where it is log smooth, the local
model is described by Spec,, (C[P,]). We have to twist the inclusion b : V' — Spec,, (C[Z,]) by

(2.11) 2" = hyy - 2™ for moe 3,
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where hyy, is some invertible holomorphic function on VNV, (v) with V,,,(v) := {z € V(v) | 2™ € O%}.
These holomorphic functions satisfy the relation

(212) ho - by = hm+m’v on V' N Vm+m’ (’U)

The choices of hy,,’s are classified by the slab functions f,,’s up to equivalence. Here, we shall
just give the formula relating them; see [23, Thm. 3.22] for details. For any p € Pl=1] containing

v and two maximal cells o4+ such that o No_ = p, we take m, € A, N K 04 generating Q, with
some mg € A, N K,p such that mg — m4 € A, N K,0_. The relation is given by
h2
m *
(2.13) Jop = ) OF, (i (Vo) V),

Pmg—my * hmgtmy Vo)V
which is independent of the choices of mg and m.

The local model for smoothing VT is then given by composing b with the natural inclusion
Spec,,(C[S,]) < Spec,, (C[P,]). Let b : V — ¥V be the k-th order thickening of V over Clq]/q"*!
in the model Spec,,(C[P,]) under the above embedding and b : V' — V be the corresponding in-
finitesimal thickening over C[[g]]. There is a natural log structure VI over St = Spec,, (C[[¢]])}
induced by restricting the divisorial log structure on Spec,,(C[P,])T over ST given by the embedding
Spec,, (C[X,]) < Spec,, (C[P,]). We have a Cartesian diagram of log spaces

(2.14) Vi oyt

|

O0gtc__ . gf

and the log space °XT is identified locally with VT over the log point °ST = CT.

We consider z € Z N (OXT \ Upcr OXW) for some 7. Viewing f = Zpe?[nfll fo where f, is a
section of Ny, we let Z, = Z(f,) C °X, C °X and write Z = U, Zp. For every 7 € P, we have
the data Q;’s, R;’s, A;(7) and A;(7) described in Definition because (B, P) is simple. Since the
normal fan N> C A7 of 7 is a refinement of Np, ;) C A7 g, we have a natural toric morphism

(2.15) sri 0X, — P

and the identification ¢},(N,) = 5 ,(O(1)). By the proof of [23, Thm. 5.2], ¢} (f,) is completely

determined by the gluing data s and the associated monodromy polytope A;(7) where p € R;. In
particular, we have «7,(f,) = ¢, (fy) and Z, N X, =Z, N X, =: Z7 for p,p € R;. Locally, if
we write V(1) = Spec,, (C[r713,]) by choosing some v € 7, then for each 1 < i < p, there exists an
analytic function f,; on V(7) such that f |y, ;) = Sua (fop) for p € R;.

According to [24] §2.1], for each 1 < i < p, we have A;(7) C Qr g, which gives
(2.16) Yi(m) = —inf{(m,n) | n € Ay(7)}.

By convention, we write 9g := ¢,. By rearranging the indices ¢’s, we can assume that z € Z7N---NZ]
and = ¢ Zi U Z;. We introduce the convention v, ; = 1; for 0 < ¢ < r and 7, ; = 0 for
r < i < dimg(7). The local model near z is constructed as Spec,, (C[P;;]), where

(2.17) P = {(m,ag,...,a;) € Q x Z"" | a; > 9ppi(m)}

and [ = dimg(7). The distinguished element o = (0,1,0,...,0) gives a family Spec,, (C[P:.])
Spec,,(Clg]) by sending g +— 2¢. The central fiber is given by Spec,,(C[Q]), where Qr,

ol
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{(m,ag,...,a;) | ap = Yz 0(m)} = P; /(0 + Pry) is equipped with the monoid structure

b — m+m' ifm+meQr,,
0 otherwise.

We have C[Q;.] = C[X; ® N!| induced by the monoid isomorphism (m, ag, a1,...,q) + (m,a; —
¢1(m), cee,ap — 1#[(777,))

We also fix some isomorphism C[7~!%,] 2 C[%, ®Z!] coming from the identification of 77'%,, with
the fan X, ®R! = {w®R! | w is a cone of 7} in O, g BR!. Taking a sufficiently small neighborhood
V of z such that Z, NV = 0 if © ¢ Z,, we define a map V — Spec,,(C[Qr]) by composing
V < Spec,, (C[t7'%,]) = Spec,,, (C[S, ®Z!]) with the map Spec,, (C[E, ®Z!]) — Spec,,(C[Z, BN)
described on generators by

2" by - 2™ ifmoe X
u = foi ifl1<i<r
u; =z — zi(x) ifr<i<l.

Here u; is the i-th coordinate function of C[N'], z; is the i-th coordinate function of C[Z!] chosen so

that (aafvji)
% J1<i<r,1<j<r

STl >

V N Vi (v)’s satisfying the equations (2.12)) and also (2.13) by replacing f,, with

Fo= SJTl(fvp) if v ¢ Z,,
RN B! if v € Z,,.

is non-degenerate on V. The hy,’s are invertible holomorphic functions on

Similarly, we let b : V — ¥V be the k-th order thickening of V over C[g]/¢**" in the model
Spec,, (C[ Py z]) under the above embedding, and b : V' — V be the corresponding infinitesimal
thickening over C[[g]]. There is similarly a natural log structure on Vi over St induced from the
inclusion Spec,, (C[Qr.+]) = Spec,, (C[P;.]). Restricting it to V gives VT, which is identified locally
with the log space "X T over the log point °ST.

3. A GENERALIZED MOMENT MAP AND THE TROPICAL SINGULAR LOCUS ON B

From this section onward, we further assume that °X = °X (B, P, s) is projective; this holds if we
impose the condition that o(s) = 1 for the open gluing data s (see [23, Thm. 2.34]).

3.1. A generalized moment map. Under the projectivity assumption, one can construct a gen-
eralized moment map

(3.1) pn:°X —» B

using the argument in [37, Prop. 2.1]. There is a canonical embedding of ® : 0X « PN given by
the (0*M-order) theta functions {9, }mep,, where Bz = {m;}¥ ; is the set of integral points in B.
Restricting to each toric piece °X, C X associated to 7 € P, the only non-zero theta functions are
those corresponding to m € By N 7. There is an embedding j, : T, = Af—,R/A;Z — TV of tori such
that the composition ®, : °X, — PV of & with °X, — °X is equivariant. The map Y = M|0XT is
given by the formula

(3.2) pr(2) = > ! > ()] m.

meByNT [V (2) |2 me Banr
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It can be understood as a series of compositions
[} 1% dj;
OXT#)]P;NH(RN)* HT'AT,Rv

where pp is the moment map for PV and dj; : TR RY is the Lie algebra homomorphism induced
by jir : T, — TV.

Fixing a vertex v € P9 we can naturally embed A;r — T, for all 7 containing v. Furthermore,
we can patch dj* into a linear map dj* : (RV)* — T, r such that pu; = dj* o up o &, for those 7
containing v. In particular, for any v € 7 with the associated local chart V(1) = Spec,, (C[t71%,]),
we have the local description ply ;) = dj* o pup o ®|y/(;) of the generalized moment map .

We consider the amoeba A := u(Z). As °X,. N Z = J_, Z7, where each Z] is the zero set of
a section of 57 ,(O(1)) (see the discussion right after equation (2.15))), we can see that AN 7 =

UY_, u-(Z7) is a union of amoebas A7 := u,(Z7). It was shown in [37] that the affine structure
defined right after Definition [2.1] extends to B \ A.

Notice that pu(V (7)) = W(7r) := U,c,, intre(w) for any 7 € P. For later purposes, we would
like to relate sufficiently small open convex subsets W C W (7) with Stein (or strongly 1-completed
as defined in [I1]) open subsets U C V(7). To do so, we need to introduce a specific collection
of (non-affine) charts for B. Recall that there is a natural map A;r — 718, - ¥,, and an
identification of fans 771%, 2 ¥, x A, R via a piecewise linear splitting >, — 7=1%,. This induces
a biholomorphism V(7) = Spec,, (C[r7'%,]) = (C*)! x Spec,,(C[X,]). Fixing a set of generators
{m;}ies, of the monoid ¥, we can define a map fi, : Spec,, (C[X;]) = Q. r by

. Lo
(3.3) fir = Z §|ZW|2 -m;.
1€EB,

It factors as an map Spec,, (C[X;]) — RES -e;, compose with the linear map

given by > ;g 3z
RIE- — Q. g given by e; — m;. Combining with the log map log : (C*)! — A%, we obtain a map

pr 2 V(1) = Al g X QTRD and the following diagram
(3.4) V(r)

/ l
w

T,

Afp x Qrp—"—W(r),

where T, is a homomorphism which serves as a chart.

We investigate the transformation between these charts. First, by choosing another piecewise
linear splitting ¥, — 773, we have a piecewise linear map b : ¥, — A, r recording their difference.
In that case, the two coordinate charts T, and T, are related by T, = T, o J, where

Ia,y) = (z,ye' o).

Second, if we choose another set of generators m;’s, the maps fi, fir : Spec,,(C[X;]) — Q,r are
related by a continuous map J: Q. g — Q,r which maps each cone o € 3 back to itself.

Suppose w C 7, then we have A, g/Ay,r — 7 '3, — %, and one may choose a piecewise
linear splitting to get 771, = (A;r/AyRr) X 3. Therefore, we have Spec,, (C[r71%,]) & (C*)* x
Spec,, (C[;]). If we consider the restriction of fi,, on Spec,,(C[r~1%,]), the corresponding image is
W (r) C W(w). The map i, depends only on a subcollection {m;}icg, . of {m;}icp, which contains

114 depends on the choices of the splitting ¥, — 77'%, and of the generators {m;};, but we omit these dependency
from our notations.
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those m;’s that belong to some cone o O 7. We fix another set {m;};ep, of elements in ¥, C =1y,
such that each m; can be expressed as m; = m; + b; for some b; € A;/A,,. Notice that if m; € K1,
we have m; = o and hence b; € K, 7 C A;r/A,r. There is a map

(3.5) J: AZ;R X (AT,R/Aw,R)* X QT,R — AZ,R X Qw,R
satisfying
Ix1 — cwr1, T2 — Cur, Z?Ji\sm(mi)|_2mi) = (z1, Zyi€47r<bi’w2>mi)
(2 7
for those y; = 3|2™i(y)|? at some point y € Spec,,(C[r~15,]). Here s, € PM(7) is the part of
open gluing data associated to w C 7, and cyr = Cur1 + Cur2 € A;R above is the unique element
representing the linear map log |sur| : Az r — R given by log |swr|(b) = log |s.-(b)|. The appearance

of s,r in the above formula is due to the corresponding twisting by open gluing data (s,r),cr of
V(1) when glued to V(w). We have T, = Y, 01.

Lemma 3.1. There is a base B of open subsets of B such that the preimage pu~ (W) is Stein for
any W € B.

Proof. First of all, it is well-known that analytic spaces associated to affine varieties are Stein. So
V(7) is Stein for any 7. Now we fix a point = € int,e(7) C B. It suffices to show that there is a
local base B, of x such that the preimage u~!(W) is Stein for each W € B,. We work locally on
plvy : V(r) — W(r). Consider the diagram and write Y !(z) = (x,0), where 0 € Q, g is
the origin. By [IT, Ch. 1, Ex. 7.4], the preimage log~(W) under the log map log : (C*)! — Al
is Stein for any convex W C Ai,R which contains z. Again by [I1, Ch. 1, Ex. 7.4], any subset
ﬂjyzl{z € Spec,, (C[3;]) | |fi(2)] < €}, where f;’s are holomorphic functions, is Stein. By taking
fj’s to be the functions 2"’s associated to the set of primitive generators m; of w; € ¥,(1) and
¢ sufficiently small, we have a local base B, of o such that the preimage j-'(W) is Stein for any
W € B,. Finally, since product of Stein open subets is Stein we obtain our desired local base B, by
taking product of these subsets. O

3.2. The tropical singular locus S of B. We now specify a codimension 2 singular locus 8§ C B
of the affine structure using the charts Y, introduced in (3.4]). Given the chart Y, that maps AR
to intye(7), we define the tropical singular locus 8 by requiring that

(3.6) T-H(8 Nintye(7)) = U ((intee(p) + ¢r) x {0}),

PENT;
dimp (p) <dimpg (7)

where N C A;R is the normal fan of the polytope 7, and {0} refers to the zero cone in ¥, C Q; .
Here ¢; = log|syr| is the element in A} p representing the linear map log|sy-| : Azg — R, which
is independent of the vertex v € 7. A subset of the form 8., := (int.(p) + ¢r) x {0} in is
called a stratum of 8 in int,e(7). The locus 8 is independent of the choice of the chart Y., because
transformations induced from different choices of the splitting ¥, — 7%, and the choice of the
generators {m; }icp, will fix AT p x {o}.

Lemma 3.2. Forw C 7 and a stratum 8. , in int(T), the intersection of the closure % n B with
intre(w) is a union of strata in inty(w).

Proof. We consider the map described in the above and take a neighborhood W = W7 x Q, r
of a point (z,0) in A}, p X Qg for some small enough neighborhood Wi of z in A}, g- By shrinking
W, if necessary, we may assume that J=1(W) = W} x (a — intye(K,7")) X Q, g, where a is some
element in —intye(K,7Y) C (Arr/Aur)*. Write ¢; = ¢r1 + ¢r 2, where ¢r1, ¢ 2 are the components
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of ¢, according to the choice of decomposition AZp = Af » x (Arr/Aur)*. Then the equality
Cr1 F Curg = ¢, follows from the compatibility of open gluing data in Definition 2.8, Within the
open subset J71 (W), any stratum 8, is of the form

(intre(p) + cr1) % (a — intye(Ky7")) % {0}

for some p € Ny, (cr2 is absorbed by a), and hence we have W N 8, , = I((intre(p) + ¢r1) X (a —
intye(K,7")) % {0}). Therefore, intersection of 8, , with A;R in the open subset W C AZ‘),R X Qu R
is given by p x {o}. O

The tropical singular locus 8 is naturally equipped with a stratification, where a stratum is given
by 8., for some cone p C N, of dimg(p) < dimg(7) for some 7 € PI<". We use the notation §/*!
to denote the set of k-dimensional strata of 8. The affine structure on J,cppo) Wo U U, cpin intre(o)
introduced right after Definition in can be naturally extended to B\ 8 as in [25].

