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Abstract. The regularization approach is used widely in image restoration
problems. The visual quality of the restored image depends highly on the reg-

ularization parameter. In this paper, we develop an automatic way to choose

a good regularization parameter for total variation (TV) image restoration
problems. It is based on the generalized cross validation (GCV) approach and

hence no knowledge of noise variance is required. Due to the lack of the closed-

form solution of the TV regularization problem, difficulty arises in finding the
minimizer of the GCV function directly. We reformulate the TV regularization

problem as a minimax problem and then apply a first-order primal-dual method
to solve it. The primal subproblem is rearranged so that it becomes a special

Tikhonov regularization problem for which the minimizer of the GCV function

is readily computable. Hence we can determine the best regularization param-
eter in each iteration of the primal-dual method. The regularization parameter

for the original TV regularization problem is then obtained by an averaging

scheme. In essence, our method needs only to solve the TV regulation problem
twice: one to determine the regularization parameter and one to restore the

image with that parameter. Numerical results show that our method gives

near optimal parameter, and excellent performance when compared with other
state-of-the-art adaptive image restoration algorithms.

1. Introduction. Image restoration is an important task in image processing. Its
aim is to recover the original image f from the degraded observed image g. Mathe-
matically, the problem can be formulated as solving the perturbed linear equations
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[2]

g = Hf + n.

Here H is a linear operator describing the degradation processing of the system, n
is the Gaussian white noise. It is well-known that the image restoration problem is
ill-condition and regularization approach is generally used to stabilize the solution
[7, 12, 14, 15, 30, 31]. One classical approach is to find the original image by
minimizing an energy function consisting of a data-fitting term and a regularization
term:

min
f

α

2
‖Hf − g‖22 + φ(f). (1)

Here α is a positive regularization parameter and φ(f) is a regularization term rep-
resenting the prior information of the original image f . We remark that straightly
speaking, the regularization parameter should be put in front of the regularization
term φ(f). But for ease of formulation in the following derivations, we put α in
front of the data-fitting term and still refer it as regularization parameter.

Numerous expressions for φ(f) have been studied in the literature, such as the
Tikhonov regularization [15, 31] and Total Variation (TV) regularization [30]. Com-
pare to the Tikhonov regularization, the TV regularization has the ability to pre-
serve edges in the image due to the piecewise smooth regularization property of the
TV norm. Thus it is in general more preferable than the Tikhonov regularization
for image restoration purposes.

We remark that the visual quality of the restored image depends highly on the
regularization parameter α. When α is too small, the restored image is over-
smoothed. When α is too large, the restored image will contain too much noise.
Finding a suitable value for α is therefore an integral part of solving the image
restoration problem. In the literature, α is usually chosen manually by trial and
error. However, this approach needs to solve the TV regularization problem many
times and hence is time consuming. It also makes the model impossible to be used
in many real applications. Several approaches have been developed to choose α
automatically. These approaches included, for example, the L-curve method [20],
the discrepancy principle [23], the variational Bayes approach [4, 5, 27], and the
generalized cross validation (GCV) method [15, 17].

In the L-curve method, α is chosen so as to maximize the curvature of the L-
curve, which is the log-log plot of the norm of the regularized term versus the
norm of the data-fitting term [19]. The main difficulty with L-curve method is that
we also need to solve the minimization problem many times for different α’s and
therefore it is also computational expensive. Sometimes, it is also difficult to find
the maximum value of the curvature of the L-curve.

In the discrepancy principle (DP) method, α is chosen so as to match the data-
fitting term to an upper bound derived from the noise variance. The regularization
problem can be reformulated as a constrained one where the data-fitting term should
be less than or equal to the upper bound [3, 8, 15, 25, 32]. Then α is regarded as
the Lagrangian multiplier associated with this constraint. A main drawback of the
method is that we need to know the variance of the noise. In [33], we have developed
a primal-dual framework based on DP to find α and recover the original image
simultaneously. The method only needs to solve the TV-regularization problem
once.

In the GCV method, α is chosen so as to minimize the GCV function which is
derived from the leave-one-out rule [17, 26]. The most appealing advantage of the
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method is that it does not require the knowledge of the noise variance. The basic
idea of GCV is that if α is a good choice, then it should minimize the GCV function.
For Tikhonov regularization term, Golub et al. [17] developed the well-known GCV
method for choosing α. In [26], GCV method was applied to parametric image
restoration and resolution enhancement.

We note that GCV method works for quadratic regularization terms since the
regularization problem has a closed-form (linear) solution. When the regulariza-
tion term is non-quadratic (such as the TV term we considered here), there is no
closed-form solution of the regularization problem, and hence the minimizer of the
GCV function can not be derived explicitly. Accordingly, the problem of parame-
ter selection becomes a bilevel optimization model which is very difficult to solve.
Nonlinear GCV methods were extended to handle this difficulty [16, 18, 28]. The
nonlinear GCV function was derived by evaluating the Jacobian matrix consisting
of the partial derivatives of the minimizer of (1) with respect to the observed data
g. In [29], nonlinear GCV method was applied to the problem of image restoration
and MRI reconstruction. Liao et al. [21] incorporated the GCV technique into
the splitting-and-regularization framework to handle the parameter estimation for
TV-based image reconstruction problem.

In this paper, we propose a novel and efficient GCV approach to estimate α for
TV regularization problems. First, we rewrite the TV regularization problem as a
minimax problem and use a first-order primal-dual method to solve it. Then for the
subproblem for the primal variable, we reformulate it as a quadratic regularization
problem for which the minimizer of the GCV function is computable. Hence we can
determine the regularization parameter for the primal subproblem in each iteration.
The regularization parameter α for the original TV regularization problem is then
obtained by an averaging scheme using the regularization parameters obtained in
each primal iteration.

