HOLOMORPHIC LINE BUNDLES ON PROJECTIVE TORIC MANIFOLDS
FROM LAGRANGIAN SECTIONS OF THEIR MIRRORS BY SYZ
TRANSFORMATIONS
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ABSTRACT. The mirror of a projective toric manifold Xy is given by a Landau-
Ginzburg model (Y, W). We introduce a class of Lagrangian submanifolds in
(Y, W) and show that, under the SYZ mirror transformation, they can be trans-
formed to torus-invariant hermitian metrics on holomorphic line bundles over
Xy,. Through this geometric correspondence, we also identify the mirrors of
Hermitian-Einstein metrics, which are given by distinguished Lagrangian sec-
tions whose potentials satisfy certain Laplace-type equations.
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1. INTRODUCTION

Let X5 be a projective toric manifold defined by a fan ¥£. The mirror of X5
is given by a Landau-Ginzburg model (Y, W), which consists of a noncompact
Kéhler manifold Y and a holomorphic function W : Y — C (the superpotential).
Mirror symmetry relates the complex geometry of Xy to the symplectic geometry
of (Y,W). In particular, holomorphic vector bundles (or more generally, coher-
ent sheaves) over X5 should correspond to Lagrangian cycles in (Y, W). This
is succinctly expressed by Kontsevich’s Homological Mirror Symmetry Conjec-
ture for toric manifolds [14], which states that the derived category of coherent
sheaves D’Coh(Xy) is equivalent to the Fukaya-Kontsevich-Seidel category of
(Y, W). Since then, much work has been done [13], [17], [19], [4], [5], [1], [8], cul-
minating in proofs of the conjecture for all projective toric manifolds in Abouzaid
[2] and, more recently, in Fang-Liu-Treumann-Zaslow [9].!

In this paper, we will examine the correspondence between holomorphic line
bundles on X5 and Lagrangian cycles on (Y, W) from a different angle, namely, by
applying SYZ mirror transformations [6], [7]. Our goal is to put the correspondence

1Fang-Liu-Treumarm-Zaslow [9] also proved an equivariant version of the conjecture.
1
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in the toric case in the same footing as the semi-flat Calabi-Yau case as done in
Leung-Yau-Zaslow [15]. This approach is also closely related to the works [1], [2],
[8], [9], where T-duality was used implicitly or explicitly.

Let N & Z" be a rank n lattice, M = Hom(N,Z) the dual lattice and () :
M x N — Z the dual pairing, and let Nr = N ®z R, MR = M ®z R. Denote by
Tn and Ty the real tori Nr/N and MR /M respectively. A projective toric n-fold
Xy, contains an open dense torus orbit U = N ®z C* = (C*)", which can also be
written as

U= NR X v —1TN = TN]R/N,
where we have, by abuse of notations, also used N to denote the family of lattices
NR X v/—1IN C TNR. The projection map U — NR is a (trivial) torus bundle. Ac-

cording to the philosophy of the Strominger-Yau-Zaslow Conjecture [18], the mirror
manifold Y is given by the dual torus bundle (see [6], [7])

Y = N]R XV —lTM = T*N]R/M,

with M denoting the family of lattices Nr x v/—1M C T*Ng. Using the semi-
flat SYZ mirror transformation (or T-duality), Ty-invariant hermitian metrics on
holomorphic line bundles over Xy (when restricted to U) can be transformed to
give Lagrangian sections of Y — N as in [15].? Naturally, one would ask the
following

Question: Which Lagrangian sections of Y — NR can be transformed back, by the in-
verse SYZ mirror transformation, to Ty-invariant hermitian metrics on holomorphic line
bundles over Xyx?

Put it in another way, the problem is to characterize the set of Lagrangian sec-
tions of Y — NR we get by transforming Ty-invariant hermitian metrics on holo-
morphic line bundles over X5. One of our aims in this paper is to answer this
question.

Recall that the superpotential W is a Laurent polynomial (see, for example,
[6], [7]). Write W as a sum of monomials: W = Zle W;. In a sense, the mono-
mial W; (for i = 1,...,d) is mirror to the toric prime divisor D; C X associated
to the primitive generator v; € N of a 1-dimensional cone in ¥. Consider the
embedding ¢ : M — Z% defined by (1) = ((u,v1),...,{1,v4)). By the theory of
toric varieties, the quotient Z¢/((M) is canonically identified with H?>(Xy, Z). In
Section 3, we will define, for each [a] € H*(Xz, Z), a growth condition (x,) for
Lagrangian sections of Y — Nr. We can now state our main result as follows,
which will be proved in Section 4.

Theorem 1.1. Let L, be the holomorphic line bundle over Xy, corresponding to [a] €
H?(Xs,Z). Then the SYZ mirror transformation gives a bijective correspondence be-
tween Tn-invariant hermitian metrics on Ly, and Lagrangian sections of Y — Nr
satisfying the growth condition (x,)).

2More precisely, one should get Lagrangian sections equipped with flat U(1)-connections. But our
Lagrangian sections are simply connected, so all flat U(1)-connections are gauge equivalent to the
trivial one and we will ignore this data.
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Notice that all Lagrangian sections of Y — NR are Hamiltonian isotopic to the
zero section, i.e. they represent the same Hamiltonian class. To get a correspon-
dence with the class of holomorphic line bundles on Xy, it is therefore necessary
to find a finer equivalence relation. For this purpose, we define two Lagrangian
sections of (Y, W) to be equivalent if they can be deformed to each other through
Hamiltonian isotopies which preserve a growth condition (x|). It is easy to see that
each equivalence class then consists of exactly those Lagrangian sections which
satisfy the same growth condition (*[u] ).

Furthermore, by our main result, we can easily identify the Lagrangian sections
which are mirror to Hermitian-Einstein metrics on holomorphic line bundles. These
turn out to be Lagrangian sections whose potentials satisfy certain Laplace-type
equations. We call these Lagrangian sections harmonic. Hence, as an immediate
consequence of our main result, we have the following

Corollary 1.1.