We may further define the essential singular locus S to include only those strata contained in
8["=2] with non-trivial monodromy around them. We observe that the affine structure can be further
extended to B\ 8.. More explicitly, we have a projection

i, = iT,l@"'@iT,P:AT'_>A*A1(T)@'“€BAZP(T)’

in which A A (r) &) @A A, (r) AN be treated as a direct summand as in 4 So we can consider

the pull-back of the fan Na, () X - -+ X Na,(7) via the map ir, and realize N- C A7 p as a refinement
) @ PAL 0
fan NAl(T) X oo X NA,,(T) in Q;R under pullback via i,. 8 Nint.(7) will be described by replacing

of this fan. Similarly we have i, =i,1 & - - ®i;,: O — A*A1 , and we have the

p € N, with the condition p € i;l(NAl(T) X -+ X Np, (7)), With a stratum denoted by S 7 ,. There
gives a stratification on 8.

Lemma 3.3. For w C 7, with a strata Scr, in int.(7), the intersection of its closure 8¢ r, in B
with inty(w) is a union of strata of 8¢ in intp(w).

Proof. We consider w C 7, and take a change of coordinate map J together with neighborhood W
as in proof of the previous Lemma What we have to show is W N 8, , = I((intre(p) + 1) X
(a — intye(K,7Y)) % {0}) for some cone p € i (IT0-; Na,(r))-

Let Ai(7),...,An(7),...,Ap(7) be monodromy polytopes of 7, and Ay (w), ..., Ap(w), ..., Ap(w)
be that of w such that Aj(w) is the face of Aj;(7) parallel to A, for j = 1,...,7. Write Ap ;) ©
DA B A =Arand Ap ) B B AAp’ (w) D Ay = Ay, be a direct sum decomposition. We
can further choose

Ari(w) @ B Ap ) D Aw = A,

in the other words, for every j = r+1,...,p/, any f € R; C P,_1(w) in Definition is not

containing 7. For every j =r+1,...,p, and any f € R; C P,_1(7), the element mi, v, is zero for
any two vertices v, vy of w. We may identify

T

p
AT/AUJ = @(AA]-(T)/AA]'(W)) ® @ AAI(T)'
j=1 l=r+1

As a result, any cone i~ !( ?:1 pj) € i;l( [ NAi(T)) of codimension great than 0 intersecting
J71(W) will be a pull back of cone under the projection to A*Al(r) RP @ A*Ar(r) g Consider the
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commutative diagram of projection maps

(3.7) AR - AT g
S
o Ay r~m 1= A, e

and we see in the open subset J~!(W), every cone of codimension greater than 0 coming from
pullback via p; is a further pullback via I, op; in the above diagram. As a consequence, it must
be of the form I((intye(p) + ¢r1) X (@ — intye(K,7Y)) x {0}) in W. O

3.2.1. Contraction of A to §. We would like to relate the amoeba A = u(Z) with the tropical
singular locus 8§ introduced above.

Assumption 3.4. We assume the existence of a surjective contraction map C : B — B which is
isotopic to the identity and satisfies the following conditions:

(1) The restriction Cle-1(ps) : C B\ 8) — B\ 8 is a homeomorphism.

(2) C maps A into the essential singular locus 8.

(3) For each T € P with 0 < dimg(7) < n, we have a decomposition of TNC~H(B\8) = e 0 Tv
into connected components 1,’s, where each T, is contractible and is the unique component
containing the vertex v € T.

(4) For each T € P and each point x € int.(7)NS, C71(x) C int,(T) is a contractible connected
compact subset.

(5) For each T € P and each point x € int..(T) NS, there exists a local base B, around x such
that (C o p)~Y (W) C V(7) is Stein for every W € B, and for any U D C~1(z), we have
C~Y W) C U for sufficiently small W € B,.

Similar contraction maps appear in [37, Rem. 2.4] (see also [39, B38]). When dimgr(B) = 2,
we can take C = id because the amoeba A is just a collection of points. For dimg(B) = 3, the
amoeba A can possibly be of codimension 1 and we need to construct a contraction as shown
in Figure If ANinte(r) # 0, it is given by the intersection of the zero locus s} (fy,) with

Ficure 1. Contraction map C
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C* =2 V(1) € V(7). Taking m to be the primitive vector in A starting at v that points into 7, we can
write s, (fup) = 1+s,,1(m)z™. Taking the log map log : C* — R, we see that log(ANint,e(7)) = ¢;.
Therefore, for an edge 7 € P we can define € to be the identity on 7.

~

On a codimension 1 cell p such that int,.(p) N A # 0, we take the log map log : Spec,, (C[A,]) =
(C*)?2 — A;R =~ R? as shown in the Figure 2l We take a big enough polytope P (colored as purple)
such that A\ P is a disjoint union of legs. We contract the polytope P to the 0-dimensional strata
of 8¢. Each leg can be contracted to the tropical singular locus (colored as blue) along the normal
direction to the tropical singular locus. Once it is constructed for all p, we can then extend it
continuously to B so that it is a diffeomorphism of int,.(o) for every maximal cell o.

It is chosen such that the preimage C~!(x) for every point x € int,(p) is a convex polytope in
R2. Therefore, given any open subset U C R? containing €~!(x), we can find some convex open
neighborhood Wy C U of C~!(x) giving the corresponding Stein open subset log ™' (W7) C (C*)2.
By taking W = Wj x Ws in the chart A;R x Q,r as in the proof of Lemma we have the open
subset W that satisfy condition (5) in Assumption

FiGURE 2. Contraction at p

In general, we need to construct Cly,,.(r) inductively for each 7 € P, such that the preimage
C 1(x) C intw(7) is convex in the chart A7 r = intre(7) and the codimension 1 amoeba A is
contracted to the codimension 2 tropical singular locus 8.. The reason for introducing such a
contraction map is that we can modify the generalized moment map p to one which is more closely

related with tropical geometry:
Definition 3.5. We call the composition v := €Co pu: °X — B the modified moment map.

One immediate consequence of property (4) in Assumption is that we have Ruvy(F) = vi(F)
for any coherent sheaf F on °X, thanks to Lemma and Cartan’s Theorem B:
Theorem 3.6 (Cartan’s Theorem B [4]; see e.g. Ch. IX, Cor. 4.11 in [I1]). For any coherent sheaf
F over a Stein space U, we have H>°(U, F) = 0.

3.2.2. Monodromy invariant differential forms on B. Outside of the essential singular locus 8., we
have a nice integral affine manifold B\ 8., on which we can talk about the sheaf Q* of (R-valued) de
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Rham differential forms. But actually we can extend its definition to 8. using monodromy invariant
differential forms.

We consider the inclusion ¢ : By := B\ 8¢ — B and the natural exact sequence
(3.8) 0—=2Z— Aff = 1, — 0,

where A*BO denotes the sheaf of integral cotangent vectors on By. For any 7 € P, the stalk A*Bo,x
at a point x € inte(7) N 8. can be described using the chart Y, in . Using the description in
we have z € 8.7, = intre(p) X {0} for some p € 171 (Na,(r) X -+ X Na (). Taking a vertex
v € 7 we can consider the monodromy transformations 7T’,’s around the strata 8., ,’s that contain
z in their closures. We can idenfity the stalk 1.(A% ). as the subset of Ty that is invariant under
all such monodromy transformations. Since p C A7 is a cone, we have A, C A7. Using the natural

projection map m, : Ty — A7, we have the identification t.(Aj ). = Ty (A,). There is a direct

sum decomposition L*(A*Bo)m = A, ® Qf, depending on a decomposition T, = A, @ Q. This gives
the map

(3.9) x: Uy — 7 (AR

in a sufficiently small neighborhood Uy, locally defined up to a translation in 7,;'(A,)%. We need

to describe the compatibility between the map associated to a point x € 8, , and that to a point
T € 8¢5 such that 8., , C 8¢ 7 5.

This first case is when w = 7. We let Z € int,.(p) x {0} NU, for some p C p. Then, after choosing

suitable translations in 7! (A,)% for the maps x and %, we have the following commutative diagram:

(3.10) Us N Up—— =71 (A5)4
P
Uz 7T177'1 (Ap)ﬁi

The second case is when w C 7. Making use of the change 1 of charts in equation (3.5)), and the
description in the proof of Lemmaﬁ, we write & € intye(p) x {0} for some cone p = iZ ([ [}_, p;) €
i 1(]_[?:1 A*A]_ (T)) with positive codimension. In J=}(W), we may assume p is the pullback of a

cone p via Iy o pr as in equation (3.7). Since 8.y, C Scr 5 we have p C p,!(p) and hence
Pucr(A,) C A Therefore, from pycy © Ty = Ty, We obtain m}(A,) C 7.} (A;) inducing the map
P T (As)h — Tol(Ay)%. As a result, we still have the above commutative diagram (3.10)) for a

point & sufficiently close to z.

Definition 3.7. Given x € 8. as above, the stalk of Q* at x is defined as Q) = (x~'Q*),, which
is equipped with the de Rham differential d. This defines the complex (Q2*,d) (or simply Q*) of
monodromy invariant differential forms on B. A section a € Q*(W) is a collection of elements
ag € QF, x € W such that each o can be represented by x 1B, in a small neighborhood U, C p_l(Ux)
for some smooth form B, on U, and satisfies the relation az = X1 (p*B,) in Q% for every x € U,.

It follows from the definition that R — Q* is a resolution. We shall also prove the existence of a
partition of unity.

Lemma 3.8. Given any x € B and a sufficiently small neighborhood U, there exists o € QO(U) with
compact support in U such that 0 < o < 1 and o = 1 near z. (Since Q° is a subsheaf of the sheaf C°
of continuous functions on B, we can talk about the value f(x) for f € Q°(W) and x € W.)

Proof. If x ¢ 8., the statement is a standard fact. So we assume that x € int,e(7) N 8. for some
7 € P. As above, we an write z € inte(p) X {0}. Furthermore, since p is a cone in the fan
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iT_l(NAI(T) X+ X Np,(r)), A7 has A*A1(T) D @A*AP(T) as a direct summand, and the description of
t«(A%, )z is compatible with the direct sum decomposition of A%, we may further assume that p =1
and 7 = Aj(7) is a simplex.

If p is not the smallest cone (i.e. the one consisting of just the origin in N;), we have a decom-
position A¥ = A, © Q, with natural projection p : A — Q,. Then, locally near =, we can write the
normal fan N, as p~1(¥,) for some normal fan ¥, C Q, of a lower dimensional simplex. So we are
reduced to the case when p = {0} is the smallest cone in the fan N;.

Now we construct the function g near the origin o € N; by induction on the dimension of the fan
N, When dimg (N;) = 1, it is the fan of P! with three cones R_, {0} and Ry. One can construct the
bump function which is equal to 1 near o and supported in a sufficiently small neighborhood of o.
For the induction step, we consider an n-dimensional fan N.. For any point x near but not equal to
0, we have x € inte(p) for some p # {0}. Then we can decompose N locally as A, ® Q,. Applying
the induction hypothesis to Q, gives us a bump function ¢, compactly supported in any sufficiently
small neighborhood of = (for the A, directions, we do not need the induction hypothesis to get the
bump function). This produces a partition of unity {o;} outside o. Finally, letting o :=1— ", 0;
and extending it continuously to the origin o gives the desired function. (]

Lemma produces a partition of unity for the complex (Q*,d) of monodromy invariant differ-
ential forms on B to satisfy the requirement in Condition [£.7] below. In particular, the cohomology
of (*(B),d) computes RI'(B,R). Given a point = € B\ 8., we take an element g, € Q"(B) which
is compactly supported in an arbitrary small neighborhood U, C B\ 8, representing a non-zero
element in the cohomology H"(Q*,d) = H"(B,C) = C.

4. SMOOTHING OF MAXIMALLY DEGENERATE CALABI-YAU VARIETIES VIA DGBV ALGEBRAS

In this section, we review and refine the results in [5] concerning smoothing of the maximally
degenerate Calabi-Yau log variety °XT over ST = Spec,, (R)" = Spec,,(C[[¢g]])' using the local
smoothing models VT — ¥VT’s specified in In order to relate with tropical geometry on B, we
will choose V' so that it is the pre-image v~ (W) of an open subset W in B.

4.1. Good covers and local smoothing data. Given 7 € P and a point x € int.(7) C B, we

take a sufficiently small open subset W € B,. We need to construct a local smoothing model on
V =v YW).

o If z ¢ 8, then we can simply take the local smoothing VT introduced in in

e If € 8, we assume that C~L(W)NAT # 0 fori = 1,...,r, and take 9, ; = 1; for 1 <i <r
and 1, ; = 0 otherwise accordingly. Then we can take P; , introduced in and the map
V = v~ Y (W) = Spec,, (C[E, @& Z]) described in By shrinking W, if necessary, one can
show that it is an embedding using an argument similar to [24, Thm. 2.6].

Condition 4.1. An open cover {Wy}q of B is said to be good if

(1) for each Wy, there exists a unique 1, € P such that W,, € B, for some x € inty(T);
(2) Wap = Wo NWs # 0 only when 7o C 73 or 75 C To, and if this is the case, we have either
intre(0) N Weap # 0 or intre(8) N Wag # 0.

