ALTERNATING DIRECTION METHOD FOR IMAGE INPAINTING IN WAVELET DOMAIN

RAYMOND H. CHAN*, JUNFENG YANG[†], AND XIAOMING YUAN[‡]

Abstract. Image inpainting in wavelet domain refers to the recovery of an image from incomplete and/or inaccurate wavelet coefficients. To reconstruct the image, total variation (TV) models have been widely used in the literature and they produce high-quality reconstructed images. In this paper, we consider an unconstrained TV-regularized, ℓ_2 -data-fitting model to recover the image. The model is solved by the alternating direction method (ADM). At each iteration, ADM needs to solve three subproblems, all of which have closed-form solutions. The per-iteration computational cost of ADM is dominated by two Fourier transforms and two wavelet transforms, all of which admit fast computation. Convergence of the ADM iterative scheme is readily obtained. We also discuss extensions of this ADM scheme to solving two closely related constrained models. We present numerical results to show the efficiency and stability of ADM for solving wavelet domain image inpainting problems. Numerical comparison results of ADM with some recent algorithms are also reported.

Key words. Total variation, wavelet, inpainting, augmented Lagrangian method, alternating direction method, fast Fourier transform, fast wavelet transform

AMS subject classifications. 68U10, 65J22, 65K10, 65T50, 90C25

1. Introduction. Image inpainting is an important image processing task in many applications, and it has been studied extensively in the literature, see, e.g. [19]. Image inpainting refers to the problem of filling in missing or damaged regions in images, either in the pixel domain or in a transformed domain, depending on how the image is damaged. Let u^* be an unknown image. Without loss of generality, we assume that u^* is an n-by-n square image, and our discussions apply to non-square images as well. Following the standard treatment, we vectorize two-dimensional images into one-dimensional vectors. Therefore, throughout this paper we treat n-by-n images as vectors in \mathbb{R}^{n^2} . In general, image inpainting problem can be viewed as recovering an unknown image u^* from

$$(1.1) f = (PTu^* + \omega) \in \mathbb{R}^p,$$

where $\mathcal{T} \in \mathbb{R}^{n^2 \times n^2}$ represents a transform matrix, $P \in \mathbb{R}^{p \times n^2}$ is a projection/downsampling matrix containing p ($< n^2$) rows of the identity matrix of order n^2 , $\omega \in \mathbb{R}^p$ contains the contamination of noise introduced during both the observation process of the original image and the subsequent transmissions of the transformed and compressed coefficients, and $f \in \mathbb{R}^p$ denotes the remaining incomplete and inaccurate transformed coefficients. The positions of the remaining (and thus those missed) transformed coefficients are determined by P.

In [6], Bertalmio et al. first considered image inpainting in the pixel domain, i.e., \mathcal{T} is the identity matrix, and f contains approximate values of the p remaining pixels. Inpainting in the pixel domain is, in

^{*}Department of Mathematics, the Chinese University of Hong Kong, Shatin, Hong Kong. E-mail: rchan@math.cuhk.edu.hk. Research supported by HKRGC grant no.: CUHK 400510 and DAG no.: 2060408.

[†]Department of Mathematics, Nanjing University, Nanjing, Jiangsu, 210093, China. E-Mail: jfyang@nju.edu.cn. Research supported by National Science Foundation of China NSFC-11001123.

[‡]Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong. E-Mail: xmyuan@hkbu.edu.hk. Research supported by HKRGC grant no.: HKBU 203009.