We now highlight the major differences between our method and previous meth-
ods using the GCV approach to solve the TV regularization problems. The method
in [21] needs to solve the TV regularization problem many times since it introduces
one more regularization parameter; but ours only needs to solve the problem twice:
one to determine α and one to solve for f with our computed α. The method in [29]
is more complex than ours since in each iteration, it requires to compute the Jaco-
bian matrix consisting of the partial derivatives of the minimizer with respect to the
observed data. In contrast, our method only needs to solve the classical Tikhonov
regularization problem without involving any Jacobians. Numerical results show
that our method gives near optimal regularization parameter, and excellent per-
formance when compared with other state-of-the-art adaptive image restoration
algorithms.

The rest of this paper is organized as follows. In Section 2, we reformulate the TV
regularization problem as a minimax problem, and apply a first-order primal-dual
method to solve for it. In Section 3, we first recall the GCV approach for finding
α for Tikhonov regularization problems. Then we extend it to TV regularization
problems. In Section 4, experimental results are given to demonstrate the efficiency
of our algorithm. Finally we draw conclusions in Section 5.

2. TV-norm and Primal-dual Approach. In this section, we briefly review the
TV-norm and reformulate the TV regularization problem into a minimax problem.
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Then we apply a first order primal-dual method to find the saddle point of the
minimax problem.

2.1. Total Variation Norm. Let the size of the original image be m×n. In order
to represent the discrete total variation, we define the matrices R` ∈ Rmn×2 as
follows:

RT` f =

(
f i+1,j − f i,j
f i,j+1 − f i,j

)
,

here ` = (i− 1)m+ j, i = 1, 2, . . . , j = 1, 2, . . . , n. The total variation of the image
f can be written as TV(f) =

∑
`

∥∥RT` f∥∥2 where each term on the right hand

side has an equivalent dual formulation:
∥∥RT` f∥∥2 = max‖ξ`‖2≤1 ξ

T
` RT` f . Here

ξ` =
(
ξ`,1, ξ`,2

)T
with ` = (i−1)n+ j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Define

the sets S as

S =
{
ξ : ξ = (ξ1, ξ2, . . . , ξmn)T , ‖ξ`‖2 ≤ 1, 1 ≤ ` ≤ mn

}
. (2)

Then we can reformulate the total variation of the image f as

TV(f) = max
ξ∈S

fTRξ,

where R = (RT1 ,RT2 , . . .T ,RTmn)T .

2.2. First Order Primal-dual Approach. Using the above representation of the
TV norm, the TV regularization problem can be re-written as

min
f

max
ξ∈S
J (f , ξ;α) :≡ fTRξ +

α

2
‖Hf − g‖22 . (3)

We notice that the functional in (3) is convex (in fact quadratic) in f and concave (in
fact linear) in ξ. By using Proposition 2.6.1 in [6], an optimal solution f∗ of (3) can
be obtained through a saddle point (f∗, ξ∗) of J (f , ξ;α). When the regularization
parameter α is given, many primal-dual methods [9, 10, 33, 34, 35, 36] can be
applied to find a saddle point of (3) by computing the primal variable f and a
dual variable ξ in an alternating way. The method in [10] has become a standard
approach to compute a saddle point of minimax functions, so we apply it to find a

saddle point of (3). It starts at a point (f (0), ξ(0)) and computes

f (k+1) = argmin
f

{
J (f , ξ(k);α) +

1

2t

∥∥∥f − f (k)
∥∥∥2
2

}
, (4)

f̃
(k+1)

= f (k+1) + θ(f (k+1) − f (k)), (5)

ξ(k+1) = argmaxξ∈S

{
J (f̃

(k+1)
, ξ;α)− 1

2s

∥∥∥ξ − ξ(k)∥∥∥2
2

}
, (6)

k = 0, 1, . . .. The parameters s, t > 0 are step sizes of the primal and dual variables
respectively, and θ is the combination parameter. This primal-dual algorithm enjoys
convergence with rate O(1/k) when θ = 1 and the step sizes satisfy st < 1/ ‖R‖22,

see [10]. It is easy to verify that ‖R‖22 ≤ 8. Hence in all the numerical tests below,
we choose θ = 1 and st < 1/8. The iterative scheme can also be equivalently
interpreted as a first-order primal–dual relaxed Arrow-Hurwitz algorithm, see [10].
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3. Generalized Cross Validation. We now recall the basic idea of Generalized
Cross Validation (GCV) in selecting an optimal regularization parameter α for the
model (1). Notice that the minimizer of (1) is also the solution of the following
optimization problem

min
f

1

2
‖Hf − g‖22 + λφ(f),

where λ = 1/α. If we find a suitable parameter λ, we can obtain α accordingly. The
basic idea for GCV is to remove g`, the `-th element of the observation data g, and
then use the remaining elements to estimate this `-th element. If the regularization
parameter is good, then the estimated element should be a good predictor for g`.

Let M` be the diagonal matrix with all entries being one except the `-th entry

being zero and f̂
`

be the minimizer of the minimization problem

f̂
`
(λ) = argmin

f

1

2
‖M` (Hf − g)‖22 + λφ(f). (7)

Here M`g can be regarded as removing the `-th entry of the given data g. The

`-th entry of Hf̂
`
(λ) is the predicted value of the missing `-th entry. The optimal

regularization parameter λ should be chosen to minimize the GCV function, which
is defined as the weighted predicted error over all the observed data:

GCV(λ) =
∑
`

w`

((
Hf̂

`
(λ)
)
`
− g`

)2
. (8)

Here w` are the weights such that the estimate is invariant under the coordinate
system [11, 17]. The analysis of the weights can be found in [17].

3.1. GCV for Tikhonov Regularization Problems. In this subsection, we
present the explicit expression of the GCV function for Tikhonov regularization
problems, i.e.

min
f

1

2
‖Hf − g‖22 +

λ

2
‖Lf‖22 , (9)

where L is a regularization matrix. If the intersection of the null spaces of H and
L contains only the zero vector, then the optimization problem has a closed-form
solution

f(λ) = A(λ)g, A(λ) := (HTH+ λLTL)−1HT . (10)

Using the closed-form formula of f(λ) in (10), the GCV function in (8) can be
expressed as (see [17]):

GCV(λ) =
1
mn‖(I −HA(λ))g‖22

[ 1
mn trace(I −HA(λ))]2

. (11)

Here trace(·) denotes the trace of a matrix. An optimal parameter λ should be
chosen to minimize the GCV function (11). Note that (11) is not easily computable
since it involves (HTH+ λLTL)−1.