Given a good cover {Wy}, of B, we have the corresponding Stein open cover V = {V,}, of °X
given by V,, := v~ 1(W,,) for each .. For each | , the infinitesimal local smoothing model is given as a
log space V, over ST (see (2.14)). Let *V, be the k-order thickening over *ST = Spec,, (R/m* 1)
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and j: V,,\ Z < V,, be the open inclusion. As in [5, §8], we obtain coherent sheaves of BV algebras
(and modules) over V,, from these local smoothing models. But for the purpose of this paper, we
would like to push forward these coherent sheaves to B and work on the open subsets W,’s. This
leads to the following modification of [5, Def. 7.6] (see also [5, Def. 2.14 and 2.20]):

Definition 4.2. For each k € Z>q, we define

e the sheaf of k™-order polyvector fields to be *G* := v, j (N~ Okyt kgt) (i-e. push-forward

kST
of relative log polyvector fields on kVL};
o the k'"-order log de Rham complex to be *K7, := 1. (Qf ¢ o)

Rham differentials) equipped with the de Rham differential kB, = & which is naturally a dg
module over ngT ;
e the local log volume form w, as a nowhere vanishing element in v, j. (2

k+1)‘

(i.e. push-forward of log de

@;/gf) and the k-

order volume form to be Fw, = wy (Mmod m

A natural filtration ]fICj; is given by l;lCz = kQEf A leZ[s] and taking wedge product defines the
natural sheaf isomorphism *o=1 : ngT @k (BICE/XICE[—7]) — kK2 /, ;. We have the space

ﬁICZ =R R 22 1,5.(Q of relative log de Rham differentials.

:VL/ kST)

There is a natural action vip for v € ’“g; and ¢ € FK* given by contracting a logarithmic
holomorphic vector fields v with a logarithmic holomorphic form ¢. We define the Lie derivative
via the formula (—1)"I£, := [0, vJ]. By contracting with ¥w,, we get a sheaf isomorphism _*w, :
kGr ﬁIC:;, which defines the BV operator FA, by A, (¢)2Fw := ¥, (p1¥w). We call it the BV

operator because it satisfies the BV identity
(4.1) (—1)Plw, w] == A(w Aw) — A(w) Aw — (=)l A A(w)
for v,w € ’“g;; if we put A =*A,. This gives kg; the structure of a sheaf of BV algebras.

4.2. An explicit description of the sheaf of log de Rham forms. Here we apply the calcula-
tions in [24] 14] to give an explicit description of the stalk k/CZ’x.

Let us consider K = 1/_1(:17) and the local model near K described in with P, and Q. as
in and an embedding V' — Spec,, (C[Qrz]). We may treat K C V as a compact subset of
C! = Spec,, (C[N']) < Spec,, (C[Q-]) via the identification Spec,, (C[Z, ® N']) = Spec,,, (C[Q~.])-
For each m € ¥;, we denote the corresponding element (m, ¢y o(m),..., ¥z (m)) € P-, by m to
avoid any confusion, and the corresponding function by 2™ € C[P;,]. Similar to [T4, Lem. 7.14],
the germ of holomorphic functions Oy, ; near K in the space "V = Spec,, (C[P;./¢"*1]) can be
written as 7

(4.2)

- log |aum. 4
Oy ¢ = E am,iq' 2" | am,i € Oci(U) for some neigh. U D K,  sup 10g lam.i| < oo},
meL,, 0<i<k mes,\{o} d(m)

where d : ¥, — N is a monoid morphism such that d=*(0) = 0, and it is equipped with the
product ML e = ity (but note that mj +ma # ma + 7he in general). Thus we have

k k
Kg,:p = g?x,x = Ok’V,K’

To describe differential forms, we consider the vector space & = P; , ¢, regarded as 1-forms on
Spec,, (C[P£h]) = (C*)"+1. Write dlog 2P for p € P, c and set & := C(dlogw;)}_;, as a subset
of & For an element m € Q. ¢, we have the corresponding 1-form dlog PN P; . c under the
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association between m and z™. Let P be the power set of {1,...,1} and write u’ = [],c;u; for

I € P. A computation for sections of the sheaf j, (QZVT/(C) from [24] Prop. 1.12] and [14, Lem. 7.14]

can then be rephrased as the following lemma.
Lemma 4.3 ([24, [14]). The germ of sections of j.(Q
given by elements of the form

o = Z Zam,z,lqz ul ®Bm[7 Bm[e/\ Eml /\ 81m1@82m1@<d10gq>)

meX,
0<i<k

%/C)K near K is a subspace of OkV7K @ N\ &

where 11 = (dlogu;)icr C €1 and the subspace o1 C &€ is given as follows: we consider
the pullback of the product of mormal fans Higg NA»L'(T) to Q;r and take Eg,, 1 = (dlog 2 for
m' € o, 1, where oy, 1 is the smallest cone in HN;I NAi(r) C Q;r containing m.

Here we can treat Hi¢[ NAi(T) C Q,r since @, Ax
description for j. (%, /U)
above formula for «. In particular, if we restrict ourselves to the case k = 0, a general element «
can be written as

= Z Zam,l'zmul & Bm,[a /Bm,l € /\* gm,l = A*(gl,m,l 7 82,m,1)‘

meX, I

.(r) Is a direct summand of Q7. A similar

K 1s simply given by quotienting out the direct summand (dlog ¢) in the

One can choose a nowhere vanishing element () = duy---duyy®@neuy -y & A& @ An—dimr() e,
j*(QgVT /(CT) & for some nonzero element n € A"~4mMe(T) €, which is well defined up to rescaling. Any

element in j*(QZ}Vf/CT)K can be written as f(2 for some f =3 s fm2™ € Ooy k-

Recall that the subset K C C' is intersecting the singular locus Z7, ..., Z7 (as in §4.1), where u;
is the coordinate function of C! with simple zeros along Z7 for i = 1,...,7. There is a change of

coordinates between a neighborhood of K in C! and that of K in (C*)! given by

U; fU7i|((C*)l if1<i< T
U; — Z4 ifr<i<I.

Under the map log : (C*)! — R!, we have K = log™!(€) for some connected compact subset € C R’
In the coordinates z1,...,z2;, we find that dlogz; ---dlogz ® n can be written as f{2 near K for
some nowhere vanishing function f € Ooy .

Lemma 4.4. When KNZ = (), i.e. v = 0 in the above discussion. The top cohomology group
H" (i ( Oan/CT)K, 9) = Jiu( Z}W/U)K/Im(a) is isomorphic to C, which is generated by the element
dlogzy---dlogz ®n.

Proof. Given a general element fQ as above, first observe that we can write f = fo + f4, where
f+= ZmGET\{O} fmz™ and fo € Ot . Take a basis eq, ..., es of Q7 g, and also a partition I, . . ., I
of the lattice points in X, \ {0} such that (e;, m) # 0 for m € I;. Letting

Z Z e]f’m mdul ceduy @ le; ™,

j mel;

we have 0(a) = f+£. So we only need to consider elements of the form fo2. If Q2 = Jd(«a) for
some o, we may take a = Zj ajduy -+ - duj - - du @ n for some o € Oci . Now this is equivalent

to foduy---du; = 8( Zj ajduy - - @ . dul) as forms in ch - This reduces the problem to Ch.
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Working in (C*)! with coordinates z;’s, we can write

Oy x = Z amz™" ‘ Z |am|e!P™ < oo, for all v € W, for some open W D € p

meZt meZl

using the fact that K is multi-circular. By writing Q?C*)I,K = Oc+y,k®N\" F1 with F; = (dlog z)t_y,

we can see that any element can be represented as cdlog 21 - - - dlog z; in the quotient Ql((c*)l /Im(9),
for some constant c. 0

From this, we conclude that the top cohomology sheaf ’H"(ﬁIC*, 0) is isomorphic to the locally
constant sheaf C over B\ 8..

Lemma 4.5. Consider x € Wy \ 8. For an element of the form ef (*w,) in ﬁngw with f €
kgg,z = Oky, , satisfying f = 0(mod m), there exist h(q) € R = Clq]/(¢**") and v € ’“g;’; with
h,v = 0(mod m) such that

(4.3) ef (Fwy) = ele (Fuwy)

o ken
m ”/Ca’z.

Proof. To simplify notations in this proof, we will drop the subscript a. We prove the first statement
by induction on k. The initial case is trivial. Assuming that this has been done for the (k—1)*-order,
then, by taking an arbitrary lifting ¢ of v to the k*"-order, we have

efh+f+qk6(kw) _ el:{; (kw)

for some € € Ooy, . By Lemmas and we have € %w = c%w+ () for some  and some suitable
constant c. Letting #.(°w) = v and @ = © + ¢*6, we have

e[:{;(kw) _ e£v<kw) _ qk 8(&(%)) _ e—h-i—f—i—ch(kw)_
By defining h(q) = h(q) — ¢¢® in Clq]/(¢""), we obtain the desired expression. O

Lemma 4.6. The volume element "w is non-zero in H"(ﬁK*, 0)y for every x € B.

Proof. We first consider the case when z € inte (o) for some maximal cell o € P, The toric stratum
0X, associated to o is equipped with the natural divisorial log structure induced from its boundary

divisor. Then the sheaf Q;‘XT Jct of log derivations for °XT is isomorphic to N Ay @7 Oo x,- By
7 ~ 0

[24, Lem. 3.12], we have ‘w, = c(fo)y—1(z) in V*(QZ}XE-/(CT):E =

vanishing and ¢ is a non-zero constant c¢. Thus °X|, is non-zero in the cohomology as the same is

true for p, € V*(QQ’XL/CT)JC.

K2, where pu, € A" Ay c is nowhere

Next we consider a general point = € int.(7). If the statement is not true, we will have O, =
29(cx) for some a € ﬁngfl. Then there is an open neighborhood U O €~!(z) such that this relation
continues to hold. As U Nint,e(o) # 0, for those maximal cells ¢ which contain the point x, we
can take a nearby point y € U N int.(o) and conclude that cu, = °9(a) in V*(QSLXT/(CT)?/' This

contradicts the previous case. O
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4.3. A global pre-dgBV algebra from gluing. One approach for smoothing X is to look for
gluing morphisms kwag : kVLh/a 5 kV;\Va , between the local smoothing models which satisfy the
cocycle condition, from which one obtain a k*™-order thickening *X over ¥ST. This was done by
Kontsevich-Soibelman [30] (in 2d) and Gross-Siebert [25] (in general dimensions) using consistent
scattering diagrams. If such gluing morphisms kwag’s are available, one can certainly glue the global

kth-order sheaves *G*, ¥IC* and the volume form Fw.

In [5], we instead took suitable dg-resolutions *PV 5™ := Q*(*G%)’s of the sheaves *G*’s (more
precisely, we used the Thom-Whitney resolution in [5, §3]) to construct gluings *g,s : Q*(*G%)|v., 5=
Q*(ng)\va , of sheaves which only preserve the Gerstenhaber algebra structure but not the differen-

tial. The key discovery in [5] was that, as the sheaves Q*(*G* )’s are soft, such a gluing problem could
be solved without any information from the complicated scattering diagrams. What we obtained is a
pre-dgBV algebr FPV**(X), in which the differential squares to zero only modulo m = (¢). Using
well-known algebraic techniques [42), 27], we can solve the Maurer-Cartan equation and construct
the thickening *X. In this subsection, we will summarize the whole procedure, incorporating the
nice reformulation by Felten [13] in terms of deformations of Gerstenhaber algebras.

To begin with, we assume the following condition holds:

Condition 4.7. There is a sheaf (2*,d) of unital differential graded algebras (abbrev. as dga) (over
R or C) over B, with degrees 0 < x < L for some L, such that

e the natural inclusion R — Q* (or C — Q) of the locally constant sheaf (concentrated at
degree 0) gives a resolution, and

e for any open cover U = {U,;}icz, there is a partition of unity subordinate to U, i.e. we have
{piYier with p; € T(U;, Q%) and supp(p;) C U; such that {supp(p;)}; is locally finite and

It is easy to construct such Q* and there are many natural choices. For instance, if B is a
smooth manifold, then we can simply take the usual de Rham complex on B. In the sheaf of
monodromy invariant differential forms we constructed using the (singular) integral affine structure
on B is another possible choice for Q* (with degrees 0 < % < n). Yet another variant, namely,
the sheaf of monodromy invariant tropical differential forms will be constructed in this links
tropical geometry on B with smoothing of the maximally degenerate Calabi-Yau variety °X.

Let us recall how to obtain a gluing of the dg resolutions of the sheaves ’fgg and leZ using any
possible choice of such an Q*.

Definition 4.8. We define *PVy* = Q (_’“gg) = O*|w., ®r *GY, which gives a sheaf of dgBV
N, Ony Ay) is defined componentwise by

algebras over W,. The dgBV structure (A,
(p@v) A @w) = (-D)"(pry) @ ©Aw),

Oalp @) = (dp) ®v, Aalp®@v) = (~1)¥p @ (Av),

for o, € Q*(U) and v,w € *G%(U) for open subset U C W,,.

Definition 4.9. We define *A5" = Q*(*K) := Q*|w,, @r *K?, which gives a sheaf of dgas over W,

(a2

equipped with the natural filtration ¥ AY* inherited from lflCz The structures (A, O, 0n) are defined

2This was originally called an almost dgBV algebra in [5], but we later found the name pre-dgBV algebra from [13]
more appropriate.
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componentwise by

(p@u) AW ew) = (=) (pAy) @ (uaw),
Oaltp @ u) := (dp) @u, Dl @ u) = (—1)¥p ® (u),
for ¢, € Q*(U) and u,w € *K(U) for open subset U C W,,.

There is an action of PV, on * A, by contraction _ defined by the formula

(p@v)a(y ®w) == (—1)"I¥I(p A ) ® (vow),

for ¢, € Q*(U), v € *G*(U) and w € *K%(U) for open subset U C W,. Note that the lo-
cal holomorphic volume form *w, € ﬁAg’O(Wa) satisfies 0, (*wa) = 0, and we have the identity

k0u(pa*wa) = FAg(¢)2Fwy of operators.