some sense, an interpolation problem, where values of the missed pixels are approximated by using those of the remaining. Inpainting methods in the pixel domain usually take advantage of the property that the missed pixels are local and hence their values can be estimated by utilizing neighboring information. We here list some existing approaches in the literature. The authors of [6] used partial differential equations to smoothly propagate information from the surrounding areas along the isophotes into the inpainting domain. Subsequently, Ballester et al. proposed a variational inpainting model based on a joint cost functional on the gradient vector field and gray values in [5]. Chan and Shen considered a total variational (TV) inpainting model in [18] and the curvature driven diffusion model in [17]. The TV inpainting model fills in the missing regions such that the TV is minimized, and its use is motivated by the wide applications of TV in image restoration. In [16], Chan, Kang and Shen also introduced an inpainting technique using an Euler's elastica energy-based variational model. In [9], Cai, Chan and Shen used tight-frame approach for inpainting and showed that it is equivalent to using an ℓ_1 regularization on the tight-frame coefficients. All these works concentrate on image inpainting in the pixel domain.

Inpainting in transformed domains is totally different because each single corruption of data can, in general, affect the whole image, and thus an inpainting region in the pixel domain is not well defined. Transformed domain inpainting arises in practical applications because images are usually formatted, transmitted and stored in a transformed domain. For examples, in the JPEG standard images are transformed by cosine transforms, while in the JPEG2000 standard images are transformed to a wavelet domain through wavelet transforms. In such situations, the transform \mathcal{T} is either a discrete cosine transform (DCT) or a discrete wavelet transform (DWT). During storage and transmission, certain coefficients may be lost or corrupted, which naturally leads to the transformed domain inpainting problem. In this paper, we consider recovering the original image u^* from incomplete and inaccurate wavelet coefficients, i.e., \mathcal{T} is an orthonormal wavelet transform.

In practical applications, the downsampling matrix P in (1.1) is usually determined according to certain "thresholding" rule, i.e., those transformed coefficients with magnitudes bigger than some threshold value are kept, while the others are discarded. In this situation, P is also known as a thresholding compressing operator. We note that, in addition to thresholding based image compression, other compression approaches are certainly applicable in practical applications. For example, P can be a "quantization" based compressing operator, in which case the binary representation of $\mathcal{T}u^*$ is quantized so that only bits with order higher than a prescribed value are kept, while the remaining bits of lower orders are discarded, see [10] for details about an iterative frame-based algorithm for image inpainting in the bits domain. In this paper, we concentrate on the case that P is a selection/downsampling operator.

1.1. Wavelet domain inpainting via TV regularization. Rane et al. in [42, 43] considered wavelet domain inpainting in wireless networks, where separated reconstruction techniques are used for image structures and textures. Inspired by the great success of TV in image restoration, Chan, Shen and Zhou in [20] proposed to utilize TV regularization for image inpainting in wavelet domain. In [20], the following TV regularized data-fitting model was solved to approximately reconstruct the original image:

(1.2)
$$\min_{u} \sum_{i} \|D_{i}u\|_{2} + \frac{\mu}{2} \|PWu - f\|_{2}^{2},$$

where $W \in \mathbb{R}^{n^2 \times n^2}$ represents a discrete orthonormal wavelet transform matrix, f contains those remaining inaccurate wavelet coefficients (given by (1.1) with $\mathcal{T} = W$), $\|\cdot\|_2$ represents the ℓ_2 -norm, $\sum_i \|D_i u\|_2$ is a discretization of the total variation of u where \sum_i is taken over all pixels, and $\mu > 0$ is a scalar balancing regularization and fidelity. In this paper, we assume that the contamination of noise is random Gaussian, and thus the ℓ_2 -norm square fidelity is used. In Section 2.3, we will briefly address a constrained alternative of (1.2), as well as an equality constrained model which is suitable for noiseless data.

1.2. Some existing approaches for TV models. TV regularization was first proposed by Rudin, Osher and Fatemi in [45, 44] for image denoising and deconvolution. Subsequently, TV regularization was studied extensively in image restoration, see e.g. [11, 15] and references therein. The advantage of TV regularization is that it can exploit image blocky structures and preserve edges. The superiority of TV over Tikhonov regularization [50] is analyzed in [1, 26] for recovering images containing piecewise smooth objects. Despite these advantages, it is generally challenging to solve TV models efficiently in practice because imaging problems are usually large scale, ill-conditioned, and moreover the TV is non-smooth. Here we review some existing approaches to TV models.