However, for our method to be derived below, we just need L = I, the identity
matrix, and H to be diagonalizable, i.e., H = UTDU with a unitary matrix U and
a diagonal matrix D. Let d` be the `-th diagonal entry of D and ĝ` be the `-th

entry of the vector Ug. Using the identity I−HA(λ) = λ
(
HHT + λI

)−1
, the GCV
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function (11) becomes

GCV(λ) = mn

(∑
`

(
|ĝ`|

|d`|2 + λ

)2
)
/

(∑
`

1

|d`|2 + λ

)2

. (12)

We remark that in image restoration, H is usually a matrix with block circu-
lant with circulant blocks (BCCB) structure when periodic boundary conditions
are applied, or with block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks
(BTHTHB) structure when Neumann boundary conditions are used [24]. If H is
a BCCB matrix, it can be diagonalized by a fast discrete Fourier transform ma-
trix; and if H is a BTHTHB symmetrical matrix, it can be diagonalized by a fast
discrete cosine transform matrix [24]. In both cases, we can compute the GCV
function easily.

3.2. GCV for TV Regularization Problems. Now we consider how to find the
regularization parameter α for TV regularization problems (3). Notice that unlike
the Tikhonov regularization problem (9) where it has a closed-form solution (10),
problem (3) does not have a closed-form solution. Using the idea of GCV, the
optimal parameter λ = 1/α should be the minimizer of GCV(λ) in (8) subject to

the constraint that f̂
`
(λ) is a solution of (7). Obviously, it is a bilevel minimization

problem:

λ = argminλ
∑
` w`

((
Hf̂

`
(λ)
)
`
− g`

)2
s.t. f̂

`
(λ) = argminf

1
2 ‖M` (Hf − g)‖22 + λ ‖Rf‖1 ,

which is in general difficult to solve. We resort to find the best λ adaptively.
Notice that if we solve problem (3) using the primal-dual method introduced in

Section 2.2 (i.e. steps given in (4)–(6)), only the primal subproblem (4) depends on
α. Moreover (4) can be rewritten in the form of a Tikhonov regularization problem:

f (k+1) = argmin
f
{ tα

2
‖Hf − g‖22 +

1

2
‖f − v(k)‖22}. (13)

Here v(k) = f (k) − tRξ(k), which can be regarded as an approximately restored

image. Notice that (13) can be further rewritten as f (k+1) = u(k+1)+f (k)−tRξ(k),
where

u(k+1) = argmin
u

{1

2
‖Hu− (g −H(f (k) − tRξ(k)))‖22 +

β

2
‖u‖22

}
(14)

with β = 1/(tα).
The problem (14) is precisely the special Tikhonov regularization problem we

discussed in Section 3.1 where L = I. Its GCV function is given by (12). By
minimizing the GCV function, e.g. by Matlab function fminbnd, we can obtain
the best βk for (14). Once βk is determined, we set

αk = 1/(tβk) (15)

and solve f (k+1) in (13) with α = αk.
Finally the regularization parameter α of the original TV regularization problem

(3) is obtained by an averaging scheme. The idea is to run the program until a
stopping criterion is fulfilled, and then we set the regularization parameter α as
the average of the αk in the last 20-th iterations. More precisely, if the iteration

stops at say the Kth iteration, then we set α = 1
20

∑K
k=K−19 αk = 1

20t

∑K
k=K−19

1
βk

.
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Type Function Type Function

PSF1 fspecial(’average’,3) PSF5 fspecial(’disk’,2)

PSF2 fspecial(’average’,9) PSF6 fspecial(’disk’,4)

PSF3 fspecial(’gaussian’,3,1) PSF7 [1, 4, 6, 4, 1]′ × [1, 4, 6, 4, 1]/256
PSF4 fspecial(’gaussian’,9,3) PSF8 fspecial(’motion’,20,45)

Table 1. The point spread functions of the blurs used in the tests

The resulting algorithm is summarized in Algorithm 1 where PS is the projection
operator onto S in (2). Once α is found, we can use the primal-dual method (4)–(6)
with this fixed α to find the restored f . In summary, our method requires applying
the primal-dual method twice; first to obtain the λk in each iteration in order to
determine α, and second to find the restored image f with the obtained α.

Figure 1. Original goldhill image with size 256 × 256 and man
image with size 512× 512.

Algorithm 1 Adaptive Parameter Selection for TV Image Restoration Problems
(GCV)

Ensure: α = GCV(g,H).
Require: g, H.

1: Initialize f (0) and p(0). Set the step sizes s and t.
2: while stopping criterion is not satisfied do

3: uk = f (k) − tRξ(k);
4: Estimating the parameter βk in (14) by GCV and set αk = 1

tβk
;

5: f (k+1) =
(
αktHTH+ I

)−1(
αktHTg + uk

)
;

6: f̃
(k+1)

= f (k+1) + θ(f (k+1) − f (k));

7: p(k+1) = PS(p(k) + sRT f̃
(k+1)

);
8: end while
9: α = 1

20

∑k
i=k−19 αi;

10: return α

4. Numerical Results. In this section, we illustrate the performance of the pro-
posed algorithm by comparing it with some state-of-the-art adaptive algorithms.
The experiments were performed under Mac OS X10.10.2 on an iMac with a 3.4GHz
Intel Core i5 processor and 8GB of RAM and MATLAB R2014a. The Improved
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Figure 2. ISNR value versus the regularization parameter α for
man image degraded by the eight blurs listed in Table 1. Here the
noise variance σ = 2, 4, 6, 8.
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Figure 3. ISNR value versus the regularization parameter α for
man image degraded by the eight blurs listed in Table 1. Here the
noise variance σ = 10, 20, 30, 40.

Signal-to-Noise Ratio (ISNR) is used to measure the quality of the observed im-
ages and the restoration results respectively. The ISNR is defined as follows:
ISNR = 10 log10

(
‖g − f clean‖22/‖f − f clean‖22

)
.