The next step is to consider gluing of the local sheaves *PV,’s for higher orders k. Similar
constructions have been done in [5 [13] using the combinatorial Thom-Whitney resolution for the
sheaves *G,’s. We make suitable modifications of those arguments to fit into our current setting.

First, since kVMVa 5 and kV;]Va , are divisorial deformations (in the sense of [24, Def. 2.7]) of the
intersection Viﬁ = Vin Vg , we can use [24, Thm. 2.11] and the fact that Vg is Stein to obtain
an isomorphism kl/}ag : kVL|Va5 — kV%WaB of divisorial deformations which induces the gluing
morphism kwag : ng’Waﬂ — kg;§|wa,3 that in turn gives kwa[g : kPVa]Waﬁ — kPVg\Waﬂ.
Definition 4.10. A k™-order Gerstenhaber deformation of °PV is a collection of gluing morphisms
kgag : kPVa]Waﬁ — kPVB]WM of the form kgaﬁ = eldass] o k¢a5 for some O,5 € kPVgl’O(Wag)
with 0o = 0 (mod m), such that the cocycle condition *g.q o kgm okgas = id is satisfied.

An isomorphism between two k'l-order Gerstenhaber deformations {*¥g,s}ag and {kgiw}ag is

a collection of automorphisms khe : *PV, — FPV, of the form khe = elParl for some b, €
kPV;LO(Wa) with by = 0(mod m), such that kg'aﬁ okh, = khﬁ ) kgag.

A slight modification of [I3, Lem. 6.6], with essentially the same proof, gives the following:

Proposition 4.11. Given a k™-order Gerstenhaber deformation {¥gas}ap, the obstruction to the
existence of a lifting to a (k + 1)%t-order deformation {ngag}aﬁ lies in the Cech cohomology (with
respect to the cover W := {Wy}a)

H2(W, OPV—I,O) ® (mk—i-l/mk)'
The isomorphism classs of (k + 1)t-order liftings are in
H’l (W, Dpv—l,O) ® (mk’-i-l/mk‘).
Fizing a (k + 1)*t-order lifting {**1ga5}ap, the automorphisms fizing {¥gas}as are in
HO(W, Dpv—l,O) ® (mk’-i-l/mk‘).
Since ' satisfies Condition we have H 20w, PV —10) = 0. In particular, we always have
a set of compatible Gerstenhaber deformations g = (¥*g)ren where *g = {¥g,5}as and any two of

them are equivalent. Fixing such a set g, we obtain a set {kPV}keN of Gerstenhaber algebras which
is compatible, in the sense that there are natural identifications *+1 PV Qkt+1p kR =Fkpv.
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We can also glue the local sheaves k.AZ’S of dgas using g. First we can define k¢a/g : kIC(’;]WaB —
kICE|Wa3 using k@[)aﬁ : kVLIVaﬁ — kVL|VQﬁ. For each fixed k we can write kgag = eldasr] o kz/)ag as
before. Then
(4.4) kg .= e“Pap o kwaﬁ : k.AZ|Waﬂ — kAE‘Wa/a

preserves the dga structure (A, d,) and the filtration on %A%’s. As a result, we obtain a set of
compatible sheaves {(*A*, A, @) }ren of dgas. The contraction action J is also compatible with the
gluing construction so we have a natural action J of *PV* on * A*.

Next, we glue the operators 0,’s and Ag'’s.

Definition 4.12. A k™-order predifferential 0 on ¥PV*is a degree 1 operator given by a collection
of elements 1, € *PV SV (W) such that 1o = 0 (mod m) and

kgﬂa o (éﬂ + [7767 ]) o kgaﬁ = (504 + [77047 ])
Two predifferentials O and &' are equivalent if there is a Gerstenhaber automorphism (for the de-
formation *g) h : *PV* — ¥PV* such that h"* 0 doh =0,

Notice that we only have 9> = 0 (mod m), which is why we call it a predifferential. Using
the argument in [5, Thm. 3.34] or [I3| Lem. 8.1], we can always lift any k*M-order predifferential

9 to a (k + 1)%*-order predifferential, and any two such liftings differ by a global element 0 €
0Py =Ll @ mF+! /mF. We fix a set 0 := {ké}keN of such compatible predifferentials. For each k,

the action of "8 on ¥ A* is given by gluing of the action of J, + Ly, on kAZ. On the other hand, the
elements

~ 1
(45) [a = aa(na) + 5[77a777a] c kPV(;LQ(Wa)

glue to give a global element [ € kPV*LQ(B), and for different k’s, these elements are compatible.
Computation shows that 9% = [I,-] on *PV* and 9% = L£; on *A*.

To glue the operators A,, we need to glue the local volume elements *w,’s to a global Fw. We
consider an element of the form efe~ - Fw,, where f, € kPVOVO(Wa) satisfies fo, = 0 (mod m). Given
a k"™-order global volume element e~ - Fw,, we take a lifting ef*- - ¥+1w,, such that

k+1ga6(efaJ : k+1wa) _ o(is=0ap)- . EHg,,

for some element 0,5 € *PVO0(W5) ® mF+1/m*. By construction, {0,5}as gives a Cech 1-cycle in
0PV 00 which is exact. So there exist u,’s such that uglw,; — Ualw,s = 0ap, and we can modify fq
as fa + Uy, which gives the desired (k + 1)*-order volume element. Inductively, we can construct
compatible elements *w € ﬁA"’O(B), k € N. Any two such volume elements *w and ¥’ differ by
ko = el kW' where § € *PVO9(B) is some global element. Notice that *w is not holomorphic
unless mod m.

Using the volume element w (we omit the dependence on k if there is no confusion), we may now
define the global BV operator A by

(4.6) (Ap)aw = d(paw),
which can locally be written as *A, + [fa,-]. We have A% = 0. The local elements
(4.7) na = "2 (1) + Ja(fa) + [Ma; fol

glue to give a global element n € k¥ PV9:1(B) which satisfies [, A] = [n,-]. Also, the elements [ and
n satisfies the relation d(n) + A(I) = 0 by a local calculation.
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In summary, we obtain pre-dgBV algebras (*PV, 0, A, A) and pre-dgas (A, 9, 9, A) with a natural
contraction action s of "8 on kA* and also volume elements w. We set PV := @k kpv, A =

yink k A, and define a total de Rham operator d : A* — A*t! by

(4.8) d:=0+0+1,
which preserves the filtration ,.A*. Using the contraction wi : PV* — HAHH to pull back the

operator, we obtain the operator d = d + A + ([ + n)A acting on PV*. Direct computation shows
that d? = 0, and indeed it plays the role of the de Rham differential on a smooth manifold. Readers
may consult [5], §4.2] for the computations and more details.

Definition 4.13. We let PV (resp. ¥PV') be the sheaf of (resp. k*™-order) smooth relative polyvec-
tor fields over ST, and A (resp. ¥A) be the sheaf of (resp. k*-order) smooth forms over ST.

4.4. Smoothing by solving the Maurer-Cartan equation. With the sheaf PV** of pre-dgBV
algebras defined, we can now consider the extended Maurer-Cartan equation

= 1
(4.9) ((9+tA)g0+§[cp,<p]+I+tn:0
for ¢ = lim, kp e Hm, FPVO(B)[[t]]. Setting t = 0 gives the (classical) Maurer-Cartan equation
= 1
(4.10) O(p) + 5lp pl +1

for ¢ € PV?(B). To inductively solve these equations, we need two conditions, namely the holo-
morphic Poincaré Lemma and the Hodge-to-de Rham degeneracy.

We begin with the holomorphic Poincaré Lemma, which is a local condition on the sheaves lej;’s.
We consider the complex (¥K% [u], o), where

l
5;(2 vsu®) 1= Z(@ays)us + sdlog(q) A vsu®™L.
s=0

S

There is a natural exact sequence of stalks

k,0

b
(4.11) 0— 8%, —F K o [u] —( K5 ,—0,

where k’ob(zlszo vsu®) := "% (1) as elements in ?‘ICZJC.

Condition 4.14. We say that the holomorphic Poincaré Lemma holds if at every point x, the
complex (kﬁzjx, Ja) is acyclic.

The holomorphic Poincaré Lemma for our setting was proved in [24, proof of Thm. 4.1], but
a gap was subsequently pointed out by Felten-Filip-Ruddat in [I4], who used a different strategy
to close the gap and give a correct proof in [I4, Thm. 1.10]. From this condition, we can deduce
that the cohomology sheaf H* (ﬁICZ, ¥dq) is free over *R = C[q]/(¢"**) (cf. [28, Lem. 4.1]), and the

cohomology H*(ﬁA*,d) is free over ¥R (see [28] and [5] §4.3.2]).

The Hodge-to-de Rham degeneracy is a global Hodge-theoretic condition on OXT. We consider
the dgBV algebra ° PV*(B)[[t]] equipped with the operator 0 + t A.

Condition 4.15. We say that the Hodge-to-de Rham degeneracy holds for ° X1 if H*(° PV*(B)][[t]], 0+
t A) is a free C[[t]] module.
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Under the assumption tht (B, P) is strongly simple (Definition , this condition for the maxi-
mally degenerate Calabi-Yau scheme X' was proved in [24, Thm. 3.26]. This was later generalized
to the case when (B, P) is only simple (instead of strongly simple)ﬁ and further to toroidal crossing
spaces in Felten-Filip-Ruddat [14] using different methods.

For the purpose of this paper, we restrict ourselves to the case that F¢ = ¥¢ + t(kf) for ¥¢ €
kpy=LY(B) and *f € ¥PVO9(B). The equation (£.9) can be decomposed according to orders in t
as the Maurer-Cartan equation (4.10)) for *¢ and the equation

(4.12) AN +Fo. % f1+ AFp) +n=0.

As in classical deformation theory, ¥¢ can be interpreted as deforming the complex structure to the
kh-order and e/ (*w) is a holomorphic volume form which comes along.

Theorem 4.16. Suppose that both Conditions and hold. Then for any k"-order solution
ko = ko 4+ t(*f) to the extended Maurer-Cartan equation ([A.9), there exists a solution *lp =
kLo 1 t(BTLE) lifting %o to the (k + 1)*-order. The same statement holds for the Maurer-Cartan

equation ([@.10) if we restrict to *¢ € *PV—11(B).

Proof. The first statement follows from [5, Thm. 5.6] and [5, Lem. 5.12]: Starting with a k*'-
order solution ¢ = ¥¢ + t(¥f) for , using [5, Thm. 5.6] one can always lift it to a general
k+ly, e K1 pYO(B)[[t]]. The argument in [5, Lem. 5.12] shows that we can choose ¥+1¢ such that
the component of ¥+1|;,_g in ¥+ PVO0(B) is zero. As a result, the component of **1¢ 4 ¢t(**1f) in
M1py-LL(B) @ t(**1PVO9(B)) is again a solution to (@.9).

For the second statement, we argue that, given *¢, there always exists * f € ¥ Py 0.0 (B) such that
ko +t(*f) is a solution to ([#.9). We need to solve the equation (#.12) by induction on the order k.
The initial case is trivial by taking Of = 0. Suppose the equation can be solved for /~! f. Then we

take an arbitrary lifting ! f to the j*™M-order. We can define an element o € OPVO’O(B) by

o =00 ) +1¢." fl+ AC¢) +n,
which satisfies d(0) = 0. Therefore, the class [0] lies in the cohomology H'(°PV* 9) = H'(°X, 0) =
HY(B,C), where the last equivalence is from [23, Prop. 2.37]. By our assumption in §2} we have

H'(B,C) = 0, and hence we can find an element f such that 5(f) = 0. Letting ¥ f = kf+ ¢ f proves
the induction step. Now applying the first statement, we can lift the solution *¢y := ko + t(k f) to
ktly = Flg 4 (M1 f) which satisfies equation (&.9)), and hence **'¢ will solve (@.10)). O

From Theorem we obtain a solution ¢ € PV 11 (B) to the Maurer-Cartan equation ([4.10]),
from which we obtain consistent and compatible gluings kq5a5 : kVLh/aB — kVHVaa satisfying the
cocycle condition, and hence a smoothing of °X; see [, §5.3].

4.4.1. Normalized volume form. For later purpose, we need to further normalize the holomorphic
volume §2 := ef w by adding a suitable power series h(q) € (¢) C C[[q]] to f so that the condition
that fT ef w =1, where T is a nearby n-torus in the smoothing, is satisfied.

3The subtle difference between the log Hodge group and the affine Hodge group when (B, P) is just simple, instead
of strongly simple, was studied in details by Ruddat in his thesis [36].
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We define the k**-order Hodge bundle over Spec,, (Clg]/¢"**") by the cohomology *H := H”(ﬁfl*, d),

which is equipped with a Gauss-Manin connection ¥V, where ¥V 5 is the connecting homomor-
dlogq

phism of the long exact sequence associated to
(4.13) 0— A" ® (dlogg) — *A* = A" = 0.

Write H = lglk k3{. Restricting to the 0™"-order, we have N = °V_ 5 , which is a nilpotent

dlogq

operator acting on "H = H”(ﬁA*) =~ H™(X, j*Q}T/CT), where X = °X. In particular, we have
H 2"(ﬁA*) ~H 2”(ﬁA*) ® Clq]/q"*" since the connection V acts trivially.

Since H™(B,C) = C, we fix a non-zero generator and choose a representative o € Q"(B). Then
the element p® 1 € ﬁ.A"(B) (which may simply be written as g) represents a section [g] in H. A
direct computation shows that V[g] = 0, i.e. it is a flat section to all orders. The pairing with the
0t-order volume form %w gives a non-zero element [Yw A ] in H 2”(ﬁ.A*).

Definition 4.17. We say the volume form 2 = ef w is normalized if [2 A o] is flat under V.

In the other words, we can write [2A 0] = ["wA ] under the identification HQ"(ﬁA*) = HQ"(ﬁA*)(X)
Clq]/¢"'. By modifying f to f + h(q), this can always be achieved.