1. The SYZ mirror transformation provides a bijective correspondence between iso-
morphism classes of holomorphic line bundles over Xy, and equivalence classes of
Lagrangian sections of (Y, W).

2. Each equivalence class of Lagrangian sections of (Y, W) is represented by a
unique harmonic Lagrangian section.

All of these will be discussed with more details in Section 4. The next section
(Section 2) is a brief review of mirror symmetry for toric manifolds. Some further
remarks and discussions are contained in the final section (Section 5).

Acknowledgments. I am grateful to Siu-Cheong Lau for numerous useful dis-
cussions. Comments from an anonymous referee were very helpful and led to a
significant improvement in the exposition. I would also like to thank Professor
Shing-Tung Yau and Profesor Naichung Conan Leung for their continuous en-
couragement and support. This work was supported by Harvard University and
the Croucher Foundation Fellowship.

2. PROJECTIVE TORIC MANIFOLDS AND THEIR MIRRORS

In this section, we briefly review the geometric aspects of the mirror symmetry
for projective toric manifolds and fix our notations.

A projective toric manifold by Xy is defined by a smooth, complete fan X in
NR. By the general theory of toric varieties [10], [11], any ample line bundle £ on
Xy is determined by a lattice polytope P C MR dual to X. If vy,...,v; € N are
the primitive generators of the 1-dimensional cones of L, then there is a d-tuple
of integers A = (A1,...,A;) € Z% such that

P={x=(xq,...,xp) € MR : (x,v;) + A; > 0fori=1,...,d},

and £ is then canonically identified with the divisor line bundle O(D, ), where
D, = Z’f:l A;D; is an ample toric divisor. We fix such an ample line bundle £
and equip Xy with the Kahler structure wx, = 1*wrg, where 1 : Xy — CPN is
an embedding induced by £ (note that since Xy, is smooth and projective, every
ample line bundle £ is in fact very ample; see Fulton [10]), and wrs is the Fubini-
Study Kahler structure on CPN.
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Recall that Xy, contains an open dense orbit U = Xy \ Uflzl D;=N®yzC" =
Nr x vV/—=1Ty = TNgr/N, and we have a natural torus fibration vy; : U =
TNR/N — Ng given by projection to the first factor. If ¢y,...,6» € R and
Uy, ..., uy € R/27Z are the base coordinates on NR and fiber coordinates on
Ty respectively, then the complex coordinates on U = (C*)" are given by w; =

StV 1y ,j=1,...,n,and the restriction of wyx, to U can be explicitly written as

_ n aZ(P
wy =w =2v—1d0¢p = ———d&; Nduy,
u Xs U ¢ j,kZ::l ac0c, G k

where ¢ : Nr — R is the function given by

#(0) = 5log ( Y cue2<uf¢>>,

uePNM
for some nonnegative constants ¢, u € PN M, which depend on the embedding
. R o %9 .
t. We use .4)]- and ¢j to denote the partial derivatives i and B respectively,
and let (‘P]k)?,k:_l be the inverse matrix of (cp]-k);l,k:l.
If  : X5, — P is the moment map of the Hamiltonian Ty-action on (X5, wy; ),

then the restriction of y to U C Xy is the map yy : U — MR given by

_ c wuz.u
nu(w) = dg(log [wil, ..., log [wa|) = Z“GP”_M « 'uz ,
ZuerMCu|w |

for w = (wq,...,w,) € U = (C*)". The image of py; is the interior P of the
polytope P. In fact, the Legendre transform of the function ¢ gives a diffeomor-
phism @ = d¢ : Nk — P and pyy = P ovy;. We also have a nowhere vanishing
holomorphic n-form on U given by

Qu = dﬂ A 4wy .
w1 Wy
With respect to wy; and Oy, vy : U — N and gy : U — P are special Lagrangian
torus fibrations, in the sense of Auroux [3] (and U is an almost Calabi-Yau mani-
fold).

The mirror of Xy is the Landau-Ginzburg model (Y, W) described as follows.
The mirror manifold Y is the dual torus fibration Y = Ng x v/—1Ty; = T*Ng /M.
Written in this way, Y is naturally a symplectic manifold, equipped with the stan-
dard symplectic structure wy = 27:1 ac i dyj, where yy,...,yy € R/21tZ are the
dual coordinates on the fiber Tys. The projection map py : Y = T*Nr/M — NR
is the moment map for the Hamiltonian Tjs-action on Y. To describe the com-
plex structure on Y and write down the superpotential W, it is more convenient
to change the coordinates on the base by the diffeomorphism ® : Ng — P and
rewrite Y as Y = P x v/—1Ty; = TP/ M, where M here denotes the (trivial) fam-
ily of lattices P x v/—1M. Then Y is naturally a complex manifold with complex

coordinates given by z; = e 5TV~ where x,...,x, are the coordinates on P.
There is a nowhere vanishing holomorphic n-form on Y given by

dz dz
Qy = LA AR
Zl Zn
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The superpotential W : Y — C is the Laurent polynomial

W(z) =e Mz 4. e Mg
forz = (z1,...,2zn) € (C*)", where z” denotes the monomial 271]]1 .. .ZZ?. W can be
obtained as the SYZ mirror transformation of a certain function on the geodesic
loop space Ly of U C X5, (see Chan-Leung [6], [7] for details).
Notice that, as a complex manifold, Y is biholomorphic to the bounded domain
{z € (C*)":|eNz%]| <1, fori=1,...,d} in (C*)". On the other hand, since ®
is a Legendre transform, there exists a function ¢ : P — R such that ¢/¥ = Yix =

afjg;k and (/) := (¢jk)_1 = (@jx)- The Legendre transform ¥ : P — Np of ¢ is

then the inverse of ® : Ng — P, i.e. ¥ = ®~1. Now, the symplectic structure wy
is given in the x;,y; coordinates by

If we denote by vy : Y = TP/M — P the projection map to the base P, then we
have yy = ¥ ovy. With respect to wy and Qy, vy : Y — Nrand py : ¥ — P
are special Lagrangian torus fibrations, which are dual to vy : U — NR and
uy : U — P respectively.