Eight typical blur kernels are used in the tests, see Table 1. Periodic boundary
condition is used for these blurring operators. Zero mean additive white Gaussian
noises with various noise levels σ are added to the blurred image to generate the
noisy observations. For finding the minimizer of the GCV function (11) using
Matlab fminbnd, instead of finding all the minimizers in (0,∞), we just find a local
minimizer of (11) in the finite interval (0, 100]. The stopping criterion is when the

relative difference between successive iterates satisfies ‖f (k+1) − f (k)‖22/‖f
(k)‖22 ≤

10−4; or the maximum number of iterations, which is set to 500, has reached.

4.1. Robustness of s and t. By (15), α depends on αk which in turn depends
on the step size t. We first test whether α is robust against t. According to the
convergence criteria in [10], we should have st < 1/8. In general, both step sizes s, t
cannot be too small or too large; otherwise the algorithm can stop too early since
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Goldhill Man
PSF σ t = 0.1 t = 0.5 t = 1 t = 0.1 t = 0.5 t = 1

PSF1 2 4.21 4.21 4.21 5.27 5.27 5.27
4 1.05 1.05 1.05 1.65 1.65 1.65
6 0.71 0.71 0.71 0.78 0.78 0.78
8 0.49 0.49 0.49 0.50 0.50 0.50

PSF2 2 17.68 17.68 17.68 7.43 7.43 7.43
4 5.53 5.53 5.53 3.58 3.58 3.58
6 2.47 2.47 2.47 1.66 1.66 1.66
8 1.39 1.39 1.39 0.96 0.96 0.96

PSF3 2 6.93 6.93 6.93 2.00 2.00 2.00
4 1.20 1.20 1.20 1.99 1.99 1.99
6 0.66 0.66 0.66 1.13 1.13 1.13
8 0.46 0.46 0.46 0.82 0.82 0.82

PSF4 2 9.41 9.41 9.41 5.66 5.66 5.66
4 2.66 2.66 2.66 2.43 2.43 2.43
6 1.39 1.39 1.39 1.16 1.16 1.16
8 0.91 0.91 0.91 0.74 0.74 0.74

PSF5 2 5.41 5.41 5.41 6.28 6.28 6.28
4 1.25 1.25 1.25 1.30 1.30 1.30
6 0.69 0.69 0.69 0.72 0.72 0.72
8 0.50 0.50 0.50 0.50 0.50 0.50

PSF6 2 7.28 7.28 7.28 6.33 6.33 6.33
4 2.65 2.65 2.65 2.19 2.19 2.19
6 1.35 1.35 1.35 1.08 1.08 1.08
8 0.78 0.78 0.78 0.72 0.72 0.72

PSF7 2 4.22 4.22 4.22 6.51 6.51 6.51
4 1.23 1.23 1.23 1.33 1.33 1.33
6 0.76 0.76 0.76 0.70 0.70 0.70
8 0.50 0.50 0.50 0.48 0.48 0.48

PSF8 2 4.02 4.02 4.02 2.77 2.77 2.77
4 2.09 2.09 2.09 0.98 0.98 0.98
6 1.04 1.04 1.04 1.04 1.04 1.04
8 0.67 0.67 0.67 0.71 0.71 0.71

Table 2. Regularization parameter α obtained by our approach
for difference step sizes t and s = 1

16t .

the difference between the consecutive iterations will be small (see second terms in
(4) and (6)). In the tests, we set t = 0.1, 0.5, 1 and s = 1

16t . The test images are the
goldhill image and the man image as shown in Fig. 1. The computed regularization
parameters α are shown in Table 2. We observe that when t changes, the α obtained
by our method does not change. Thus in the following experiments, we fix t = 1
and s = 1/16.

4.2. Is α Good? We next present experiments to test whether the regularization
parameter α obtained by our method is good. We also used the man and goldhill
images here. We plot the curve of the ISNR versus α in Fig. 2 (resp. Fig. 3) for
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noise levels σ = 2, 4, 6, 8 (resp. σ = 10, 20, 30, 40) for the man image. Since the
results for the goldhill image are similar, we do not depict them here. The ISNRs
for different α are obtained by applying the first-order primal-dual method for each
fixed α (see (4)–(6)). The ISNR obtained by our method is marked as “◦”. We see
in the figures that the ISNR obtained by our method is close to the highest ISNR
of the curve in all cases, indicating that our chosen α is close to optimal. We can
also observe that the optimal regularization parameters vary with the image, the
noise level, and the blur type. It means that one should choose a difference α for
different case in order to obtain an optimal performance and our method indeed
provides a robust and adaptive approach to find such an α.

Figure 4. The test images: macaws, motors, sailboat at pier,
tropical island, lighthouse in Maine, P51 Mustang, Portland Head
Light, barn and pond, mountain chalet. The sizes of the images
are all 512× 768.

4.3. Comparison with Other Methods. Here we compare our method on nine
real-life images given in Fig. 4 with current state-of-the-art methods: alternating
direction methods (ADMM) in [25], SALSA [1, 13], and the GCV approach (GCV-
L) [21]. The discrepancy principle is used in ADMM [25] and SALSA [1, 13] to
adaptively restore the image. The codes are provided by the authors or downloaded
from authors’ website. In ADMM and SALSA, the upper bound of the data fitting
term is needed and is set to mnσ2 where σ2 is the variance of the noise estimated
by the median rule [22]. We also test these two methods using the true σ, which
is an oracle approach; and we denote the corresponding methods by ADMM-O
and SALSA-O. For other parameters in the code, we use the default values by the
authors.

The ISNR values for the restored images are listed in Tables 3–11, where the
best results are shown in boldface, the second best results are marked in underlined



USING GCV TO SELECT REGULARIZATION PARAMETER 11

italic. In the last column of each table, we give the gain in ISNR of our method when
compared with the best one in the same row other than ours. We see that out of the
288 test cases, our method achieves the highest ISNR values in 281 cases, the second
highest in 6 cases and third highest in the remaining one case. In conclusion, the
experimental results demonstrate that our method is robust and provides excellent
performance when compared to existing adaptive image restoration algorithms.