5. FROM SMOOTHING OF CALABI-YAU VARIETIES TO TROPICAL GEOMETRY

5.1. Tropical differential forms. To tropicalize the pre-dgBV algebra PV** we need to replace
the Thom-Whitney resolution used in [5] by a geometric resolution. To do so, we first need to recall
some background materials from our previous works [0, §4.2.3] and [7], §3.2].

Let U be an open subset of Mg, and consider QF(U) := I'(U x Rso, Ak TVU), where £ is a
coordinate of Rsg. Let W*__(U) C QF(U) be the set of k-forms a such that, for each g € U, there
exists a neighborhood ¢ € V' C U and constants Dj,y, ¢y such that ||V e[ ooy < Djyev/ for all

j > 0; here V7 denotes an operator of the form V o ---V o with respect to an affine coordinate
accll 8xlj
system x = (z1,...,%,) (note that this is not the Gauss-Manin connection in the previous section).

Similarly, let WX (U) C QF(U) be the set of k-forms a such that, for each ¢ € U, there exists a
neighborhood ¢ € V C U and constants Djy and Ny € Zsg such that || V7| feoyy < Dj;yhNiv
for all j > 0. The assignment U ~— W*__(U) (resp. U + WE (U)) defines a sheaf W* __ (resp. WE)
on Mg ([6l, Defs. 4.15 & 4.16]). Note that WF__ and WE are closed under the wedge product, Vai

and the de Rham differential d. Since W* __ is a dg ideal of WX | the quotient WX /W* _ is a sheaf
of dgas when equipped with the de Rham differential.

Now suppose U is convex. By a tropical polyhedral subset of U, we mean a connected convex
subset which is defined by finitely many affine equations or inequalities over Q.

Definition 5.1 ([6], Def. 4.19). A k-form a € WX (U) is said to have asymptotic support on a
closed codimension k tropical polyhedral subset P C U with weight s, denoted as o € Wps(U), if
the following conditions are satisfied:

(1) For any p € U\ P, there is a neighborhood p € V.C U \ P such that a|y € WE__(V).

(2) There exists a neighborhood Wp C U of P such that « = h(z,h)vp +n on Wp, where
vp € N¥ Ng is the unique affine k-form which is normal to P, h(z, ) € C®°(Wp x Rsq) and
ne WEOO(WP)
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(8) For any p € P, there exists a convex neighborhood p € V. C U equipped with an affine coordi-
nate system x = (x1,...,%,) such that ' := (x1,...,x) parametrizes codimension k affine
linear subspaces of V' parallel to P, with x' = 0 corresponding to the subspace containing
P. With the foliation {(Py y)}wen, , where Py = {(z1,...,2n) € V | (z1,...,25) = 2’}
and Ny is the normal bundle of V', we require that, for all j € Z>o and multi-indices
B=(B,...,B) € ZE,, the estimate

. i+s—|8]—
/ (') (Sup |V](Lu;a)|> vp < Dyygh 2
fE/

PV,z’

holds for some constant Djy,g and s € Z, where |8| =Y, 8 and v}, = 6%1 ARERWA %

Observe that V_o Wp,o(U) C Wpe1(U) and (2')*Wps(U) C Wps_5/(U). 1t follows that

oz

(2')PV o - V_o Wps(U) C Wpsij—1g/(U).

ox oz .
I ¥

The weight s defines a filtration of W% (we drop the U dependence from the notation whenever it
is clear from the context)ﬂ

WK C - CWp_1 CWpoCWpy C---CWE C QEU).

This filtration, which keeps track of the polynomial order of A for k-forms with asymptotic support
on P, provides a convenient tool to express and prove results in asymptotic analysis.

Definition 5.2 ([7], Def. 3.10). A differential k-form « is in W¥(U) if there exist polyhedral subsets
Py,...,P, C U of codimension k such that o € Eé‘:l We, s(U). If, moreover, da € fjfll(U), then
we write o« € WE(U). For every s € Z, let Wi(U) = @, WF . (U).

We say that closed tropical polyhedral subsets Py, P, C U of codimension k1, ko intersect transver-
sally if the affine subspaces of codimension k; and ke which contain P; and P», respectively, intersect
transversally. This definition applies also when dP; # ().

Lemma 5.3 ([7, Lem. 3.11]). (1) Let Py, Py, P C U be closed tropical polyhedral subsets of codi-
mension ki, ko and ki + ko, respectively, such that P contains P; N Py and is normal to
vp, N\vp,. Then Wp, s(U) AWp, »(U) C Wprys(U) if Pi and Py intersect transversally and
Whp,.s(U) AWp, . (U) € WFLER(U) otherwise.

(2) We have W (U)AWE2(U) C Wfllif;(U). In particular, Wy (U) C Wi (U) is a dg subalgebra
and W*(U) C Wi(U) is a dg ideal.

Definition 5.4. We let W be the sheafification of the presheaf defined by the assignment U +—

Wi(U). We call the quotient sheaf A* := W /W?*, the sheaf of tropical differential forms, which is

a sheaf of dgas on Mg with structures (A,d).

From [7, Lem. 3.6], we learn that R — A* is a resolution. Furthermore, given any point = € U
and a sufficiently small neighborhood * € W C U, we can show that there exists f € WJ(W)
with compact support in W and satisfying f = 1 near x (using an argument similar to the proof of
Lemma . Therefore, A* has a partition of unity subordinate to a given open cover. Replacing
the sheaf of de Rham differential forms on A;MR ®Q,r by the sheaf A* of tropical differential forms,
we can construct a particular complex Q* on the integral tropical manifold B, which dictates the
tropical geometry of B.

4Note that k is equal to the codimension of P C U.
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Definition 5.5. Given a point x as in (with a chart as in equation ), the stalk of A*
at x is defined as A = (x"'A*),. This defines the complex (A* d) (or simply A*) of tropical
differential forms on B. A section a € A*(W) is a collection of elements o, € AL, x € W such
that each oy can be represented by x '3, in a small neighborhood U, C p~*(Uy) for some tropical
differential form By on U,, and satisfies the relation az = X1 (p*fe) in A% for every x € Uy.

Notice that the definition of A* requires the projection map p in equation to be affine,
while that of Q* in does not. But like Q*, A* satisfies Condition [£.7] and can be used for the
purpose of gluing the sheaf PV* of dgBV algebras in In the rest of this section, we shall use
the notations PV*, TL* and A* to denote the complexes of sheaves constructed using A*.

5.2. The semi-flat dgBV algebra and its comparison with the pre-dgBV algebra PV**.
In this section, we define a twisting of the semi-flat dgBV algebra by the slab functions (or initial
wall-crossing factors) in §2.4) and compare it with the dgBV algebra we constructed in §4.3| using
gluing of local smoothing models. The main result is Lemma [5.8, which an important step in the

proof of our main result.

We start by recalling some notations from §2.4 For each vertex v, we fix a representative
¢y : U, = R of ¢ € H(B, MPLyp) and define the cone C, and the monoid P,. There is a monoid
homomorphism p~'P, — p~1'3, coming from the natural projection T, & Z — T),; in this section,
we write m for the element in p~1'%, corresponding to m € p~!'P, under the natural projection. We
consider V(7), := Spec(C[r~!P,]) for some 7 containing v, and write 2™ for the function correspond-
ing to m € 771 P,. The element p together with the corresponding function z¢ determine a family
Spec(C[r71P,]) — C, whose central fiber is given by Spec(C[r~1%,]). V(7), = Spec(C[r~1P,]) is
equipped with the divisorial log structure induced by Spec(C[r~!%,]), which is log smooth. We
write V(T);r, if we need to emphasize the log structure.

Since B is orientable, we can choose a nowhere vanishing integral element p € I'(B\ 8¢, A" T.z).
We fix a local representative u, € \" T, for every vertex v and p, € A" A, for every maximal cell

o. Writing p, = my A -+ A my,, we have the corresponding relative volume form pu, = dlog 2™ A
--- Adlog 2™ in Q% Now the relative log polyvector fields can be written as

/\_l GV(T)I,/(CT = @ Zmanl VANREIVAN 871[ .

meT— 1P,

(mi/ct’

The volume form pu, defines a BV operator via (Aa) = p,, := 9(a = py,), which is given explicitly by

!
A0y Ao NOny) =D (=17 m, )2y A v Oy o+ A O,
j=1
A Schouten—Nijenhuis—type bracket is given by extending the following formulas skew-symmetrically:
[2m1 a’m ’ 2™ 8712] = Zmtme 8(

[z, 0p] = (m,n)z™.

m1,n2)n1—(ma,n1)na»

This gives A\~ @V( f/ct @ structure of BV algebras.

7)
5.2.1. Construction of the semi-flat sheaves. For each k € N, we shall define a sheaf kG;‘f (resp. kK:f)
of k™-order semi-flat log vector fields (resp. semi-flat log de Rham forms) over the semi-flat locus
Wo C B, which is an open dense subset defined by

Wo:= |J intre(0)U | J intee(r)U | (intee() \ (8 Nintye(7))),

oepl repl rep
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where [P([)n_l] consists of 7 such that int.(7) N 8. = 0 and ‘P[ln_” of 7 that intersects with 8.. These
sheaves will not depend on the slab functions f,,’s.

For o € P, recall that we have V(o) = Spec,, (Cloe~%,]) for some v € ol?. Because 0~'%, =
Ayr = T, g, we have Spec,,(C[o™1%,]) = AZ /A%, which is isomorphic to (C*)". The local k-
order thickening *V(o)! := Spec,,(Cloc—'P,/¢**t1]) = (C*)" x Spec,,(Clq]/¢"*") is obtained by
identifying 0~ 'P, as A, x N. Choosing a different vertex v/, we can use the parallel transport
T, = T, from v to v' within int,(c) and the difference ¢, |, — @], between two affine functions to

identify the monoids 0~ !P, = ¢~ P,,. We take
kG:f inte(o) = V*(/\_ @kv(g)f/ksf) = V*(Okv(g)f) QR /\_ AZ,R'

Next we need to glue sheaves kG:f]imre(U)’s along neighborhoods of codimension 1 cells p’s. For
each codimension 1 cell p, we fix a primitive normal dp to p and label the two adjacent maximal
cells 04 and o_ so that d, is pointing into 0. There are two situations to consider.

The simpler case is when 8, Nintye(p) = @, where the monodromy is trivial. In this case, we have
V(p) = Spec,, (C[p~1%,]), with the gluing V (0+) < V(p) as described below Definition 2.8 We take
the k*™-order thickening given by *V(p)t := Spec,,(C[p~'P,/¢"t1])!, equipped with the divisorial
log structure induced by V(p). Then we extend the open gluing data s,s, : Ag, — C* to sp0, :
Ao, &7 — C* so that sps, (0,1) = 1, which acts as an automorphism of Spec,,,(C[c™'%,]). In this
way we can extend the gluing V(o+) < V(p) to Spec,,(Cloz'P,/¢**t1]) — Spec,,(C[p~'P,/¢**1])
by twisting with the ring homomorphism induced by z™ — 5,5, (m)~1z™. On a sufficiently small
neighborhood W, of int,.(p), we take

kG;‘f|wp = Uy ( /\_* @kv(p)j—/ksf) ‘Wp'

Choosing a different vertex v/, we may use parallel transport to identify the fans p='%, = p~1%,/,
and further use the difference ‘Pv’Wp — @v"Wp to identify the monoids p~'P, = p~'P,. One can

check that the sheaf kG:f]W , is well-defined.

The more complicated case is when 8. N intye(p) # 0, where the monodromy is non-trivial. We
write intye(p) \ 8 = J, intre(p)y, where intye(p), is the unique component which contains the vertex
v in its closure. We fix one v, the corresponding int.e(p),, and a sufficiently small open subset
W, of intre(p),. We assume that the neighborhood W, , of int.(p), intersects neither W,
nor W, for any possible v' and p’. Then we consider the scheme-theoretic embedding V(p) =
Spec,,(Clp™1%,]) = Spec,, (C[p~' P,]) given by 2™ — 2™ for any m € p~LP,. We denote by *V(p)}
the k*P-order thickening of V(p)l-1(w,,) inside Spec,,, (C[p~!P,]) and equip it with the divisorial
log structure which is log smooth over ST (note that it is different from the local model *V(p)?

introduced earlier in §z| because the latter depends on the slab functions f, ,, as we can see explicitly
in §5.2.2) while the former doesn’t). We take

“Glihw,, = /\ Orvip)t st

The gluing with nearby maximal cells o+ on the overlap inty(o+) W, , is given by parallel trans-
port through the vertex v to relate the monoids afPfU and p~!' P, constructed from P,, and twisting

the map Spec,,,(C[o:'P,]) — Spec,,(C[p~'P,]) with the open gluing data 2™ Spoy (M)2™, using
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previous lifting of s,,, to Ay, ® Z. There is a commutative diagram of holomorphic maps

V(oy)|p—="V(os)|p,

V(p) V(p)'lp

where D = v~1(W,, Nintye(cx)) and the vertical arrow on the right-hand-side respects the log
structures. The induced isomorphism

Vs ( /\_* ekv(p)f}/ksf) = ( /\_* @’“V(Ui)l/kST>

of sheaves on the overlap W, , Nint,c(04) then gives the desired gluing for defining the sheaf b GZ; on
Wo. Note that the cocycle condition is trivial here as there is no triple intersection of any three open
subsets from int.(c), W, and W, ,. However, monodromy around the singular locus 8. N int,c(p)
acts non-trivially on the semi-flat sheaf kG’S“f.

Similarly, we can define the sheaf kK;‘f of semi-flat log de Rham forms, together with a relative
volume form Fwy € ﬁKgf(Wo) obtained from gluing the local u,’s specified by the element u as
described in the beginning of

It would be useful to write down elements of the sheaf * G%; more explicitly. For instance, fixing
a point z € intye(p)y, we may write

(5.1) 56l = ve(Onyy,), ®R/\ Tip

and use 0, to stand for the semi-flat holomorphic vector field associated to an element n € T ;R.
It is equipped with the BV algebra structure inherited from Spec,,(C[p~'P,])! (as described in the
beginning of , which agrees with the one induced from the volume form *wq. This allows us to
define the sheaf of semi-flat tropical vertex Lie algebras as

(5.2) = Ker(A)[kg-1[-1].