Physical arguments predict that the complex (respectively, symplectic) geom-
etry of Xy is interchanged with the symplectic (respectively, complex) geometry
of (Y, W) under mirror symmetry. For precise mathematical statements and how
SYZ mirror transformations are applied to explain the geometry underlying this
mirror symmetry, we refer the reader to [6], [7].

3. A cLASS OF LAGRANGIAN SUBMANIFOLDS IN LANDAU-GINZBURG MODELS

In this section, we introduce a class of Lagrangian submanifolds in (Y, W),
which are sections of the torus fibration py : Y — NR (or vy : Y — P), satisfying
certain growth conditions at infinity.

Let (Y, W) be a Landau-Ginzburg model mirror to a projective toric manifold
Xx. Recall that the superpotential W € O(Y) is a Laurent polynomial of the
form Y7 | b;z%, for some vy,...,v; € N. Define A(W) to be the quotient group
7%/ (M), where 1 : M — Z¢, u — ((u,v1),...,(u,04)) is the homomorphism
defined in the introduction. As we have mentioned before, A(W) is canonically
identified with the second cohomology group H?(Xs, Z) of Xy. Moreover, if we
let Log : TMRr/M = (C*)" — MR = R" be the map defined by

Log(zi,...,zn) = (log|z1|,...,1og|za|),

then (the closure of) the image of Y under Log, i.e. P := Log(Y) = Log({z €
(C*)" @ |byz’| < 1forallv € A}), is a polytope in MR, and this determines a
fan X in NR. These are exactly the polytope and fan defining the projective toric
manifold Xy

Now, we write Y = Ng X v/—1Ty = T*Nr/M and equip Y with the standard
symplectic form wy = 2;7:1 d¢; Ady;. Since NR is simply connected, any section
Lof gy : Y — NR can be lifted to a section L = {(&,y(¢)) : & = (&1,...,&n) € NR}
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of T*NR, where y : Nk — MR should be regarded as a 1-form on Ng; moreover,
if {(&y1(8)) : & € Nr},{(E,y2(8)) : ¢ € NR} C T*Np are two lifts of L C Y,
then y; — y» = u for some constant u € M. By the standard argument as shown
in [15], a section L of py : Y — Np is Lagrangian if and only if some lift L =
{(&,y(&)):¢=1(C1,---,Cn) € Nr} of L to T*NR is the graph of an exact 1-form,
i.e. if and only if

) )
y(E) = dg(&) = (aéaé’)

for some function g on NR, which is unique up to adding a constant. g is called
a potential of the lift L of the Lagrangian section L. For our purpose, we need g to
be of class C2.

Definition 3.1. Let a = (ay,...,ay) € Z% be a d-tuple of integers. A Lagrangian
section L = {(&y(&)) : &€ € Nr} of T*"Nr — NR is said to satisfy the growth
condition (x,) if a potential ¢ € C?>(NR) of L satisfies the following conditions: Given
any n-dimensional cone o € X. Suppose that, without loss of generality, o is generated by
v1,..., 0 and let §(t) = E(ty, ..., tn) = B+ ...+ tq0y, for t = (ty,..., 1) € R™
Then, we have,
1. the functions 2e~2'i ((dg(&(t)), vj) +a;) and e 2t (v]-THess(g)vj) (&(t)) have the
same limit as ti — —oo, forj=1,...,n;
2. for any j,k,1 € {1,...,n}, the function (v].THess(g)vk)(g(t)) has a limit as
t] — —o0; and,
3. for any distinct j, k € {1,...,n}, the function eftfftk(v]-THess(g)vk)(g(t)) Qoes
to zero when tj — —oo or t — —oo.
Let [a] € A(W). A Lagrangian section L of py : Y — NR is said to satisfy the growth
condition (xq)) if some lift L of L from Y to T* NR satisfies (x,) for some representative
a=(ay,...,a5) € Z% of [a).

We denote the set of Lagrangian sections of py : Y — N satisfying ([, ) for
some [a] € A(W) by IL(Y, W).

Remark 3.1. The condition that a Lagrangian section L of py : Y — NR satisfies (x())
is well-defined because if {(&,y1()) : ¢ € Nr}, {(&,y2(8)) : ¢ € Nr} C T*NR are
two lifts of L C Y, then their potentials g1, > will differ by a linear function of the form
(u,G) + a, for some u € M and « € R. Thus, when one of the lifts satisfies (x,), the
other will satisfy (x,), where a' = a+ ((u,v1),...,{u,v4)), and note that we have

[a] = [a'].

We give a couple of examples to illustrate our definitions.

Example 1. The simplest example is given by X5y, = CP!. The fan & in Ng = R
is generated by two primitive vectors v; = 1,7, = —1 (see Figure 1 below). The

"02 % (%} .

¥

Figure 1
mirror manifold Y, as a symplectic manifold, is the cylinder Y = R x /—1S.
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Any Lagrangian section L of py : Y — R lifts to the universal cover T*Ng = R2.
Alift L of L is given by a graph
L={(Ey():CER}CR

where y(¢) = ¢'(¢) is the derivative of a function ¢ = ¢(&) € C?*(R). Given
(a,b) € 72, the conditions in Definition 3.1 reduces to the following two equalities
of limits:

glim 207 % (y(&) +a) = érlim e =26y (7),
lm 26— (@) = Jim /(@)

This implies that, geometrically, we have y(¢) — —aas { — —oo and y(¢) — b
as { — oo, and the slope of the graph goes to zero as { — =+oo; there are no re-
strictions on the graph for finite values of {. The equalities of limits place further
restrictions on the growth rates of y(§) and its derivative as ¢ tends to +co.