5. Conclusions. In this paper, we applied the GCV idea to choose the regulariza-
tion parameter α for TV regularization problems in image restoration. Our method
only needs to solve the TV problems twice: first to determine α using GCV idea
and second to solve the TV problem with our obtained α. Numerical results val-
idated the excellent performance and the robustness of our proposed method. It
outperforms the state-of-the-art adaptive image restoration algorithms. Our future
project is to extend our method to image restoration or reconstruction problem
where the degradation matrix H cannot be diagonalized.

σ ADMM SALSA ADMM-O SALSA-O GCV-L Ours Difference
PSF1 2 2.31 1.10 2.33 1.12 3.30 3.68 0.38

4 2.69 0.41 2.66 0.37 3.41 3.71 0.30

6 3.72 0.50 3.65 0.44 4.12 4.56 0.44

8 4.78 0.87 4.68 0.79 4.82 5.54 0.72

PSF2 2 2.12 1.20 2.10 1.18 2.86 3.47 0.61
4 2.10 0.64 2.04 0.60 2.49 2.66 0.17

6 2.55 0.56 2.49 0.52 2.78 3.04 0.26

8 3.21 0.95 3.13 0.95 3.32 3.61 0.29
PSF3 2 1.94 0.64 1.98 0.71 2.70 2.94 0.24

4 2.63 0.23 2.61 0.20 3.50 3.62 0.12
6 3.82 0.46 3.76 0.40 4.30 4.69 0.39

8 4.98 0.90 4.88 0.82 5.00 5.75 0.75
PSF4 2 1.53 0.71 1.51 0.68 2.05 2.32 0.27

4 1.74 0.25 1.70 0.22 2.04 2.30 0.26

6 2.34 0.28 2.28 0.23 2.51 2.79 0.28
8 3.10 0.71 3.02 0.71 3.21 3.47 0.26

PSF5 2 2.13 1.06 2.12 1.04 2.73 3.33 0.60

4 2.42 0.24 2.38 0.19 3.05 3.35 0.30
6 3.27 0.28 3.19 0.22 3.77 4.11 0.34

8 4.25 0.64 4.13 0.56 4.61 5.03 0.42

PSF6 2 1.92 1.00 1.89 0.98 2.62 3.09 0.47
4 1.99 0.46 1.95 0.42 2.38 2.70 0.32
6 2.55 0.45 2.49 0.41 2.73 3.07 0.34

8 3.30 0.83 3.22 0.83 3.39 3.73 0.34
PSF7 2 2.09 0.92 2.08 0.90 2.79 3.45 0.66

4 2.46 0.10 2.40 0.03 3.21 3.47 0.26
6 3.41 0.19 3.31 0.11 3.97 4.29 0.32

8 4.43 0.59 4.30 0.50 4.78 5.25 0.47

PSF8 2 3.26 1.82 3.34 1.88 3.78 4.41 0.63

4 2.87 0.95 2.86 0.94 2.76 3.43 0.56

6 3.05 0.70 3.01 0.67 2.52 3.94 0.89
8 3.49 0.85 3.41 0.85 2.84 4.16 0.67

Table 3. ISNR results for macaws image.
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σ ADMM SALSA ADMM-O SALSA-O GCV-L Ours Difference
PSF1 2 2.68 1.75 2.71 1.79 3.47 3.85 0.38

4 2.57 0.80 2.54 0.77 3.17 3.41 0.24

6 3.20 0.65 3.14 0.59 3.61 3.87 0.26
8 4.03 0.76 3.95 0.69 4.19 4.59 0.40

PSF2 2 3.64 2.23 3.59 2.18 4.88 5.42 0.54

4 2.95 0.80 2.87 0.77 3.40 4.59 1.19

6 2.83 0.47 2.70 0.43 3.04 4.19 1.15

8 3.01 0.42 2.84 0.38 3.11 4.18 1.07
PSF3 2 1.89 1.03 1.95 1.09 2.90 3.12 0.22

4 2.18 0.39 2.17 0.39 2.98 2.94 −0.04

6 3.06 0.46 3.02 0.41 3.60 3.64 0.04
8 4.04 0.69 3.98 0.63 4.25 4.49 0.24

PSF4 2 1.79 1.01 1.75 0.98 2.75 3.56 0.81

4 1.58 0.25 1.53 0.22 2.16 2.66 0.50
6 1.82 0.05 1.74 0.01 2.21 2.70 0.49
8 2.26 0.09 2.14 0.04 2.55 2.94 0.39

PSF5 2 2.36 1.64 2.36 1.63 2.94 3.57 0.63

4 2.36 0.69 2.32 0.65 2.92 3.19 0.27
6 2.93 0.39 2.86 0.33 3.34 3.65 0.31

8 3.69 0.44 3.60 0.36 3.98 4.31 0.33
PSF6 2 2.53 1.48 2.49 1.44 3.42 4.65 1.23

4 2.07 0.49 2.00 0.45 2.63 3.46 0.83
6 2.20 0.21 2.11 0.16 2.58 3.19 0.61
8 2.62 0.23 2.51 0.17 2.83 3.41 0.58

PSF7 2 2.22 1.42 2.21 1.41 3.10 3.39 0.29
4 2.25 0.50 2.20 0.45 2.92 3.12 0.20
6 2.88 0.28 2.82 0.21 3.39 3.60 0.21
8 3.71 0.37 3.62 0.29 4.05 4.35 0.30

PSF8 2 3.92 2.35 4.07 2.50 4.44 5.73 1.29

4 2.96 0.98 2.97 0.98 3.16 4.90 1.74
6 2.76 0.62 2.70 0.60 2.49 4.13 1.37

8 2.83 0.54 2.72 0.51 2.21 3.87 1.04

Table 4. ISNR results for motorcross bikes image.