Early researches on the numerical solution of TV models concentrated on smoothed TV models, where the TV is approximated by $\sum_i \sqrt{\|D_i x\|_2^2 + \epsilon}$ with small $\epsilon > 0$. As such, ordinary optimization methods for smooth function minimization can be applied, e.g., the time-marching scheme used in the pioneering work [45], the linearized gradient method proposed in [51] for denoising and in [52] for deconvolution. Another class of algorithms for TV problems are those based upon the iterative shrinkage/thresholding (IST) operator, see e.g. [24, 28, 30, 47, 23]. At each iteration of IST-based algorithms, a TV denoising problem needs to be solved, either exactly or approximately.

Recent approaches to TV models are based on appropriate splitting of the TV norm. A novel splitting of the TV norm was proposed in [53], where the authors utilized the quadratic penalty technique to derive an efficient alternating minimization algorithm. This splitting of TV allows the use of a multidimensional shrinkage operator and fast Fourier transform for deconvolution problem. Given its efficiency, the technique used in [53] was extended to multichannel image deconvolution in [56] and impulsive noise elimination in [58]. Goldstein and Osher [35] applied the classical augmented Lagrangian method [37, 41], where the authors derived the algorithm based on the Bregman distance [8]. In [35], the authors used an alternating strategy to minimize the augmented Lagrangian function. The authors proposed to solve the inner subproblem approximately by only one alternating step, which reduces to the classical alternating direction method. Lately, the alternating direction method has been applied to a set of imaging problems, see e.g. [29, 46, 59, 2, 3, 39]. Recently, a first-order primal-dual algorithm was proposed in [13], which is shown to have attractive convergence results for uniformly convex problems and is closely related to the Douglas-Rachford splitting algorithm [25] as well as the alternating direction method [34, 31] to be discussed in this paper.

For solving problem (1.2), an explicit gradient descent scheme was used in [16]. An optimization transfer algorithm was recently proposed in [14], which is related to the half-quadratic technique [32]. Lately, model (1.2) has been extended in [60] to recover textures and local geometry structures of natural images by utilizing a nonlocal TV regularizer, where the Bregman iteration [40] and the operator splitting algorithms [22, 61] were applied to solve the underlying problems. The main contribution of this paper is to introduce a simple, yet very efficient algorithm for solving (1.2) and some related problems as well. In addition, we compare

the proposed algorithm with the optimization transfer algorithm recently proposed in [14] and the two-step iterative shrinkage/thresholding algorithm in [7].

1.3. Notation and organization. Let the superscript " \top " be the transpose operator for real matrices or vectors. For vectors v_i and matrices A_i , i = 1, 2, we let $(v_1; v_2) = (v_1^\top, v_2^\top)^\top$ and $(A_1; A_2) = (A_1^\top, A_2^\top)^\top$. As used in (1.2), for each i, D_i is a 2-by- n^2 matrix such that the two entries of $D_i u$ represent the horizontal and vertical local finite differences of u at pixel i (boundary conditions will be specified later). The corresponding horizontal and vertical global finite difference matrices are denoted by $D^{(1)}$ and $D^{(2)}$, respectively. As such, $D^{(1)}$ and $D^{(2)}$ contain, respectively, the first and second rows of D_i for all i's. For the rest of the paper, we let $\|\cdot\| = \|\cdot\|_2$. Additional notation will be defined when it occurs.

The paper is organized as follows. In Section 2, we present the basic algorithm for solving (1.2) and discuss its extensions to solving some related problems. Section 3 reports experimental results in comparisons with the optimization transfer algorithm [14] and the two-step iterative shrinkage/thresholding algorithm [7]. Finally, some concluding remarks are given in Section 4.