Remark 5.6. This sheaf can actually be extended over the non-essential singular locus 8\ 8, because
the monodromy around that locus acts trivially, but this is not necessary for our later discussion.

5.2.2. Ezplicit gluing away from codimension 2. When we define the sheaves kg;’s in the open
subset W, is taken to be a sufficiently small neighborhood of = € int,e(7) for some 7 € P. In fact,
we can choose one of these open subsets to be the large open dense subset Wj. In this subsection,
we give a construction of the sheaves * G; and kICS over Wy using an explicit gluing of the underlying
complex analytic space.

Over intye(a) for o € P or W, for p € P with 8, Ninte(p) = 0, we have ¥G = *G¥,
which was just constructed in The only difference is when we consider p € PI*~1 such that
8cNintye(p) # 0. The log structure of V(p)' is prescribed by the slab functions sab(fup)’s, which are
functions on the torus Spec,, (C[A,]) = (C*)"~!. Each of these can be pulled back via the natural
projection Spec,, (C[p™1%,]) — Spec,,(C[A,]) to give a function on Spec,,(C[p~'%,]). In this case,
we may fix the log chart V(P)”y—l(wp,v) — Spec,, (C[p~'P,])T given by the equation

A= {Z d ) -
T (s} () ™ i (dpym) <0
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Write kV(p);r) for the corresponding k*P-order thickening in Spec,,(C[p~'P,]), which gives a local
model for smoothing V(p)|,-1(w, ) (as in . We take

U

Golw, = e\ Ou st

We have to specify the gluing on the overlap W, , Nint,.(0+) with the adjacent maximal cells 0.
This is given by first using parallel transport through v to relate the monoids ava and p~ P, as
in the semi-flat case, and then an embedding Spec,,(Clox'P,/¢"*']) — Spec,,(C[p~'P,/q¢"**']) via
the formula

(5.3)

—1 —1 d 77
spai(m)zm (Sw, (fv’p))< P i) for o_
where .5, Sp0, are treated as maps Ay, ®Z — C* as before. Observe that there is a commutative
diagram of log morphisms

. {S;UlJr (m)z" for oy
z

V(o) lp—=*V(os)l|n,

V() lp——="V(p) |
where D = v~ 1(W,, Ninte(04)). The induced isomorphism

v (/\_* Ouy kst ) = s (/\_* @kvm)z/’“sf)

of sheaves on the overlap D then provides the gluing for defining the sheaf ’fg;; on Wy. Hence,
we obtain a sheaf ’“g;; of BV algebras where the BV structure is inherited from the local models
Spec,,(C[e~'P,]) and Spec,,(C[p~'P,]). Similarly, we can define the sheaf *IC} of log de Rham
forms over Wy, together with a relative volume form Fwq € ﬁng(Wo) by gluing the local pu,’s.

5.2.3. Relation between the semi-flat dgBV algebra and the log structure. The difference between kgg
and *G; is that the monodromy along any path 7 in int,e(0+) U intye(p), where p = oy No_, acts
non-trivially on "G (the semi-flat sheaf) but trivially on *G (the corrected sheaf). This is in line
with the philosophy that monodromy is being cancelled by the slab functions or initial wall-crossing
factors f, ,’s. Hence, we should be able to relate the sheaves kg;’; and kG’S"f by adding back the initial
wall-crossing factors f, ,’s. To do so, we resolve these sheaves by the complex A* introduced in
Also, over the open subset W, ,, we consider the element

(5.4) Guv,p = —0yp & IOg(qupl (fv,P))acha

where §,, is a 1-form with asymptotic support in int.(p), and whose integral over any curve
transversal to intye(p), going from o_ to oy is asymptotically 1 (see [0, Eq. 4.3]).

Definition 5.7. The sheaf of semi-flat polyvector fields is defined as kPV:}* = A¥|lw, ®r kG:f,
which is equipped with a BV operator A, a wedge product A (and hence a Lie bracket |-,-]) and the
operator

0:= 50 + [d)m] — 50 + Z[d)v,pa ']a
v,p

where Op = d ® 1 and ¢y = Zv,p ¢uv,p- We also define the sheaf of semi-flat log de Rham forms as
kA:}* = A*lw, ®r kK:f, equipped with 0, A,

5 = 50 +Z£¢Uﬁp’

v,p
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and a contraction action 1 by elements in kPV:f.

It can be easily checked that 0% = [0, A] = 0, so we have a sheaf of dgBV algebras. We write
kPV;’* = A¥|lw, ®r kg;;, which is equipped with the operators dyp = d® 1, A and A. The following
important lemma is a comparison between the two sheaves of dgBV algebras.

Lemma 5.8. There exists a set of compatible isomorphisms

b PPVt = PV, ke N

of sheaves of dgBV algebras such that o Jy = 0 o P for each k € N.

There also exists a set of compatible isomorphisms
& FATT - FAY ke N

of sheaves of dgas preserving the contraction action o and such that ® o 9y = 0 o ® for each k € N.
Furthermore, the relative volume form *wy is identified via ®.

Proof. Outside those int,(p) such that 8. N inte(p) # 0, the two sheaves are identical. So we will
take a component int,e(p), of intre(p) \ 8 and compare the sheaves on a neighborhood W, ,.

We fix a point = € intye(p), and describe the map ® at the stalks of the two sheaves. First, the
preimage K := v~ !(z) = A} g /A can be identified as an (n—1)-dimensional torus in Spec,, (C[A,]) =
(C*)"~1. We have an identification p~'%, 2 X, x A,, and we choose the unique primitive element
my in X, in the ray corresponding to o,. As analytic spaces, we may write Spec,,(C[X,]) = {uv =
0} € C? where u = 2™ and v = z~™, and Spec,,(C[p~'%,]) = (C*)"! x {uv = 0}. The germ
Ov(p),K of analytic functions can be written as

log |a;
Ovip),x = {ao + E aju’ + g aiv™" | a; € Oc+yn-1(U) for neigh. U O K, sup Oi“a | < oo}.
i=—1 i#0

Using the embedding V(P)|u71(wv,p) — 5V (p)} in we can write
kg8,$ - OkV(p)U,K =

< o0 p,

k

log |a; -
Z aop,j +Zawu + Z a; jv- q \ aij € O(cryn— 1(U) for neigh. U D K, Supg||i|w
pard = i£0

with the relation uv = qls;pl( fuo,p) (here [ is the change of slopes for ¢, across p). For the elements
(M, ou(m,)) and (—my,, o, (—m,)) in p~LP,, we have the identities

z(mp’(pv(mp)) — u7 Z_(_mpv¢v(_mp)) — qul)l(fﬂ,p)_lfL}?

describing the embedding *V(p)!, < Spec,, (C[p~'P,))!. For polyvector fields, we can write kgax =
’“gow ®r A" T, k- The BV operator is described by the relations A(9,) = 0, [On,, On,| = 0, and

[z, 0n] = A(2™0y) = (m,n)z™ for m € Ay, n € T g;
(5.5) [u, Op] = A(udy) = (mp,n)u for n € Ty g;
[v,0n] = A(v0y) = (—myp,n)v + Oy (log s;pl(fv,p))v forn € T} .

Similarly we can write down the stalk for kG;‘fz
O(cryn-1 i @c Clgl/(¢¥™), we have *G

sf,x

= kG:fx @r N Tjg- As a module over
= kgo’x, while the ring structure is determined by the
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relation uv = ¢'. The embedding *V(p)} < Spec,,, (C[p~'P,])! is given by

Z("’Jp:@ﬂ(mp)) = u, Z*(*mp"Pv(*mp)) = .

The formula for the BV operator is the same as above, except that now we have [v,9,,] = A(vd,) =
(—my, n)v for the last equation in (5.5)).

To relate these two sheaves, we recall the situation in [6, §4], where we considered a scattering
diagram consisting of only one wall. Using the argument there, we can find a set of compatible
elements {0 € kPng’_l(Wv,p)}keN, such that ¢’ x 9y = 9 and A() = 0. Explicitly, 6 is a step-
function-like element of the form
o log(sgpl(fv’p))ﬁdp on intre(o4) N Wy p,

0 on intre(o—) N W, .

We also let 0y := log(sy, pl( fo, p))ad,,7 as an element defined on the whole W,, ,. Now we define the map
2+ PPV — PV at the stalks by writing "PV§ = A, @ *G), ®r A7 TR (and similarly

for kPV;‘f ), and extending the formulas
Dp(a) = for o € Ay,
st(f) =el0 f f for fe O((C*)n—17K7
O, (u) = eld=toly,
D, (v) = eltly,
D, (0) = elf=0%:19,  for n € Trr

using the tensor product ®g and also skew-symmetrically in 9,’s.
To see that @ is the desired isomorphism, we check all the required relations by computations:
e First of all, since el?1 0 9y 0 e 0] = 3, we have
0P, (u) = 6[9"]80(6_[90"]u) =0;
similarly, we have 9(®,(v)) = 0 = 9(®.(d,)). Hence, &, 00 = 0 o D,.
e Next, we have e~ (%o~ ]u =S, (fv p)u and hence
o ()P (v) = "5y} (o p)w)e™ o = 5 (£ )™ () = 45, (£o,) = Pu(uw),

i.e. the map &, preserves the product structure.

e From the fact that A(f) = 0 = A(fp), we see that el/=% ] commutes with A, and hence
AP (D)) = elf=% 1 A(9,) = 0. We also have [@,(Dn, ), Pz(n,)] = el0=01[0,,,,0,,] = 0.

e Again because A(f) =0 = A(fy), we have

APy (1) P, () = A(el0014d,) = =001 (A(ud,)) = (my, n)el=%(w) = (m, n) P, (u).
e Finally, we have
A (@4 (0)®4(9,)) = AP0 N((eP10)d,,)) = el 1 (A(s,,)} (fo,0)00n))
= el ((=myy, n)sy) (fu,)v + On(sy, (fo,0))0)
= (=mp,n) (el Tv) + 0 (log 5, (f,0)) (el Tv)
= (=mp, 1) P () + 9n (108 5,5 (fo,0)) P (v).

We conclude that &, kPVZ;; K PV ,, is an isomorphism of dgBV algebras.
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We also need to check that the map @, agrees with the isomorphism kPVS’*|@ — kPV:f’*]@ in-
duced simply by the identity *Gjle = ¥G e, where C = Wy \ Us. Aintye (p) 20 Nbre(p). For this pur-
pose, we consider two nearby maximal cells o4 such that oy No_ = p. So we have ¥V(oy) =
Spec,, (Cloz'Py]/¢*th), and the gluing of kgg over W, , N o4 is given by first using the parallel
transport through v, and then the formula

2™ 5;01+ (m)zm form € A,,
(5.6) U s[jgl+ (mp)z™,

v ql$;;+ (f'va)S;(}+ <_mp)zimp'

The gluing for kG:f differs only by the last equation in (5.6)), namely, it is replaced by v >
—1

qlspg+(—mp)z_mp. Because we have
Bo(0) s;pl(fv7p)v on U, Nintye (o),
’ v on U, Nintye(o_)

-1
Spot
under the gluing map of * G on Uy Ninte(oy). This shows the compatibility of @, with the gluing
of ’“g;; and kG:f over U, Nintye (o4 ). Similar arguments apply for U, N intye(o—).

The proof for @ : kAS — k/—\:f, which is similar, will be omitted. The volume form is preserved

under @ because we have A(f) =0 = A(6y). This completes the proof of the lemma. O

on some sufficiently small neighborhood U, of x, we see that @,(v) — qls;(,lJr (fo,p) (—myp)z=me

5.2.4. A global sheaf of dgLas from gluing of the semi-flat sheaves. We shall apply the procedure
described in to the semi-flat sheaves to glue a global sheaf of dglas. First of all, we choose an
open cover {W,},eg satisfying Condition together with a decomposition J = Jy LI Js such that
Wi = {Wa}aes, is a cover of the semi-flat part Wy, and Wa = {W }4eg, is a cover of a neighborhood

of (Uyrepin-27) U (Upns. 20 S Nintre(p)).

For each W,, we have a compatible set of local sheaves ’fg;; of BV algebras, local sheaves kICZ
of dgas, and relative volume elements Fw,, k € N (as in . We can further demand that, over
the semi-flat locus Wy, we have kg; = ’fg;;|wa, kIC’; = "KC§|lw, and Fwe = *wolw,, and hence
PV =k PVilw, and FA: =FA3|w., for a € ;.

Using the construction in we obtain a Gerstenhaber deformation kga[g = ellas] o k¢a5
specified by 8,5 € kPV%(Wa ), which gives rise to sets of compatible global sheaves ¥ PV* and
kA* k e N. Restricting to the semi-flat part, we get two Gensterharber deformations kPVS and
¥ PV*|w,, which must be equivalent as H>°(Wy, T Ly, ) = 0. Therefore we have a set of compat-
ible isomorphisms locally given by h, = elPal : EPVEy,  — EPVE|y,  for some b, € FTLY(W,),
for each k£ € N, and they fit into the following commutative diagram

“PVilw,,—="PVilw.,
ha hg
k * kgag k *
Since the pre-differential on ¥ PV* |y, obtained from the construction in is of the form Oy + [, °]
for some 7, € *PV b1 (W,,), pulling back via he gives a global element 7 € PV, b1 (W) such that

hEI © (504 + [Mas]) 0 ha = 50 +[n,-].
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Theorem gives a Maurer-Cartan solution ¢ € *PV~L1(B) such that (9 + [¢,])> = 0, together
with a holomorphic volume form ef w, compatible for each k. We denote the pullback of ¢ under
ha'’s to kPVal’l(Wo) as ¢g, and that of volume form to ﬁAg’O(Wo) as €9 wy, satisfying

(D0 + L+¢,)€? wo = 0.