σ ADMM SALSA ADMM-O SALSA-O GCV-L Ours Difference
PSF1 2 2.43 1.67 2.51 1.77 2.97 3.73 0.76

4 1.79 0.52 1.79 0.52 2.16 2.55 0.39
6 1.93 0.26 1.90 0.23 2.25 2.49 0.24
8 2.39 0.33 2.35 0.28 2.65 2.84 0.19

PSF2 2 2.37 1.59 2.34 1.56 3.23 3.12 −0.11
4 1.95 0.74 1.90 0.71 2.32 2.61 0.29
6 1.99 0.47 1.92 0.44 2.14 2.71 0.57

8 2.24 0.41 2.15 0.37 2.30 2.73 0.43
PSF3 2 1.61 0.85 1.74 1.00 2.36 2.98 0.62

4 1.24 -0.04 1.27 -0.00 1.78 2.07 0.29

6 1.58 -0.16 1.57 -0.17 2.06 2.20 0.14
8 2.18 0.03 2.15 -0.01 2.57 2.68 0.11

PSF4 2 1.22 0.79 1.20 0.77 1.72 2.04 0.32

4 1.18 0.34 1.15 0.31 1.41 1.77 0.36

6 1.42 0.18 1.37 0.15 1.53 1.83 0.30
8 1.81 0.18 1.75 0.14 1.85 2.14 0.29

PSF5 2 1.72 1.14 1.74 1.16 2.25 2.94 0.69
4 1.45 0.37 1.43 0.35 1.74 2.03 0.29

6 1.68 0.16 1.65 0.12 1.92 2.11 0.19
8 2.17 0.21 2.12 0.16 2.38 2.41 0.03

PSF6 2 1.78 1.15 1.76 1.14 2.47 3.35 0.88

4 1.52 0.57 1.48 0.54 1.80 2.32 0.52
6 1.68 0.38 1.64 0.34 1.81 2.12 0.31
8 2.03 0.36 1.97 0.32 2.05 2.42 0.37

PSF7 2 1.59 0.95 1.59 0.96 2.15 2.69 0.54
4 1.26 0.06 1.24 0.04 1.62 1.96 0.34
6 1.52 -0.13 1.47 -0.18 1.82 2.04 0.22
8 2.04 -0.03 1.98 -0.09 2.32 2.44 0.12

PSF8 2 2.84 1.94 3.12 2.25 3.40 3.97 0.57

4 2.36 0.94 2.50 1.01 2.47 3.47 0.97
6 2.30 0.58 2.34 0.60 2.08 3.09 0.75

8 2.43 0.44 2.43 0.44 1.98 3.03 0.60

Table 5. ISNR results for sailboat at pier image.
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PSF σ ADMM SALSA ADMM-O SALSA-O GCV-L Ours Difference
PSF1 2 1.67 1.04 1.70 1.08 2.21 2.95 0.74

4 1.42 0.18 1.41 0.16 1.89 2.20 0.31
6 1.94 0.24 1.91 0.20 2.37 2.48 0.11

8 2.74 0.58 2.69 0.53 3.05 3.18 0.13
PSF2 2 1.42 0.85 1.40 0.83 2.43 2.50 0.07

4 1.44 0.44 1.41 0.42 1.77 2.10 0.33

6 1.87 0.45 1.84 0.41 2.05 2.34 0.29
8 2.49 0.96 2.45 0.96 2.57 2.80 0.23

PSF3 2 0.85 0.19 0.91 0.27 1.48 2.15 0.67

4 0.87 -0.40 0.86 -0.40 1.46 1.70 0.24

6 1.62 -0.17 1.59 -0.21 2.15 2.17 0.02
8 2.55 0.30 2.51 0.25 2.95 3.03 0.08

PSF4 2 0.80 0.39 0.78 0.37 1.04 1.34 0.30

4 1.03 0.16 1.01 0.13 1.08 1.38 0.30
6 1.58 0.24 1.54 0.20 1.66 1.84 0.18
8 2.28 0.74 2.23 0.74 2.35 2.51 0.16

PSF5 2 0.97 0.49 0.97 0.49 1.29 2.02 0.73
4 1.06 0.01 1.04 -0.02 1.43 1.65 0.22

6 1.67 0.12 1.64 0.07 2.02 2.12 0.10
8 2.50 0.46 2.44 0.40 2.80 2.84 0.04

PSF6 2 1.09 0.64 1.07 0.63 1.44 2.14 0.70

4 1.26 0.34 1.23 0.32 1.41 1.70 0.29

6 1.76 0.40 1.73 0.36 1.84 2.03 0.19

8 2.45 0.83 2.40 0.83 2.50 2.70 0.20
PSF7 2 0.77 0.22 0.76 0.21 1.30 1.85 0.55

4 0.82 -0.35 0.79 -0.38 1.25 1.50 0.25
6 1.48 -0.17 1.43 -0.22 1.90 1.97 0.07
8 2.36 0.24 2.30 0.18 2.72 2.73 0.01

PSF8 2 1.74 1.04 1.82 1.15 2.06 2.57 0.51
4 1.68 0.52 1.70 0.53 1.67 2.07 0.37

6 1.99 0.43 1.97 0.42 1.82 2.48 0.49
8 2.51 0.92 2.47 0.92 2.29 2.88 0.37

Table 6. ISNR results for tropical island image.

PSF σ ADMM SALSA ADMM-O SALSA-O GCV-L Ours Difference
PSF1 2 3.14 2.36 3.21 2.45 3.55 4.63 1.08

4 2.15 0.95 2.14 0.94 2.51 3.03 0.52
6 2.05 0.44 2.02 0.40 2.39 2.63 0.24
8 2.33 0.27 2.28 0.22 2.63 2.69 0.06