- 2. Basic algorithm and related work. The main difficulty of solving (1.2) is due to the nondifferentiability of the involved TV norm. Analogous to [53], we shall first reformulate (1.2) into an minimization problem with linear constraints. Then, we shall apply the influential alternating direction method [31] to solve the reformulation. In the following, we first present the reformulation and review briefly the classical augmented Lagrangian method (ALM, see e.g. [37, 41]), from which ADM is motivated. Then, we delineate the iterative scheme of ADM for solving (1.2). Finally, we discuss some extensions of the ADM to some other relevant models.
- **2.1. Reformulation and ALM.** By introducing auxiliary variables $\mathbf{w} = [\mathbf{w}_1, \dots, \mathbf{w}_{n^2}]$, where each \mathbf{w}_i is a column vector in \mathbb{R}^2 , the model (1.2) is equivalent to

(2.1)
$$\min_{u,\mathbf{w}} \left\{ \sum_{i} \|\mathbf{w}_{i}\| + \frac{\mu}{2} \|Pv - f\|^{2} \mid v = Wu, \ \mathbf{w}_{i} = D_{i}u, \forall i \right\}.$$

Here $\mathbf{w} = [\mathbf{w}_1, \dots, \mathbf{w}_{n^2}]$ is a 2-by- n^2 matrix. For convenience, the j-th row of \mathbf{w} is denoted by w_j^{\top} , j = 1, 2. Thus, the constraints $\{\mathbf{w}_i = D_i u, \forall i\}$ are equivalent to $w_j = D^{(j)} u$, j = 1, 2, or more compactly, w = D u, where $w = (w_1; w_2)$ and $D = (D^{(1)}; D^{(2)})$. Since \mathbf{w} and w are the same variables with different ordering, in the following we choose to use either \mathbf{w} or w subject to convenience. The motivation of considering the reformulation problem (2.1) is that the selection operator P, the finite difference operator D and the wavelet transform operator W are separated in such a way that their special structures can be fully utilized. This is actually the key idea of the efficient implementation of the ADM algorithm to be presented.

Then, the model (2.1) is a standard convex program with linear constraints, for which a classical approach is the augmented Lagrangian method (see e.g. [37, 41]). More specifically, let the augmented Lagrangian function of (2.1) be denoted by

(2.2)
$$\mathcal{L}_{\mathcal{A}}(u, v, w, \lambda, \eta) := \sum_{i} \left(\|\mathbf{w}_{i}\| - \lambda_{i}^{\top} (\mathbf{w}_{i} - D_{i}u) + \frac{\beta_{1}}{2} \|\mathbf{w}_{i} - D_{i}u\|^{2} \right) + \frac{\mu}{2} \|Pv - f\|^{2} - \eta^{\top} (v - Wu) + \frac{\beta_{2}}{2} \|v - Wu\|^{2},$$

where $\lambda_i \in \mathbb{R}^2$ (for all i) and $\eta \in \mathbb{R}^{n^2}$ are multipliers, and $\beta_1, \beta_2 > 0$ are penalty parameters. The iterative scheme of ALM for (2.1) is given by:

(2.3)
$$\begin{cases} (u, v, w)^{k+1} = \arg\min \mathcal{L}_{\mathcal{A}}(u, v, w, \lambda^k, \eta^k), \\ \lambda_i^{k+1} = \lambda_i^k - \gamma \beta_1(\mathbf{w}_i^{k+1} - D_i u^{k+1}), \ \forall i, \\ \eta^{k+1} = \eta^k - \gamma \beta_2(v^{k+1} - W u^{k+1}), \end{cases}$$

where $\gamma > 0$ is a relaxation parameter. Note that at each iteration the ALM needs to solve a joint minimization problem with respect to (u, v, w), either exactly or approximately.