Lemma 5.9. If the holomorphic volume form is normalized in the sense of Definition then
we can find a set of compatible V € kPVgl’O(WO), k € N, such that

e v wo = €9 wy.

Proof. We shall construct V by induction on k as in the proof of Lemma 4.5 Namely, suppose V
is constructed for (k — 1)*-order, then we shall lift it to the k''-order. We prove the existence of
a lifting V, € kPVg, 316’0 at every stalk x € Wy and use partition of unity to glue a global lifting V.

First, we can always find a gauge equivalent 6 € kPV(I 316’0 such that

e 10 dyo el =0y + [n+ ¢o. ).

So we have 50(€£9€g wo) = 0, which implies that eLoed wgy e ﬁngm. We can write e£9e9 wy = e wy

in the stalk at x for some germ h € ’“gg,m of holomorphic functions. Applying Lemma ﬁ we can
further choose 6 so that h = h(q) € (¢) C Clg]/¢"!. In a sufficiently small neighborhood U, we find
an element g, € A"(U,) as in Definition The fact that the volume form is normalized forces
M9 [wg A g,] to be constant with respect to the Gauss-Manin connection *V. Tracing through the
exact sequence on U,, we can lift wq to leg(Ux), which is closed under 0. As a consequence,
we have *V_o  [wo A 0,] = 0, and hence we conclude that h(q) = 0.

dlogq

Now we have to solve for a lifting V, such that eLoe=Lve wy = wy up to the k*™-order. This is
equivalent to solving for a lifting u satisfying e“* wg = wq for the k™-order once the (k — 1)-order
is given. Take an arbitrary lifting @ to the k'"-order, and making use of the formula in [5, Lem.
2.8], we have

La o 0
e~ wy = exp Z e +u1)! A(a) | wo,
s=0
where 6z = —[i,-]. From e“® wg = wp (mod m*), we use induction on the order j to prove that

A(@) = 0 up to order (k — 1). Therefore we can write A(%) = ¢* A(#) (mod m*) for some @ €
OPVS;J’O, using the fact that the cohomology sheaf under A is free over ¥R = C[q]/(¢**!) (see the
discussion right after Condition |4.14)). Setting u = @ — ¢*@ will then solve the equation. OJ

The element V obtained Lemma can be used to conjugate the operator d -+ [¢,-] and get ¢
satisfying
e Mo (B + [po, ) 0 ™) = 0+, ).
The volume form wy is holomorphic under the operator do+ [¢o, -]. From equation , we observe
that A(¢g) = 0. Furthermore, the image of ¢ under the isomorphism @ : * PV} — "PV* in Lemma
gives ¢g € kPV;f(WO), and an operator of the form

(57) 50 + [Qbin + ¢Sa ] = 50 + Z[¢v,p7 ] + [¢57 ']7
v,p

where ¢i, = ), » Dv,ps that acts on kPV:f. Equipping with this operator, the semi-flat sheaf kPV;‘f
can be glued to the sheaves kPVg’s for a € Jy, preserving all the operators. More explicitly, on each
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overlap Wy, := Wy N W, we have
(58) kgoa : kPV:f‘WOa — kPV*’WDa

defined by kgaﬁok90a|wa5 = hgoe_[vv'] O¢_1|Wa5 for 8 € J1, which sends the operator o+ [Din + Ps, -]
t0 Oa + [Nas -]

Definition 5.10. We call kTL: = Ker(A)[-1] C kPV:f[—l], equipped with the structure of a dgLa

using Oy and [-,-] inherited from kPV’; , the sheaf of semi-flat tropical vertex Lie algebras (abbrev.

as st-TVL).

Note that *TL* 2 Ay, @r"h. Also, we have A(¢s) = 0 since A(¢g) = 0, and a direct computation
shows that A(¢in) = 0. Thus ¢, s € kTL;f(WO), and the operator Jy + [éi, + ¢s, -] preserves the
sub-dgLa *TLY.

From the description of the sheaf A* we can see that locally on U C Wy, ¢ is supported on

finitely many codimension 1 polyhedral subsets, called walls or slabs, which are constituents of a
scattering diagram. This is why we use the subscript ‘s’ in ¢s because it stands for ‘scattering’.

5.3. Consistent scattering diagrams from Maurer-Cartan solutions.

5.3.1. Scattering diagrams. In this subsection, we recall the notion of scattering diagrams introduced
by Kontsevich-Soibelman [30] and Gross-Siebert [25], and make modifications to suit our needs. We
begin with the notion of walls from [25, §2]. Let § = (UTG?[n_z] T) U (Umseﬂs N intre(p)> be
equipped with a polyhedral decomposition induced from P and 8. For the exposition below, we will
always fix k£ > 0 and consider all these structures modulo m**! = (g**1).

Definition 5.11. A wall w is an (n — 1)-dimensional tropical polyhedral subset of ow \ (w N 8)
for some mazimal cell o € P such that w N intre(ow) # 0, together with the choice of a prim-
itive normal dyw and a section Oy, of the tropical vertex group exp(q - kb) in a sufficiently small
neighborhood of w, called the wall-crossing factor associated to the wall w.

We also need the notion of slabs, the only difference with walls being that these are subsets of
codimension one strata p intersecting S..

Definition 5.12. A slab b is an (n—1)-dimensional tropical polyhedral subset of inty(p)\ (intre(p)N
8) for some (n — 1)-cell pp € P~ such that p, NS, # 0, together with a chosen normal dp and a
section Op of exp(q-*h) in a neighborhood of b. The wall-crossing factor associated to b is given by
Op := Oy, 0 O,
where v is the unique vertex such that int.(p), contains b and
Oy, = exp([log(sy, (fu,0))0;, )
(cf. equation (5.4)).

Remark 5.13. In the above definition, a slab is not allowed to intersect the singular locus 8. This is
different from the situation in [25l, §2]. However, in our definition of consistent scattering diagrams,
we will require consistency around each stratum of Se.

Definition 5.14. A (k*-order) scattering diagram is a locally finite countable collection D =
{(wi,0;) }ien of walls or slabs in the semi-flat locus WOH

SRecall that our notion of scattering diagrams is a little bit more relaxed than the usual one defined in [30, 25], as
explained in Remark
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Given a scattering diagram D, we can define its support as |D| := (J;cy Wi There is an induced
polyhedral decomposition on |D| such that its (n — 1)-cells are closed subsets of some wall or slab,
and all intersections of walls or slabs are lying in the union of the (n — 2)-cells. We write |D|
for the collection of all the i-cells in this polyhedral decomposition. We may assume, after further
subdividing the walls or slabs in D if necessary, that every wall or slab is an (n — 2)-cell in |D|. We
call an (n — 2)-cell j in |D| a joint, and a connected component of Wy \ |D| a chamber.

Given a wall or slab, we shall make sense of wall crossing in terms of jumping of holomorphic
functions across it. Instead of formulating the definition in terms of path-ordered products of
elements in the tropical vertex group as in [25], we will express it in terms of the action by the
tropical vertex group on the local sections of ngf. There is no harm in doing so since we have the
inclusion st}l < Der(*GY,*GY%), i.e. a relative vector field is determined by its action on functions.

In this regard, we would like to define the (k™-order) wall-crossing sheaf ¥Og on the open set

Wo(D):=Wo\ |J i,
j€|D|in—2]

which captures the jumping of holomorphic functions described by the wall-crossing factor when
crossing a wall. We first consider the sheaf *GY of holomorphic functions over the subset Wy \ |D,
and let

k .__ kO
O'D’W()\|D\ = Gsf‘Wo\|®|'

To extend it through the walls/slabs, we will specify the analyic continuation through int,.(w) for
each w € |D|"~1. Given a wall/slab w with two adjacent chambers C,, C_ and dy, pointing into
C+, and a point z € int,(w) with the germ Oy, , of wall-crossing factors near x, we let

kOD,x — kGO

sf,z»

but with a different gluing to nearby chambers C4: in a sufficiently small neighborhood U, of z, the
gluing of a local section f € ¥ Op . is given by

®w,x(f)|UmﬂC+ on U, NCy,
f’Uszi =

5.9
(5.9) fluane_ on U, NC-_.

In this way, the sheaf kOD|WO\‘@| extends to Wy(D).

Now we can formulate consistency of a scattering diagram D in terms of the behaviour of the sheaf
kOp over the joints j’s and (n — 2)-dimensional strata of . More precisely, we consider the push-
forward i,(*Op) along the embedding i : Wy (D) — B, and its stalk at 2 € int,e(j) and = € int,e(7) for
strata 7 C 8. Similar to above, we can define the (I™"-order) sheaf 'Oy by using 'GY and considering
equation modulo (¢)"*!. There is a natural restriction map *% : i,(*Op) — i,(*Op). Taking
tensor product, we have "' : i,(*Op) @i 'R — 1.('Op), where *R = C[q]/(¢"t1).

The proof of the following lemma will be given in Appendix §A]

Lemma 5.15. We have L*(OQO|WO) = Ogo, where 1 : Wy — B is the inclusion. Moreover, for any
scattering diagram D, we have i, (OQO\WO(@)) =969, where i : Wo(D) — B is the inclusion.

Lemma 5.16. The 0*-order sheaf i*(OOD) is isomorphic to the sheaf °GO.

Proof. In view of Lemma [5.15] we only have to show that the two sheaves are isomorphic on the
open subset Wy (D). Since we work modulo (g), only the wall-crossing factor ©, , associated to a
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slab matters. So we take a point z € int,e(b) C int,.(p), for some vertex v, and compare OO@@ with
Ogg = 9GO . From the proof of Lemma W’ we have

sf,x*

00,0 _ 00 __
gx B Gsﬂz B Okv(p)’uzK

o0 —0o0
. . ] A
= {ao,j + E a;u’ + g aiv”" | a; € O(ceyn—1(U) for some neigh. U D K, s;g; Og’;il‘az\ < oo} ,

with the relation uv = 0. The gluings with nearby maximal cells o4 of both °G? and OGSf are simply
given by the parallel transport through v and the formulas

—1 ~1
2" 84, (m)z™ for m € Ay, 2" s,y (m)z2™ for m € A,,
Ot QU s;o_l+(mp)zmﬂ, o_:qur0,
-1 —-m,
v =0, v 8, (—myp)zT e

in the proof of Lemma [5.8

Now for the wall-crossing sheaf OOD@ &~ OGSM, the wall-crossing factor @, , can only acts on the

coordinate functions u,v as (m, dp> = 0 for m € A,. The gluing of u to the nearby maximal cells
obeying wall crossing is given by

| U|Uzmr+ onU;Noy,
U\u,n _
= @fu,;,x(u”Umﬂo-, =0 onU,No_,

;/l),a:(u”Uxma, =0onU,No_

is simply because we have v — 0 in the gluing of OGgf. For the same reason, we see that the gluing
of v agrees with that of 0G0 and OGSf. O

in a sufficiently small neighborhood U, of x. The reason that we have ©

Definition 5.17. A (k'-order) scattering diagram D is said to be consistent if there is an isomor-
phism i.(*Op)|w., = *G as sheaves of Clq]/(¢"t1)-algebras on each open subset W,.

The above consistency condition would imply that % : i,(*Op) — i,('Op) is surjective for any
| < k and hence i,(*Op) is a sheaf of free C[g]/(¢"**!)-module on B. We will see that i.(*Op) agrees
with the push-forward of the sheaf of holomorphic functions on a (k*"-order) thickening kX of the
central fiber °X under the modified moment map v.

Let us elaborate a bit on the relation between this definition of consistency and that in [25].
Assuming we have a consistent scattering diagram in the sense of [25], then we obtain a k*-order
thickening * X of °X which is locally modeled on the thickening ¥V, ’s by [24, Cor. 2.18]. Pushing
forward via v, we obtain a sheaf of algebras over Clq]/(¢**1) lifting °G°, which is locally isomorphic
to the ¥G0’s. This consequence is exactly what we use to formulate our definition of consistency.

Lemma 5.18. Suppose we have W C WoNWy such that V = v~ (W) is Stein, and an isomorphism
h: kg%|w — kG0 of sheaves of Clq]/(¢*+1)-algebras which is the identity modulo (q). Then there

s a unique isomorphism 1 : kVa|V — kV5|V of analytic spaces inducing h.

Proof. From the description in we can embed both families *V,,, ¥V over Spec,, (C[q]/(¢"™))
as closed analytic subshemes of CV*+1 = CV x C, and CL+l =l x C, respectively, where projection
to the second factor defines the family over C[g]/(¢**!). Let J, and Js be the corresponding
ideal sheaves, which can be generated by finitely many elements. We can take Stein open subsets
U, € CN*! and Us C CE*! such that their intersections with the subschemes give ¥V,|y and
kV5|V respectively. By taking global sections of the sheaves over W, we obtain the isomorphism
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h : Okvﬁ(V) — Oky (V). Using the fact that U, is Stein, we can lift h(z;)’s, where 2;’s are
restrictions of coordinate functions to ng\v C Ug, to holomorphic functions on U,. In this way, h
can be lifted as a holomorphic map ¢ : U, — Ug. Restricting to kVa|V, we see that the image lies

in kV5|V, and hence we obtain the isomorphism . The uniqueness follows from the fact the v is
determined by ¥*(z;) = h(z;). O

Given a consistent scattering diagram D (in the sense of Definition |5.17)), the sheaf i, (k Op) can
be treated as a gluing of the local sheaves ¥G9’s. Then from Lemma we obtain a gluing of the
local models ¥V,’s yielding a thickening *X of °X. This justifies Definition

5.3.2. Consistent scattering diagrams from Maurer-Cartan solutions. We are finally ready to demon-
strate how to construct a consistent scattering diagram D(¢) in the sense of Definition from a
Maurer-Cartan solution ¢ = ¢ + tf obtained in Theorem As in we will fix a ktP-order
Maurer-Cartan solution ¢ and define its scattered part as ¢g € kTLSIf(WO). From this, we want to
construct a k'"-order scattering diagram D(¢).