PSF2 2 3.44 2.60 3.40 2.55 5.07 5.18 0.11

4 2.69 1.17 2.62 1.15 3.63 3.02 −0.61
6 2.40 0.82 2.29 0.79 2.98 2.07 −0.91

8 2.37 0.63 2.27 0.60 2.59 2.86 0.27
PSF3 2 1.86 1.34 1.96 1.47 2.78 3.36 0.58

4 1.39 0.27 1.41 0.29 2.04 2.19 0.15

6 1.54 -0.05 1.53 -0.07 2.12 2.13 0.01
8 2.00 -0.07 1.96 -0.11 2.50 2.53 0.03

PSF4 2 1.39 1.00 1.37 0.98 2.13 3.23 1.10
4 1.29 0.48 1.27 0.46 1.50 1.70 0.20
6 1.40 0.30 1.36 0.27 1.48 1.75 0.27

8 1.65 0.23 1.60 0.20 1.66 1.91 0.25
PSF5 2 2.10 1.66 2.10 1.67 2.72 3.23 0.51

4 1.71 0.63 1.69 0.60 2.09 2.31 0.22
6 1.73 0.13 1.68 0.09 2.04 2.36 0.32

8 1.98 -0.01 1.92 -0.06 2.25 2.52 0.27
PSF6 2 1.99 1.36 1.84 1.34 3.39 3.74 0.35

4 1.55 0.70 1.52 0.68 1.85 2.46 0.61
6 1.63 0.45 1.60 0.42 1.75 1.97 0.22

8 1.86 0.37 1.81 0.34 1.87 2.10 0.23

PSF7 2 1.93 1.45 1.93 1.46 2.50 3.02 0.52
4 1.49 0.40 1.47 0.37 1.97 2.21 0.24

6 1.57 -0.09 1.53 -0.13 1.97 2.10 0.13

8 1.89 -0.23 1.83 -0.28 2.24 2.38 0.14

PSF8 2 2.92 2.08 3.19 2.38 3.63 3.97 0.34
4 2.42 0.81 2.50 0.86 2.51 3.49 0.98
6 2.20 0.38 2.22 0.39 2.01 3.00 0.78
8 2.15 0.24 2.10 0.23 1.67 2.86 0.71

Table 7. ISNR results for lighthouse in Maine image.
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PSF σ ADMM SALSA ADMM-O SALSA-O GCV-L Ours Difference
PSF1 2 3.04 2.33 3.09 2.41 3.90 4.49 0.59

4 2.74 1.15 2.74 1.14 3.24 3.78 0.54

6 3.20 0.77 3.15 0.72 3.40 3.93 0.53

8 3.90 0.82 3.83 0.75 3.83 4.49 0.59
PSF2 2 3.58 2.45 3.55 2.41 4.22 5.32 1.10

4 3.27 1.25 3.23 1.23 3.31 4.42 1.11
6 3.36 0.78 3.30 0.73 3.10 4.13 0.77
8 3.66 0.66 3.58 0.62 3.21 4.27 0.61

PSF3 2 2.27 1.58 2.36 1.70 3.32 3.74 0.42
4 2.26 0.63 2.28 0.65 2.93 3.24 0.31
6 2.91 0.43 2.89 0.40 3.30 3.66 0.36
8 3.76 0.61 3.71 0.56 3.84 4.36 0.52

PSF4 2 2.73 1.55 2.71 1.52 2.78 3.64 0.86

4 2.65 0.77 2.62 0.73 2.30 3.29 0.64
6 2.88 0.44 2.83 0.40 2.43 3.44 0.56
8 3.29 0.41 3.21 0.37 2.75 3.70 0.41

PSF5 2 2.65 2.03 2.66 2.03 3.04 4.05 1.01

4 2.57 0.90 2.54 0.86 2.75 3.40 0.65

6 3.00 0.52 2.95 0.46 2.99 3.61 0.61
8 3.65 0.58 3.57 0.52 3.51 4.23 0.58

PSF6 2 3.10 1.95 3.08 1.93 3.50 4.90 1.40
4 2.90 0.99 2.87 0.96 2.68 3.70 0.80
6 3.09 0.63 3.04 0.59 2.73 3.68 0.59
8 3.49 0.59 3.42 0.55 2.95 3.98 0.49

PSF7 2 2.43 1.81 2.43 1.81 2.93 3.75 0.82
4 2.35 0.64 2.32 0.60 2.72 3.24 0.52

6 2.83 0.30 2.78 0.25 3.01 3.56 0.55
8 3.56 0.41 3.48 0.34 3.57 4.16 0.59

PSF8 2 4.94 3.29 5.09 3.55 5.22 6.71 1.49
4 4.37 1.65 4.42 1.68 3.94 5.35 0.93

6 4.19 1.01 4.17 1.00 3.27 5.32 1.13

8 4.22 0.72 4.17 0.71 2.89 5.17 0.95

Table 8. ISNR results for P51 Mustang image.

PSF σ ADMM SALSA ADMM-O SALSA-O GCV-L Ours Difference
PSF1 2 2.50 1.76 2.61 1.90 3.08 3.98 0.90

4 1.79 0.54 1.81 0.56 2.21 2.58 0.37
6 1.79 0.18 1.78 0.17 2.18 2.39 0.21
8 2.13 0.19 2.10 0.16 2.49 2.63 0.14

PSF2 2 2.37 1.65 2.34 1.62 3.28 3.82 0.54
4 1.89 0.74 1.84 0.71 2.32 2.31 −0.01
6 1.81 0.45 1.74 0.42 2.09 2.60 0.51
8 1.96 0.36 1.87 0.32 2.17 2.59 0.42

PSF3 2 1.71 0.94 1.90 1.16 2.57 3.27 0.70

4 1.24 -0.04 1.30 0.04 1.88 2.15 0.27
6 1.44 -0.25 1.45 -0.24 2.01 2.10 0.09
8 1.92 -0.14 1.90 -0.16 2.42 2.45 0.03