2.2. Solving (2.1) by ADM. Let us revisit the minimization task in (2.3) which aims at solving all the variables (u, v, w) simultaneously. Note that the augmented Lagrangian function $\mathcal{L}_{\mathcal{A}}(u, v, w, \lambda, \eta)$ (2.2) has favorable separable structures. First, variables \mathbf{w} and v are completely separated from each other, and thus their minimization can be implemented in parallel. Second, with fixed u, the minimization for \mathbf{w} reduces to the minimization with each \mathbf{w}_i , and the minimization for v is componentwisely separable. Hence, the direct application of ALM, which minimizes the variables (u, v, w) jointly, treats (2.1) as a generic convex program and ignores completely the favorable separable structure.

The influential alternating direction method (ADM, [31]) takes full advantage of the separable structure and decomposes the joint minimization task of ALM into some smaller and easier ones in the alternating order. In the literature, ADM has been well studied especially in the context of convex programming and variational inequalities. We refer to [33, 46] for the connection between ADM and the classical Douglas-Rachford splitting method [25] and [27] for the relationship of ADM with the renowned proximal point algorithm. More specifically, with the given $(u, \lambda, \eta)^k := (u^k, \lambda^k, \eta^k)$, the iterative scheme of ADM for (2.1) is as follows.

(2.4)
$$\begin{cases} (v, w)^{k+1} = \arg\min_{v, w} \mathcal{L}_{\mathcal{A}}(u^{k}, v, w, \lambda^{k}, \eta^{k}), \\ u^{k+1} = \arg\min_{u} \mathcal{L}_{\mathcal{A}}(u, v^{k+1}, w^{k+1}, \lambda^{k}, \eta^{k}), \\ \lambda_{i}^{k+1} = \lambda_{i}^{k} - \gamma \beta_{1}(\mathbf{w}_{i}^{k+1} - D_{i}u^{k+1}), \ \forall i, \\ \eta^{k+1} = \eta^{k} - \gamma \beta_{2}(v^{k+1} - Wu^{k+1}). \end{cases}$$

It is easy to see that ADM inherits the spirit of the Gauss-Seidel iteration in the sense that the minimization for u uses the most up-to-date iterates of v and w.

Now, let us delineate the way of solving the subproblems of ADM. Clearly, the v-subproblem in (2.4) is equivalent to

(2.5)
$$\min_{v} \frac{\mu}{2} \|Pv - f\|^2 + \frac{\beta_2}{2} \|v - \zeta^k\|^2,$$

where $\zeta^k = Wu^k + \eta^k/\beta_2$. We let v_P (resp. $v_{\bar{P}}$) be the subvector of v formed by those entries selected (resp. not selected) by P. Thus, $Pv = v_P$. It is easy to show that the minimizer v^{k+1} of (2.5) is given by

(2.6)
$$v_P^{k+1} = \frac{\beta_2 \zeta_P^k + \mu f}{\beta_2 + \mu} \text{ and } v_{\bar{P}}^{k+1} = \zeta_{\bar{P}}^k.$$

For the minimization of w (or equivalently \mathbf{w}) in (2.4). For each $i \in \{1, 2, ..., n^2\}$, we let $\xi_i^k = D_i u^k + \lambda_i^k/\beta_1$, and the minimization for \mathbf{w}_i is given by (see e.g., [53], [35])

(2.7)
$$\mathbf{w}_{i}^{k+1} = \arg\min_{\mathbf{w}_{i}} \|\mathbf{w}_{i}\| + \frac{\beta_{1}}{2} \|\mathbf{w}_{i} - \xi_{i}^{k}\|^{2} = \max\left\{\|\xi_{i}^{k}\| - \frac{1}{\beta_{1}}, 0\right\} \times \frac{\xi_{i}^{k}}{\|\xi_{i}^{k}\|},$$

where we follow the convention $0 \times (0/0) = 0$.