Example 2. Consider the case when Xy = CP?. The fan £ in Ng = R? is
generated by v; = (1,0),v, = (0,1),v3 = (—1,—1) (see Figure 2 below). The

02

01
o
2 01
U3
v .
> Figure 2

mirror manifold Y is given by Y = R? x \/—1T? equipped with the standard
symplectic structure. Any Lagrangian section L of piy : Y — R? can be lifted to a
graph
i‘ = {(gl/ CZ/yl (gll 62)/ yZ(gl/ 62)) : (gll 52) c le}
98

in the universal cover T*NRr = R*, where y;(&,&) = %,yz(gl,@) = g5, are

the partial derivatives of a function ¢ = ¢(&;,&) € C?(R?). Let (aj,ap,a3) €
Z3. Consider the maximal cone ¢q. Then the conditions in Definition 3.1 can be
restated as

Jim 2y ) ta) = lim ey @ g)
é‘zlinfoo 20752 (yy(E1, &) +a2) = r;‘zlinfoo e y2a(61,82),
éllinlooe_gl_gzyl,z(glf &) = @Enfoo e 1 02y15(81,82) =0,

where we denote by y;; the partial derivative g—(.;{. In particular, we must have
j

Y1 — —aj as g1 — —oo, Yo — —ap as p — —oo, and various partial derivatives of
Y1, Y2 go to zero as t1, t tends to —oo.
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For another maximal cone, say, 0, the conditions can similarly be rewritten as

JHm 2722 (ya(1, 61+ &) +a2) = gzlffjoofzézyz,z(él, &1+ 82),
clim 2750 ((—y1 —y2) (61,61 + G2) +a3) = élim P (Y11 + 212 + 122) (81,61 + G2),
1*)00 1*)00

&iinm 2 (Y1 +y22) (G161 +82) = ézliﬁjoo 2 (Y10 + y20) (61,61 + &) =0,

Geometrically, this means that we should also have —y; — y, — —a3 as ¢ goes to
—oo in the (—1, —1) direction, and various combinations of the partial derivatives
of y1,y2 go to zero as ¢ tends to —oo in the (0,1) and (—1, —1) directions. Again,
the equalities of limits indicate the growth rates of 11,1, and combinations of
their partial derivatives as ¢ tends to —oo in the (1,0),(0,1), (—1, —1) directions.

In general, given a lift L = {(&,y(&)) : ¢ € Ngr} of a Lagrangian section
L of from Y to T*Np, the conditions in Definition 3.1 specify the values and
growth rates of the functions y1(¢), ..., ¥, (&) and combinations of their partial
derivatives as ¢ tends to —co in the directions of vy,...,v;. In particular, for
i=1,...,d, (y(¢),v;) goes to —a; as ¢ tends to —oo in the direction of v;.

We may also regard L and any lift L of L as Lagrangian sections over P, the
interior of the polytope P, so that we can write L = {(x,y(x)) : x € P}. Then
the conditions in Definition 3.1 can be viewed as boundary conditions for the
functions y1(x),...,yn(x) and combinations of their partial derivatives over the
boundary dP. For example, if L satisfies (x,), where a = (ay,...,a4) € 7%, then
the function (y(x),vy) tends to —ay as x approaches the facet of P with normal
vector vg.

Remark 3.2. Our Lagrangian sections are closely related to the tropical Lagrangian
sections defined and used by Abouzaid in his proof [1], [2] of the Homological Mirror
Symmetry Conjecture for toric varieties. This relation is similar to the one explained in
Appendix C of Fang-Liu-Treumann-Zaslow [9].° Let us describe the relation briefly as
follows. In [1], [2], Abouzaid considered the family of superpotentials

d
Wy=) it iz,
i=1

and the smooth hypersurfaces My = W;1(0) in TMR/M = (C*)". The amoeba of
M is the image under the logarithm map, i.e. Ay = Log(M;) C MR, and the tropi-
cal amoeba is the limit TT = lim; .o (A¢/ logt) C MR. Abouzaid showed that there
is a distinguished connected component Q of Mg \ Il which is a copy of the moment
polytope P of (X5, wx, ). Abouazid then defined his tropical Lagrangian sections to be
the Lagrangian sections over Q with boundary in Me = lim;_..o M;. Now, given a
Lagrangian section L in Y satisfying (*[u]) for some [a] € A(W), we may regard L as
a Lagrangian section over P (by writing Y as P x \/—1Ty) and hence over the interior
of Q C MR \IL Then L is in the equivalence class of Abouzaid’s Lagrangian section
associated to the line bundle L,).

3Indeed, we believe that the boundary conditions for Lagrangian sections used in [9] are equivalent
to those we use here.
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We now return to the general discussion of the set L(Y, W) of Lagrangian
sections.

Proposition 3.1. Any two Lagrangian sections Ly, L, € IL(Y, W) satisfying the same
growth condition (*(,) can be deformed to each other through Hamiltonian isotopies

which preserve ([ ).

Proof. Choose lifts L1, L, of Ly, Ly respectively, such that they satisfy the same
growth condition (%,), for some representative a € Z¢ of [a]. Let g1, be the
potentials of Ly, L, respectively. Regard H := g1 — g» as a Tyj-invariant function
on Y. Then the Hamiltonian flow p; : Y — Y associated to H moves L; to L at
time t = 1, and p;(L;) satisfies (x[,) for all f because H, as a function on Np,

satisfies (xq). O

In view of this proposition, we define two Lagrangian sections Ly, L, € IL(Y, W)
to be equivalent, denoted L1 ~ Lo, if they satisfy the same growth condition (x,));

and we denote the equivalence class to which L € IL(Y, W) belongs by [L].

Now rewrite Y as Y = P x /—1Tyy = TP/M and use the coordinates xi’s
and yj’s to express a lift L = {(¢,dg(Z)) : & € Ngr} of the Lagrangian section
L as the graph of the gradient of the function ¥*g, with respect to the metric
Z?,k:l Pjkdx; @ dxi on P. In other words, we have L={(xyx)):x€Pyx)=
V(¥*¢)(x)}, or in coordinates,

T LAS S
x) = k2ol
) k:Zl ™
For any Lagrangian section L of vy : Y — P, define the normalized slope of L by

ay]
AL Vol / Z . Adxy,,

where L = {(x,y(x)) : x € P} C T*NR is any lift of L to T*Ng. A(L) is clearly
independent of the choice of the lift L.