We take an open cover {U;}; by pre-compact convex open subsets of W, such that locally on Uj,
®in + ¢s can be written as a finite sum

(Gin + d)lu, =) oy @ vy,
J

where a; € A(U;) has asymptotic support on a codimension 1 polyhedral subset P C U;, and

vi; € Fh(U;). We take a partition of unity {;}; subordinate to the cover {U;}; such that supp(g;)
has asymptotic support on a compact subset C; of U;. As a result, we can write

(5.10) Gin + Qs = Z Z(@iaij) & vij
i g

such that each (g;c;) has asymptotic support on compact codimension 1 subset C; N P;; C U;. The
subset |J;; C; N P;; will be the support |D| of our scattering diagram D = D(¢).

We may equip |D| := Uij C; N P;; with a polyhedral decomposition such that all the boundaries
and mutual intersections of C; N Pj;’s are contained in (n — 2)-dimensional strata of |D|. So, for each
(n — 1)-dimensional cell 7, if intye(7) N (C; N Pi;) # 0 for some 4, j, then we must have 7 C C; N Py;.
Let I(7) :={(4,7) | 7 € C;N P;;}, which is a finite set of indices. We will equip the (n — 1)-cells 7’s
of |D| with the structure of walls or slabs.

We first consider the case of a wall. Take 7 € |D|[*~ such that 7 Nint,e(p) = @ for those p with
pN8. # (. Welet w = 7, choose a primitive normal dy of 7, and give the labels C4+ to the two
adjacent chambers C+ so that dy is pointing into C,. In a sufficiently small neighborhood U, of
intye(7), we may write

dslv, = Y (eicug) @ vy,
(i,4)€1(r)
where each (g;c;) has asymptotic support on int,e(7). Since locally on U, any Maurer-Cartan
solution is gauge equivalent to 0, there exists an element 0, € A%(U,) ® ¢ - *h(U;) such that

el 09y o0 el = Gy + [¢s, ]

Such an element can be constructed inductively using the procedure in [31, §3.4.3], and can be
chosen to be of the form

9TD|U ncy O UT mc—i—v
A1 0 = T
(5.11) rluznes {() onU,NC_,
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for some 0,9 € q - kh(UT).From this we obtain the wall-crossing factor
(5.12) Oy = elfror],
Remark 5.19. Here we need to apply the procedure in [31), §3.4.3], which is a generalization of that

in [6], because of the potential non-commutativity: [vij, viy] # 0 for j # j'.

For the case where T C intye(p), for some p with p N8, # 0, we will define a slab. We take U,
and I(7) as above, and let the slab b = 7. The primitive normal d, is the one we chose earlier for
each p. Again we work in a small neighborhood U of int,(7) with two adjacent chambers C1. As
in the proof of Lemma we can find a step-function-like element 6, , of the form

. 10%(3;,;1(fv,p))adp on Ur NCy,
op 0 on U, NCy
to solve the equation elf»:1 0 8y o e~ 0vr] = gy + [hin, -] on U;. In other words,
¥ im e (TU 0, 8) = (TLw,. 80
is an isomorphism of sheaves of dglLas. Computations using the formula in [5, Lem. 2.5] then gives
the identity B -
U (8o + [#(95), ) 0¥ = Do + [¢in + b5, .
Once again, we can find an element 6, such that
el 6 8y 0 e 071 = Gy + [T (), -],
and hence a corresponding element 0,9 € g - kh(UT) of the form (5.11)). From this we get
(5.13) Op = elfrov]
and hence the wall-crossing factor Oy, := 0, , 0 O, associated to the slab b.

Next we would like to argue that consistency of the scattering diagram D follows from the fact
that ¢ is a Maurer-Cartan solution. First of all, on the global sheaf kpy** over B, we have the
operator Oy := 0+ [¢, -] which satisfies [A, J4] = 0 and 635 = 0. This allows us to define the sheaf of

k" -order holomorphic functions as
k0¢ = Ker(5¢) - kPVO’O,

for each k € N. It is a sequence of sheaves of commutative C[q]/(q
k|l
h o

k+1)_algebras over B, equipped

with a natural map k(9¢ — lOd) for I < k that is induced from the maps for *PV*. By
~ 0

construction, we see that °O, = G0 = 1, (O ).

We claim that the maps klys are surjective. To prove this, we fix a point € B and take an open
chart W, containing x in the cover of B we chose at the beginning of There is an isomorphism
By : FPV* |y, = ¥PV?, identifying the differential 0 with On + [1)a,] by our construction. Write
b0 = Po(¢) and notice that Oy + [a + ¢a, -] squares to zero, which means that 7, + ¢, is a solution
to the Maurer-Cartan equation for * PV* (W,,). We apply the same trick as above to the local open
subset W, namely, any Maurer-Cartan solution lying in *PV, 1’1(I/VO[) is gauge equivalent to the

trivial one, so there exists 0, € *PV 5"’ (W,) such that

elfol 6 5y 0 e70 ) = 5y + (o + das .

As a result, the map e el od, - (FPV |y 040, ]) = (FPVE", 0,) is an isomorphism of dgLas,
sending k(9¢ isomorphically onto kgg.

We shall now prove the consistency of the scattering diagram D = D(¢) by identifying the
associated wall-crossing sheaf *Op with the sheaf kO¢|W0(D) of k*™-order holomorphic functions.
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Theorem 5.20. There is an isomorphism ® : kO¢|WO(®) — *0qp of sheaves of Clq]/(¢*+1)-algebras
on Wo(D). Furthermore, the scattering diagram D = D(¢) associated to the Maurer-Cartan solution
¢ is consistent in the sense of Definition [5.17

Proof. To prove the first statement, we first notice that there is a natural isomorphism * Oplwo\jp| =
kOD|WO\‘D|, so we only need to consider those points x € int,(7) where 7 is either a wall or
a slab. Since Wy(D) C Wy, we will work on the semi-flat locus Wy and use the model * PV*
which is equipped with the operator dy + [¢m + és,-]. Via the isomorphism & : (kPVS’*,5¢) —
(*PVZ", 00 + [¢in + ¢s,]) from Lemma we may treat *Oglw, = Ker(9y) C kPV(S)f’O. We fix a
point x € Wy(D) N |D| and consider the stalk at = for both sheaves. In the above construction of
walls and slabs from the Maurer-Cartan solution ¢, we first take a sufficiently small open subset
U, and then find a gauge equivalence of the form ¥ = el in the case of a wall, and of the form
U = elfvrl o elfr] in the case of a slab. We have ¥ o JpoW1 =9+ [in + s, -] by construction,
so this further induces an isomorphism ¥ : *G%|r;, — *Oy|y, of Clg]/(¢"!)-algebras.

It remains to see how the stalk ¥ : ngfx — k(’)¢7x is glued to nearby chambers C. Let U := elf70-]

as in (5.12) in the case of a wall and ¥ := 6, , 0 €l’70:] as in (5.13)) in the case of a slab. Then the

restriction of an element f € *G0

st U0 a nearby chamber is given by

B U(f) onU,NCy,
f_{f on U, NC4

in a sufficiently small neighborhood U,. This agrees with the description of the wall-crossing sheaf
k Op, in equation (5.9). Hence we obtain an isomorphism kO¢|WO(D) ~ kO,

To prove the second statement, we first apply pushing forward via i : Wy(D) — B to the first
statement to get the isomorphism i, (k(’)qs]WO(D)) >~ i,(*O9p). Now, by the discussion right before
this proof, we may identify k(’)¢ with kgg locally. But the sheaf kgg, which is isomorphic to the
restriction of °G°®¢C[q]/(¢*+1) to W, as sheaf of C[q]/(¢*+!)-module, satisfies the Hartogs extension
property from Wy(D) N W, to W, by Lemma @ So we have i, (k0¢]WO(D)) ~ k0,4, Hence, we
have i,(*Op)|w. = (FO4)|w, =*GY, from which follows the consistency of the diagram D. O

Remark 5.21. From the above proof, we actually have a correspondence between step function like
elements in the gauge group and elements in the tropical vertexr group as follows. We fix a generic
point x in a jointj, and consider a neighborhood of x of the form Uy x D, where Uy is a neighborhood
of x in intr(j) and Dy is a disc in the normal direction of j. We pick a compact annulus A, C D,
surrounding x, intersecting finitely many walls/slabs. We let 11, ...,Ts be the walls/slabs in anti-
clockwise direction. For each T;, we take an open subset W; just containing the wall 7; such that
Wi\ 7 =W, + UW; _. Figure @ illustrates the situation.

As in the proof of Theorem there is a gauge transformation W; : (kPV:f]WZ., d0) — (¥ PVlw; Do+
[Pin + ¢s,°]) on each 'W;, where ¥; = elfv.rl o el for o slab and ¥; = el%1 for a wall. These are
step function like elements in the gauge group satisfying

v ©; onW; 4,
L {id onW; _,,
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Ti+1

FiGure 3.

where ©; is the wall crossing factor associated to 7;. On the overlap W; + = W; N W,y (if i = s,
i+1=1), there is a commutative diagram

0;

(kPV:f|Wz+v 50) (kPV:f|W¢7+,50)

v, Vi1
(kPV:f|Wi,+750 + [¢m + Qbs: ]) (kPV:f|Wzy+a 50 + [¢%TL + ¢S7 ])

allowing us to understand the wall crossing factor ©; as the gluing between (kPV:f‘Wi,ég) and
(kPV;‘f\W Do) over W; 4.

Notice that the Maurer-Cartan element ¢ is global. On a small neighborhood W, containing
U, X D, we have the sheaf (*PV*, ds) on Wy, and there is an isomorphism elforl o (kpV* 9, =
(*PV?,04). Composing with the isomorphism (*PV%|w,, d4) = (kPV:f|wi, 0o+ [pin+ ¢s,]), we have
a commutative diagram of isomorphisms

id

i+17

¥Y; o

(kPV:f’Wi,+7 50) (k PV:f’WZ,+ ) 50) .

(kPVZ’Wi,+7 5@)

It is a Cech-type cocycle condition between the sheaves kPV;‘f\Wi ’s and ¥ PV'%, which can be understood
as the original consistency condition defined using path-ordered products in [30, 25]. In particular,
taking a local holomorphic function in kgg(Wa) and restricting it to U, X A, we obtain elements
mn ngf(Wi) that jump across the walls according to the wall crossing factors ©;’s.

APPENDIX A. THE HARTOGS EXTENSION PROPERTY

The following lemma is an application of the Hartogs extension theorem [35].

Lemma A.1. Consider the analytic space (C*)* x Spec,,(C[£,]) for some T and an open subset
of the form U x V, where U C (C*)¥ and V is a neighborhood of the origin o € Spec,,(C[S.]).
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Let W := V \ (U, Vi), where dimg(w) + 2 < dimg(Z;) (i.e. W is the complement of complex
codimension 2 orbits in V). Then the restriction O(U x V) — O(U x W) is a ring isomorphism.

Proof. We first consider the case where dimg(X;) > 2 and W = V' \ {0}. We can further assume
that 3, consists of just one cone o, because the holomorphic functions on V' are those on V N that
agree on the overlaps. So we can write

OU x W) = { > amz™ | am € (’)(C*)k(U)} ,
meEA

i.e. as Laurent series converging in W. We may further assume that W is a sufficiently small

Stein open subset. Take f =3\ amz™ € O(U x W). We have the corresponding holomorphic

function » 0 cx  am(u)2™ on W for each point u € U, which can be extended to V' using the Hartogs

extension theorem [35] because {0} is a compact subset of V' such that W is connected. Therefore,

we have a,(u) = 0 for m ¢ oNA, for each u, and hence f = >\ amn2™ is an element in O(U x V).

For the general case, we use induction on the codimension of w to show that any holomorphic
function can be extended through V,,\|J, V7 with dimg(7) < dimg(w). Taking a point x € V,,\U, V7,
a neighborhood of  can be written as (C*)! x Spec,,(C[X,]), and by induction hypothesis, we know
that holomorphic functions can already be extended through (C*)! x {0}. We conclude that any
holomorphic function can be extended through V,, \ |, V. O

We will make use of the following version of the Hartogs extension theorem, which can be found
in e.g. [20, p. 58], to handle extension within codimension 1 cells p’s and maximal cells o’s.

Theorem A.2 (Hartogs extension theorem, see e.g. [26]). Let U C C" be a domain with n > 2,
and A C U such that U \ A is still a domain. Suppose w(U) \ w(A) is a non-empty open subset,
and (7 (x)) N A is compact for every x € A, where w: C* — C"! is projection along one of the
coordinate direction. Then the natural restriction O(U) — O(U \ A) is an isomorphism.

Proof of Lemma[5.15, To prove the first statement, we apply Lemma[A Tl So we only need to show
that, for p € P~ a holomorphic function f in U, \ 8 C V(p) can be extended uniquely to U,,
where U, is some neighborhood of z € int,e(p) N 8. Writing V(p) = (C*)" ! x Spec,,(C[Z,]), we
may simply prove that this is the case with X, consisting of a single ray o as in the proof of Lemma
Thus we can assume that V(p) = (C*)"~! x C, and the open subset U, = U x V for some
connected U. We observe that extension of holomorphic functions from (U \ 8) x V to U x V can
be done by covering the former open subset with Hartogs’ figures.

To prove the second statement, we need to further consider extension through int,.(j) for a joint j.
For those joints lying in some codimension 1 stratum p, the argument is similar to the above. So we
assume that o; = o is a maximal cell. We take a point = € int,.(j) and work in a sufficiently small
neighborhood U of z. In this case, we may find a codimension 1 rational hyperplane w containing
j, together with the lattice embedding A, < A, inducing a projection 7 : (C*)® — (C*)"~! along
one of the coordinate direction. Letting A = v~1(ANU) and applying Theorem we obtain the
extensions for holomorphic functions in U. (|
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