Finally, with the fixed $v = v^{k+1}$ and $w = w^{k+1}$, the *u*-subproblem in (2.4) is a least-squares problem whose normal equations are given by

$$(2.8) Au^{k+1} = b^k,$$

where, by noting the orthnormality of W,

(2.9)
$$\begin{cases} A = \beta_1 \sum_i D_i^{\top} D_i + \beta_2 I = \beta_1 D^{\top} D + \beta_2 I, \\ b^k = D^{\top} (\beta_1 w^{k+1} - \lambda^k) + W^{\top} (\beta_2 v^{k+1} - \eta^k). \end{cases}$$

Under the periodic boundary conditions, $D^{\top}D$ is a blockwise circulant matrix with circulant blocks and thus can be diagonalized by two-dimensional discrete Fourier transform. Therefore, (2.8) can be easily solved by two FFTs (fast Fourier transforms). Specifically, u^{k+1} is given by

(2.10)
$$u^{k+1} = \mathcal{F}^{-1}\left(\mathcal{F}(b^k)./\operatorname{diag}(\mathcal{F}A\mathcal{F}^{-1})\right),$$

where \mathcal{F} and \mathcal{F}^{-1} represent, respectively, the two-dimensional forward and inverse Fourier matrix, diag(·) takes the diagonal elements, and "./" denotes componentwise division. Alternatively, under the Neumann boundary conditions, $D^{\top}D$ is a block Toeplitz-plus-Hankel matrix (see e.g., [38]) and the system (2.8) can be solved efficiently by two-dimensional DCTs. Therefore, all the subproblems arising in ADM for solving (2.1) have closed-form solutions. This feature is very beneficial for resulting in attractive numerical performance, as we shall show in the next section.

Although one can circularly apply (2.6), (2.7) and (2.10) until $\mathcal{L}_{\mathcal{A}}(u, v, w, \lambda^k, \eta^k)$ is minimized jointly with respect to (u, v, w) and update the multipliers as in the ALM (2.3), we choose to update λ^k and η^k immediately after merely one round of minimizations in the alternating order. Now, we are ready to present the algorithm of ADM for solving (2.1) (or equivalently (1.2)).

ALGORITHM 1. Input problem data P, f and model parameters $\mu > 0$. Given $\beta_1, \beta_2 > 0$ and $\gamma \in (0, (\sqrt{5} + 1)/2)$. Initialize $u = u^0$, $\lambda = \lambda^0$ and $\eta = \eta^0$. Set k = 0. Compute $\Lambda := \mathcal{F}(\beta_1 D^\top D + \beta_2 I) \mathcal{F}^{-1}$.

While "not converged", Do

1) Compute
$$v^{k+1}$$
 and w^{k+1} :
$$\begin{cases}
\zeta^{k} = Wu^{k} + \eta^{k}/\beta_{2}, \\
\xi_{i}^{k} = D_{i}u^{k} + \lambda_{i}^{k}/\beta_{1}, \forall i, \\
v_{P}^{k+1} = \frac{\beta_{2}\zeta_{P}^{k} + \mu f}{\beta_{2} + \mu}, \\
v_{P}^{k+1} = \zeta_{P}^{k}, \\
\mathbf{w}_{i}^{k+1} = \max\left\{\|\xi_{i}^{k}\| - \frac{1}{\beta_{1}}, 0\right\} \times \frac{\xi_{i}^{k}}{\|\xi_{i}^{k}\|}, \forall i.
\end{cases}$$

2) Compute u^{k+1} :

$$\begin{cases} b^k = D^{\top}(\beta_1 w^{k+1} - \lambda^k) + W^{\top}(\beta_2 v^{k+1} - \eta^k), \\ u^{k+1} = \mathcal{F}^{-1}\left(\mathcal{F}(b^k) / diag(\Lambda)\right). \end{cases}$$

3) Update
$$\lambda^{k}$$
 and η^{k} by
$$\begin{cases} \lambda_{i}^{k+1} = \lambda_{i}^{k} - \gamma \beta_{1}(\mathbf{w}_{i}^{k+1} - D_{i}u^{k+1}), \ \forall i, \\ \eta^{k+1} = \eta^{k} - \gamma \beta_{2}(v_{i}^{k+1} - Wu^{k+1}). \end{cases}$$

4)
$$k \leftarrow k + 1$$
.