Proposition 3.2. If L1 ~ Ly, then A(L1) = A(Lp). Hence A is an invariant on the set
of equivalence classes IL(Y, W)/ ~.

Proof. As in the proof of the above proposition, we choose lifts L1, Ly of L1, L
respectively such that they satisfy the same growth condition (,), for some a €
Z? representing [a]. Let g1,¢» be the potentials of L, L, respectively, and let

H:= g1 — g». Set yj( x) =Y 11/J]ka (Y*H) . Then, for j =1, ...,n, we have

n ay] n 1 -
./p];axjdxl/\”'/\dx" = /P ]g yjdxlA...AdxjA.../\dxn)
LG —_—
= dxy N...Ndx; A... Ndxy,
/BP Z y] 1 j n
by Stokes theorem. Consider a facet F, = {x € P : lk = 0} of P. Without loss

of generality, suppose that vk # 0. Then use x1,...,xy, as the coordinates on F,
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so that x,, = —2—},’3 — ZZ % v’; xp. We have
n 1 P (_1)71—1
Y (=1 ydxy AL A dx AL N dxy = T(y(x),vkwxl Ao Adx,_q.
ot b
Now, since H satisfies (), (y(x),vx) = 0 for x € F. Hence [, )" =1 ng dxy AL A
dx, =0, and we have A(L1) = A(Ly). O

Definition 3.2. A Lagrangian section L € IL(Y, W) is said to be harmonic if the follow-
ing Laplace-type equation is satisfied

(3.1)

for some lift L = {(x,y(x)) : x € P} C T*NR of L.

The equation (3.1) is equivalent to the following equation

> lP]k( ax]axk> MZ P (:3}; g)> =A0)

j k=1

on P, where ,,; denotes axaaw If we regard L = {({,dg(E)) : ¢ € Nr} as a

section of py : Y — NR, then Li is harmonic if and only of g is a solution to the
equation

I e S
aé-c]a‘:k

jk=1

on NRr. In the next section, we will see that in each equivalence class [L] €
L(Y,W)/ ~ of Lagrangian sections, there exists a unique harmonic representa-
tive. This is mirror to the existence of a unique Hermitian-Einstein metric on
each holomorphic line bundle over Xy, and A(L) is the mirror analogue of the
(normalized) slope of a line bundle.

On the other hand, we may also choose special Lagrangian sections as repre-
sentatives. According to the definition of Auroux [3], a Lagrangian submanifold

L C Y is special with phase 6 € R if Im(e¥ )|, = 0. In terms of the Xj,Yj
coordinates,

Qy|L = /n\ <—dx]+ﬁdy](x)>

Il
Q.
[¢]
@
/
|
=
+
ﬁ
—_
—
Q
=
—
=
S—
~—
B
=
N———
ISW
=
kA
>
>
[
=
g
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where I, denotes the n x n identity matrix. So L = {(x,y(x) : x € P} is special
Lagrangian with phase 6 € R if and only if the following equation is satisfied

(3.2) Tm <eﬁ9det<1n _ ﬁ(ayj(x) )" )) —0

oxy /jk=1

Equivalently, this means Y*g satisfies the equation

Im <€\/j19det <In _ ﬁl i 1/,]'1 (az(qj*g) _ i ¢Pq¢plka(T*8)>] n )) .
k=1

= 0x;0x P dxg

or, in the ;, y; coordinates, g satisfies the equation

V=16 s S 328 ! _
Im(e det(ln ﬁ(;;(l) 3Cj3§1> ))-0.

jk=1

Our harmonic Lagrangians are closely related to special Lagrangians, at least in
the large radius limit: If we rescale the fiber coordinates by replacing y; by ey;,
then, for small €, the leading term of equation (3.2) will give

= —tan6,
€

which is nothing but equation (3.1) if we choose 6 such that tanf = eA(L).

4. THE SYZ MIRROR TRANSFORMATION AS A GEOMETRIC CORRESPONDENCE

In this section, we first recall the definition of the SYZ mirror transformation.
Then we proceed to prove our main result.

For [a] € H*(Xx,Z), let L, be the corresponding holomorphic line bundle
over Xy. Choose a Ty-equivariant meromorphic section s of L,). Then div(s) =
Z?Zl a;D;, for some integers ay,...,a; € Z such that (a,...,a5) € 74 gives a
representative of the class a. Note that s is holomorphic and nowhere vanishing
over U C Xy, so it is a holomorphic frame of L,y

Let i be a Ty-invariant hermitian metric of class C? on L. The Chern con-

nection V), is given by V;, = d + dlogh(s,s) over U. If we define a function
gn : NR — R by setting

§1(8) = — 5 Togh(s(eF Y T1), s(eF+V 1)),

then the restriction of V, to a fiber Fz := v;;' (¢) 2 Ty gives a flat U(1)-connection

V-1 & dlogh(s,s) , " 9gy
d+ = Zj 5 du]—df\/flga—gduj
=1 ] j=1 %]

on the trivial line bundle C over Ty. Recall that the dual torus Ty = (Tn)*
can be interpreted as the space of flat U(1)-connections on the trivial line bun-
dle C over Ty modulo gauge equivalence.* In our situation, the connection

4This is in fact the starting point of the SYZ conjecture [18]
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d— /-1 Z?:l %%’/’duj corresponds to the point (%, e, g%) € Typ. Hence, the

hermitian metric &, or the Chern connection V},, determines a section

L = {(&dgu(©)) = <¢1,...,cn,§§;,...,§§:> ¢ e Ng)

of T*Ng = Ngr X v/—1Mg — Ng, which is Lagrangian since V), is holomorphic
(see [15]). L, descends to give a Lagrangian section Ly, of yy : Y — NR.

If s’ is another Tn-equivariant meromorphic section of £, then s’ = cw* - s, for
some constant ¢ € C* and u € M, where w" is the monomial wi‘l ...w"". Since
h(s'(w),s' (w)) = |cw" Ph(s(w),s(w)) = [ h(s(w),s(w)), we have g,(§) =
—log |c| = (1,8) + g(Z), where g}, := —jlogh(s',s"). So dg}(¢) = dgu(€) — u.
This gives a different Lagrangian section L = {(¢,dg),(¢)) : ¢ € Nr} in T*Ng,
but it descends to the same Lagrangian section Lj in Y.