PSF4 2 1.23 0.85 1.22 0.84 1.86 2.35 0.49
4 1.12 0.35 1.10 0.33 1.49 1.70 0.21

6 1.27 0.14 1.23 0.11 1.52 1.74 0.22
8 1.56 0.10 1.51 0.06 1.74 1.91 0.17

PSF5 2 1.71 1.18 1.74 1.21 2.21 2.85 0.64
4 1.37 0.36 1.35 0.35 1.76 1.99 0.23

6 1.50 0.12 1.47 0.09 1.84 1.92 0.08

8 1.88 0.11 1.83 0.06 2.19 2.27 0.08
PSF6 2 1.88 1.29 1.85 1.27 3.15 3.50 0.35

4 1.51 0.61 1.48 0.59 1.93 2.38 0.45
6 1.57 0.36 1.52 0.33 1.84 2.15 0.31

8 1.83 0.29 1.77 0.25 2.00 2.25 0.25
PSF7 2 1.64 1.03 1.66 1.06 2.17 2.79 0.62

4 1.23 0.08 1.21 0.07 1.69 1.94 0.25
6 1.36 -0.19 1.32 -0.22 1.76 1.77 0.01

8 1.75 -0.15 1.70 -0.20 2.13 2.11 −0.02
PSF8 2 2.90 2.07 3.31 2.52 3.74 4.23 0.49

4 2.41 1.08 2.59 1.19 2.70 3.65 0.95

6 2.27 0.71 2.35 0.75 2.25 3.16 0.81
8 2.33 0.54 2.35 0.55 2.01 3.01 0.66

Table 9. ISNR results for Portland head light image.
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PSF σ ADMM SALSA ADMM-O SALSA-O GCV-L Ours Difference
PSF1 2 2.31 1.59 2.37 1.68 2.92 3.46 0.54

4 1.80 0.46 1.80 0.46 2.26 2.65 0.39
6 2.08 0.22 2.05 0.18 2.47 2.72 0.25

8 2.67 0.34 2.61 0.29 2.96 3.23 0.27
PSF2 2 2.15 1.35 2.13 1.33 3.11 3.08 −0.03

4 1.78 0.58 1.74 0.55 2.30 2.85 0.55
6 1.89 0.41 1.82 0.37 2.19 2.74 0.55
8 2.22 0.44 2.13 0.40 2.43 2.85 0.42

PSF3 2 1.47 0.72 1.60 0.88 2.23 2.82 0.59
4 1.22 -0.08 1.25 -0.04 1.90 2.14 0.24
6 1.73 -0.11 1.72 -0.12 2.32 2.37 0.05
8 2.48 0.13 2.45 0.09 2.94 3.03 0.09

PSF4 2 0.97 0.55 0.95 0.53 1.64 2.16 0.52

4 0.98 0.18 0.96 0.15 1.32 1.55 0.23
6 1.31 0.11 1.27 0.08 1.55 1.70 0.15
8 1.80 0.21 1.75 0.16 1.99 2.14 0.15

PSF5 2 1.66 1.07 1.66 1.09 2.10 2.87 0.77
4 1.45 0.21 1.42 0.18 1.82 2.21 0.39
6 1.74 0.04 1.69 -0.01 2.10 2.20 0.10
8 2.29 0.17 2.22 0.12 2.65 2.84 0.19

PSF6 2 1.57 0.93 1.55 0.91 2.54 3.19 0.65

4 1.35 0.39 1.32 0.37 1.74 2.24 0.50

6 1.58 0.29 1.53 0.26 1.82 2.27 0.45
8 2.03 0.37 1.97 0.33 2.19 2.45 0.26

PSF7 2 1.45 0.87 1.46 0.89 1.90 2.65 0.75
4 1.26 -0.05 1.24 -0.08 1.74 2.02 0.28

6 1.64 -0.22 1.59 -0.26 2.06 2.25 0.19
8 2.24 -0.03 2.18 -0.09 2.65 2.82 0.17

PSF8 2 2.44 1.64 2.67 1.90 3.17 3.68 0.51

4 2.01 0.79 2.11 0.85 2.28 3.19 0.91
6 2.04 0.53 2.07 0.54 1.98 2.88 0.81

8 2.30 0.50 2.29 0.49 2.11 2.93 0.63

Table 10. ISNR results for barn and pond image.

PSF σ ADMM SALSA ADMM-O SALSA-O GCV-L Ours Difference
PSF1 2 3.00 2.23 3.22 2.49 3.71 4.78 1.07

4 2.02 0.85 2.08 0.92 2.41 3.04 0.63

6 1.72 0.32 1.74 0.33 2.03 2.42 0.39
8 1.78 0.16 1.77 0.15 2.07 2.34 0.27

PSF2 2 2.32 1.79 2.30 1.76 3.00 3.29 0.29
4 1.90 0.93 1.86 0.91 2.32 2.61 0.29
6 1.80 0.59 1.75 0.57 1.94 2.40 0.46

8 1.89 0.43 1.83 0.40 1.94 2.35 0.41

PSF3 2 2.15 1.35 2.45 1.70 3.11 3.95 0.84
4 1.39 0.22 1.53 0.35 2.01 2.34 0.33
6 1.26 -0.22 1.32 -0.17 1.77 2.04 0.27

8 1.45 -0.31 1.46 -0.30 1.92 1.95 0.03
PSF4 2 1.22 0.89 1.21 0.88 1.70 2.00 0.30

4 1.13 0.48 1.12 0.46 1.31 1.49 0.18
6 1.22 0.27 1.19 0.25 1.28 1.53 0.25
8 1.41 0.18 1.37 0.15 1.42 1.64 0.22

PSF5 2 1.88 1.39 1.94 1.45 2.59 3.33 0.74
4 1.42 0.58 1.42 0.58 1.73 2.06 0.33

6 1.38 0.22 1.36 0.20 1.60 1.86 0.26
8 1.55 0.09 1.52 0.06 1.74 1.92 0.18

PSF6 2 1.85 1.36 1.85 1.35 2.89 3.59 0.70
4 1.50 0.74 1.48 0.73 1.78 2.35 0.57

6 1.50 0.50 1.47 0.48 1.63 1.94 0.31
8 1.65 0.39 1.61 0.36 1.68 2.00 0.32

PSF7 2 1.84 1.26 1.89 1.33 2.60 3.07 0.47
4 1.27 0.26 1.26 0.26 1.67 2.03 0.36

6 1.16 -0.14 1.14 -0.16 1.48 1.85 0.37

8 1.33 -0.25 1.30 -0.28 1.62 1.78 0.16
PSF8 2 3.05 2.28 3.48 2.80 3.78 4.12 0.34

4 2.59 1.30 2.79 1.46 2.77 3.63 0.84

6 2.41 0.85 2.52 0.91 2.29 3.16 0.64
8 2.38 0.63 2.43 0.65 2.00 2.97 0.54

Table 11. ISNR results for mountain chalet image.
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