Thus we have a well-defined transformation

F:hw— Ly

from the set of Ty-invariant hermitian metrics on holomorphic line bundles over
Xy, to the set of Lagrangian sections of yiy : Y — NR. This is called the SYZ mirror
transformation. This is (fiberwise) a real version of the Fourier-Mukai transform
in algebraic geometry. We can invert the construction and define the inverse
SYZ mirror transformation F~1, which produces, from a Lagrangian section L of
py : Y — NR, a Ty-invariant hermitian metric h; := F~!(L) on a holomorphic
line bundle over U. However, h; may not be extended to a hermitian metric on a
holomorphic line bundle over X5. The question we raised in the introduction is
to characterize the set of Lagrangian sections L for which k; can be extended over
Xy. Our main result says that this set is precisely (Y, W), which we introduced
in the last section.

Theorem 4.1. The image of the SYZ mirror transformation F is IL(Y, W), i.e. fora
Lagrangian section L of yuy : Y — NR, there exists a Tn-invariant hermitian metric h
on a holomorphic line bundle over Xy, such that L = Ly, = F(h) if and only if L satisfies
the growth condition (x(,) for some [a] € A(W).

Before we prove the theorem, we need a couple of lemmas. Let [a] be an ele-
ment in A(W) = H?(Xg,Z) and L, the corresponding holomorphic line bundle
over Xy. We first consider a particular Ty-invariant hermitian metric iy on E[ﬂ]
defined as follows. Choose a representative (ay,...,a,) € Z% of a, and fix a Tn-
equivariant meromorphic section s of EM such that div(s) = D, = 2?21 a;D;, so
that we can canonically identify L, with the toric divisor line bundle O(Dy).
Recall that the moment map py; : U — P is given by
_ _ Lueprm Culw"|? - u

pu(w) = dp(log |wil, ..., logwn|) Y epnt Cal W 2
forw = (wy,...,wy) € U = (C*)". Fori =1,...,d,let]; : MR — R be the
function defined by I;(x) = (x,v;) + A;. In [12], Guillemin showed that there is a
Tn-invariant hermitian metric /iy on E[ﬂ] such that

d

ho(s,s) = ] [(li o pur)™.

i=1
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Lemma 4.1. L, satisfies the growth condition (x,)

The proof of this lemma, which is a straightforward but lengthy calculation,
will be given in the appendix.

To describe the other lemma we require, consider the diagonal T"-action on
C" If F: C" — Ris a T"-invariant function, then we can define a function f :
R" — R, by f(&,...,¢n) = F(e‘:l*ﬁ”l,. . .,e‘f'”*ﬁ””) where w; = egﬁ\ﬁ”f
j=1,...,n, are the complex coordinates on C". But not all functions on IR come
from this way.

Lemma 4.2. Given a function f € C2(R"). Define F : (C*)" — Rby F(wy, ..., wy) =
f(log |w1],...,log |wy|). Then F can be extended to a T"-invariant C* function on C"
if and only if the following three conditions are satisfied

1. Forj=1,...,n, e~ 2% gf and 2e~ 251 go to the same limit as §] — —00.

2. Forany j,k,1 € {1,...,n}, the limit ofagj—ack exists as & — —oo,

2
3. For any distinct j,k € {1,...,n}, e 5% agafgk goes to zero as {j — —oo or

Proof. Write oStV w; = xj++/—1y;. Then, by the chain rule, we have, for
j=1,...,n,

oF df OF
= = e %icosu; = e Ssinu;
ox; / 86] Iy, i ag]
PF Pf ,of o290
@ = € ]COS u](agz _286])+ ag]
0°F —2¢; . 02 f a f
= e ““icosu;sinu;(—5 —
9x;0y; jsinj{ c? acf,] )
0%F s 0? f af —2¢; af
@ = i sin? u(@— 8Tf]>+e /a—gj,
and, for j # k,
0°F 0 f
— &%
ax o, 75k cos uj cos U == agjagk
0’F 02
= ¢ % % cosu;sinu
axjayk J kaC]aék
0’F 0% f
— ¢ %%k gj
= e 7 sin u; sin uy
ay]'ayk / ag]aék
It is then not hard to see that the conditions (1)-(3) are necessary and sufficient
conditions for extending F to C”. O

Proof of Theorem 4.1. Let h be any other Ty-invariant C?> hermitian metric of Lig-
Then there is a function F € C?(Xy) such that h = e~2F 1. Restrict F to U C Xy,

and define f : Ng — Rby f(&1,...,&) = F(efrrV=1u  efntV=lin) Letg e ¥
be an n-dimensional cone, and U, = Spec C[0 N M] the corresponding affine
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toric variety. Xy is covered by these U,’s, and since Xy is nonsingular, U, = C".
Without loss of generality, suppose that the generators of ¢ are vy,...,v, € N.
They give a Z-basis of N. Let @ = V=l g = b tV=liln be the corre-
sponding (inhomogeneous) complex coordinates on U,. This gives coordinates
51, .. .,(fn on NR, and the transformation from these coordinates to the original
coordinates ¢y, ...,C, is given by

¢ = (61/---,@1) = 0151 +...+Un(fn.
Apply the chain rule, we get

of _ y9f%
% = Lons ~ St~
?2f~ = i vlo] 82f = v Hess(f)vy.

Hence, by Lemma 4.2, we conclude that the function f satisfies the growth con-
dition (*9). Now, by Lemma 4.1, L, satisfies the growth condition (x,). Since
Sn = §n, + f, we see that Ly, also satisfies (*;).

Conversely, let L be a Lagrangian section in Y satisfying (x[;)). Choose a lift
L =1{(¢dg(Z)): & € Nr} C T*NR of L which satisfies the same growth condition
(*4) as Ly,. Then the C? function f := g — g, : Nk — R satisfies the growth
condition (o). By the above argument and Lemma 4.2, f extends to a function
F € C%(Xg). So h := e~?Fhy defines a Ty-invariant hermitian metric on L, This
completes the proof of the theorem. O

Theorem 4.1 establishes a bijective correspondence between Ty-invariant her-
mitian metrics on the holomorphic line bundle £, over Xy and Lagrangian sec-
tions of (Y, W) satisfying the growth condition (x(;), for any [a] € H*(Xx, Z) =
A(W). In addition, by our definition in Section 3, two Lagrangian sections
Li,Ly € L(Y,W) are equivalent, denoted L1 ~ Ly, if and only if they satisfies
the same growth condition. Hence, an immediate consequence of our main result
is the following

Corollary 4.1. The SYZ mirror transformation F induces a bijective map
F: Pic(Xs) = (L(Y, W)/ ~).

Recall that a hermitian metric & on the line bundle £, is Hermitian-Einstein,
with respect to the Kéahler metric wy, on Xy, if and only if the following equation
is satisfied

n
Xy’

ML
VIR Al = (nW :

where Fj, is the curvature of the Chern connection Vj, and A(Ly,) is the normal-
ized slope of L, defined by

ML) = — Jyo VIR A @S 2mnpu(Ly)
g fX): wglfz sz W?(Z
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Now let y; = a é =Yi lpjk%, then, restricting to U C Xy, we have

n
vV—1F, = 00 logh = Z dy] A\ du]

j=1
Hence,
n n
\/—1Fh/\w§;1 = (Z%dyj/\dw )A( Z;dx-/\dw)”*l
j= j
n Jy;
= n—l 287] /\ ka/\duk
k=1
n
Wy, = /\ dxy A duy).

From this, we see that

Corollary 4.2. A(L(,) = A(Ly,) and h is Hermitian-Einstein if and only the Lagrangian
section Ly is harmonic. In particular, each equivalence class [L] € L(Y,W)/ ~ is
represented by a unique harmonic Lagrangian section.

On the other hand, the condition for preserving supersymmetry is given by the
following MMMS equation, introduced by Marino-Minasian-Moore-Strominger in
[16] (see also [15]):

Im eV~ 1(F, + wxy )" =0,

for some 6 € R. Since
n

(Fy + wxy )" = () (dxj — vV =1dy;(x)) Aduj)" = £(Qy[L) Adug A... Aduy,
=1
h satisfies the MMMS equation with 6 € R if and only if L, is special Lagrangian
with phase 6.

5. FURTHER REMARKS

We end this paper by several remarks.

1. For our purposes, we consider C? hermitian metrics and Lagrangian sections
whose potential are C? functions. One can certainly consider metrics and La-
grangians in other differentiability classes, but then the growth conditions should
be suitably modified.

In particular, when we only require the metrics to be C°, singular Lagrangians
can arise as follows. Given a divisor 2?21 a;D; in Xy.. Then for every n-dimensional
cone 0 € X[n]|, we can find a unique u, € M such that (u,,v;) = —a; for all
v; € 0. This defines a piecewise linear function ¢ : Nr — R by ¢(&) = (us,{),
for & € 0. Let [a] € H*(Xy, Z) be the class represented by a = (ay,...,a4). Then
there is a Ty-invariant C° hermitian metric / on the line bundle L, such that
2n(8) = ¢(—=¢), and dgj, : Nr — My is the piecewise constant map given by

dgy (&) = —u, for all ¢ € 0. Applying the SYZ mirror transformation, we get
a singular Lagrangian L, = F(h) C Y. This satisfies the following boundary
condition at infinity: for ¢(t) = tjv;+ ..., (dg,(&(t)),v;) + a; = O for ¢; sufficiently

negative. In this case, different line bundles may give rise to the same Lagrangian
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subspace. For example, O(1) and O(—1) both transformed to the Lagrangian L,
which is the zero section plus the fiber over { = 0 € R. One can distinguish the
Lagrangian cycles corresponding to O(1) and O(—1) by equipping the circle fiber
with different orientations. In this way, the SYZ mirror transformation would still
give a bijective correspondence between isomorphism classes of holomorphic line
bundles over Xy and equivalence classes of Lagrangian sections of (Y, W).

2. The SYZ mirror transformation we discuss in this note only gives a bijec-
tive correspondence between holomorphic line bundles over X5, and Lagrangian
sections of (Y,W). But it should be extended to an equivalence between the
derived category of coherent sheaves D’Coh(Xy) and a suitable variant of the
Fukaya-Kontsevich-Seidel category of (Y, W). In particular, it is interesting to see
how higher rank holomorphic vector bundles over Xy can be transformed to La-
grangian multi-sections of (Y, W) equipped with certain extra data. We plan to
address this in the future.

3. Since we equip Y with the dual of the toric metric, it is not always possible
to represent an equivalence class [L] € L(Y,W)/ ~ by a minimal Lagrangian
section. The mirror of CP! provides the simplest example of this. Our way out
is to introduce the notion of harmonic Lagrangians, and as a corollary to our
main result, we saw that each equivalence class [L] is indeed represented by a
unique harmonic representative. However, it would also interesting to look at
the variational theory of Lagrangian sections of (Y, W) directly. For example,
one may attempt to prove the existence and uniqueness of harmonic Lagrangian
sections by directly solving the PDE (3.1). On the other hand, the existence and
uniqueness of the solutions of the MMMS equation and the special Lagrangian
equation are largely unexplored. The toric case we considered here should be the
first nontrivial case for one to investigate these equations.

APPENDIX A
In this appendix, we give a proof of Lemma 4.1, which is restated as follows:

Lemma A.1 (=Lemma 4.1). Ly, satisfies the growth condition (x,), i.e. the function
Sno : NR — R defined by g5, = —% log ho (s, s) satisfies the following conditions: Given
any n-dimensional cone o € X.. Suppose that, without loss of generality, o is generated by
vy, ..., 0 and let §(t) = G(t1, ..., tn) = B + ...+ ta0y, for t = (f1,...,t,) € R™
Then, we have,
1. the functions 2e~2'i ((dg(&(t)), vj) +a;) and e 2t (v]-THess(g)vj) (&(t)) have the
same limit as ti — —oo, forj=1,...,n;
2. for any j,k,1 € {1,...,n}, the function (v]-THess(g)vk)(ﬁ(t)) has a limit as
t; — —oo; and,
3. for any distinct j,k € {1,...,n}, the function e*tf*tk(vaHess(g)vk)(é(t)) goes
to zero when t; — —oo or tp — —o0.

Proof. By definition, we have g;,, = —3loghg(s,s) = —3 Y4 a;log(l; o py), so

that
1 ¢ Ec o Culi(1)e29)
&) =—-=)Y alo ueln .
gho( ) 7 l; i10g EuePﬂM Cuez<”'§>
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The first-order partial derivatives are given by

8§j 71‘—1 l ZuerMcuezw’g) EuerMCuli(“)€2<u’§>

98, ia (ZuEPﬂM cyule? i) _ YuepnM Ctlli(”)”jezw’@)

forj=1,...,n Then, fork=1,...,n,

d Z 1 (u)buez(lk(u)_l)tk
—2ty d t , — ; lk(u)zl k
e (< gho(é( )) Uk> +ak) l;” [ Y ue M bue2lk(u)tk

St (1 ()= 1 I ()1 (u) by 200 =Dtk
B Zl,-(u)zl li(u)bueZIk(u)tk

+ 5ike_2tk] ,

where

b, = bu(tl,. RS TS N P .,tn)
= ¢, ehtetle (b1l (Wbt n (u)t)

Since, foreachi = 1,...,d, there existsu € PN M with [;(u) =land 1 (u) = ... =
L1 (1) = Iey1(u) = ... = I, (u) = 0, the limit of the function e~ ((dg;, (&(t)), v¢) +
ax) always exists as t,, goes to —oo forany m =1,...,k—1,k+1,...,n. Similar
arguments apply to other functions below. Now, as fy — —oo, the terms with
the lowest powers of etk dominate. Also note that, for i = 1,...,d, there exists

u € PN M such that [;(u) = 1. So the function e~ ((dgy, (&(t)), vk) + ax) has a
limit given by

(Zﬂi) Y (uw)=1 bu Y X () =10 () =1 Li (1) bu o 3 (u)=2 bu _
S\ Ew=obu ) Z\ Eiw=otiuw>1 li(w)bu Lt (u)=1 u

The second-order partial derivatives are given by

P _ i . lzuepmM Cuupuzqu<u,§>
i=1 ZuepﬂM cye (u,g)
( YuepnM CuuPeZ(u,§>) ( Y uepnM Cuuq62<u,§>)
(ZuGPDM Cu32<”’§>)2
YucPnM Culi(u)upu‘igz<14,§>
R Yuepom Culi(u)e2(48)
(ZuEPﬂM Culi(u)uP32<u,§>) (ZuerM Culi(u)uqez<”f§>)

(Lueprm Culi(u)e2e) )2

+

7



18 K.-W. CHAN

for p,q =1,...,n. From this we compute, for j,k € {1,...,n},

v«THess(gho)vk
_ . 8 8hg
a Z §p3§q
d w) (1) >1 Cul( i (u)e 28)

= 2}

i=1 Ve prm Cue? )
(Zyz1 ()08 (D21 culi(w)e24))
(Zuernm ¢y e2(1:8) )
Y10y ) () 21 Cauli (1)1 () i (1) €
Zl.(l,)21culi(u) 2(u,6)
(Zl w)=1 Culi ()] (u u)e*! )(Zl ) Ji (w)>1 Culi(u )i (u)e2(w8))
(S50 Culi (1) e204)) :

It is easy to see that, for any I = 1,...,n, as t; — —oo, the limit of the function
(foess(gho)vk)(g(t)) always exists. When j # k, let

b, = by (tl, ,?] ?k/ . tn)
- 2h(w)h+.. +l( )i+ A (). Al (u)tn)

Then the function (vaHess( Shy)0k)(G(t)) is equal to the following expression

lk(u)>ll( )lk( )bue ( j(u )t+lk(u)tk)
22 ¥ o bue 05
- (le(u)le (1)by 2 )+ (u )(Zl (1)>1 Zk(u) t+lk(u)tk))
( Cuepn bue? il )2
Zl (), (1) L () >1 i li(u )l( Mg (u )bue( (1) ti+ 1 (u) )
Zl( )>1Z( )b e( ( )t+lk( ) )
(Zl )i (1) y>1 Li(u)l(u )be( S ARS )(Zz () e ()= 1 L () e (u )bg( (1)1 (1) b ))

(S 1 li(u )by )t’+lk(u)tk))
Notice that in each term, the numerator is O(¢*'i"?%), while the denominator is
O(1). Thus, the function e_t/'_tk(v]THess(gho)vk)((;‘(t)) goes to zero as t; — —oo
or tp — —oo.
For j =k, let

b, = bu(tl,. S 7S I 4 T P .,i’n)
= ¢ttt b1+ (Wbt A ln()t)
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Then
S pE L (1) 2y e (W)
—2t T _ —2t ) I (1)>1 3 )
e~k (v Hess(gy, )vk) (G(t)) = 2e k,;al weh e
Li(u)>1 L (1) by ek ()1
Yuepnm bye2lk ()i

S0 fy (> 1 i () 1 (1) 2y e 1)
Y0, (u)>1 Li (1) by e ()t
() 1 () 21 1 (1) 1 (10) by 2 )
o0,y >1 Li (1) byl ()t

As t — —oo, the function e~ (o] Hess(gy,,)vx) (£(t)) has a limit given by

d 7bu u)=1,L:(u li bu u:bu
2(2%’) glk(u)—lb v Lt () =11 ( )>1l‘(u)b g Lte(u) zb
= 1 (1) =0 Du Ze \ D=0 w=11i(1)by Lt (u)=1bu

This completes the proof of Lemma 4.1. 0

2

+
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