End Do

We note that the per iteration cost of this ADM framework is dominated by two DWTs (one forward for computing Wu^k and one inverse DWT for computing b^k) and two FFTs (one forward and one inverse for computing u^{k+1}). The complexity of each of such computation is $O(N \log N)$ for a vector of length N. All other computations have linear complexity. We also note that this ADM framework is applicable if the isotropic TV in (1.2) is replaced by an anisotropic TV of the form $TV(u) = \sum_i ||D_i u||_1$. In this case, the only modification of Algorithm 1 lies in the computation for \mathbf{w}^{k+1} , which is given by

$$\mathbf{w}_i^{k+1} = \max\left\{ |\xi_i^k| - 1/\beta_1, 0 \right\} \circ \operatorname{sgn}(\xi_i^k), \ \forall i,$$

where "sgn(·)" denotes the signum function, and $|\cdot|$ and "o" represent, respectively, componentwise absolute value and multiplication.

It is easy to see that the fast and exact minimization of the u-subproblem in the ADM framework (2.4) is attainable provided that \mathcal{T} is orthonormal and $D^{\top}D$ is diagonalizable by fast transforms. Therefore, the ADM framework (2.4) can be easily generalized to other problem scenarios including image inpainting from cosine transformed or tight frame coefficients [9].

Implementation details of Algorithm 1 including stopping criteria and choices of parameters will be specified in Section 3. The convergence of the proposed algorithm can be found in the literature of ADM, e.g. [31, 33]. For succinctness, we only present the convergence theorem without detailed proof.

THEOREM 2.1. For any $\beta_1, \beta_2 > 0$ and $\gamma \in (0, (\sqrt{5} + 1)/2)$, the sequence $\{(u^k, v^k, w^k)\}$ generated by Algorithm 1 from any starting point (u^0, λ^0, η^0) converges to a solution of (2.1).

2.3. Extensions and remarks. In this subsection, we discuss extensions of the ADM to solving two closely related TV models. The first one is the constrained alternative of (1.2), i.e.,

(2.11)
$$\min_{u} \left\{ \sum_{i} \|D_{i}u\| \mid \|PWu - f\| \le \delta \right\}.$$

where $\delta > 0$ is related to the noise level. Note that from optimization theory, it is easy to see that (1.2) and (2.11) are equivalent in the sense that solving one of them can determine an appropriate parameter for the other such that these two problems share common solutions. Compared with (1.2), the advantage of (2.11) is that δ can be properly selected whenever a reasonable estimation of the noise level is available. For noiseless data, we recover u^* via solving

(2.12)
$$\min_{u} \left\{ \sum_{i} \|D_{i}u\| \mid PWu = f \right\}.$$

In the following, we briefly sketch the ADM scheme for solving (2.11), where $\delta = 0$ is also permitted and the resulting algorithm solves (2.12).

By introducing auxiliary variables, problem (2.11) is clearly equivalent to

(2.13)
$$\min_{u,v,\mathbf{w}} \left\{ \sum_{i} \|\mathbf{w}_{i}\| + I_{\mathcal{V}}(v) \mid v = Wu, \ \mathbf{w}_{i} = D_{i}u, \forall i \right\},$$

where $\mathcal{V} \triangleq \{v \in \mathbb{R}^{n^2} : \|Pv - f\| \equiv \|v_P - f\| \le \delta\}$, and $I_{\mathcal{V}}(v)$ is the indicator function of \mathcal{V} , i.e.,

(2.14)
$$I_{\mathcal{V}}(v) = \begin{cases} 0, & \text{if } v \in \mathcal{V}; \\ +\infty, & \text{otherwise.} \end{cases}$$

The augmented Lagrangian function $\mathcal{L}_{\mathcal{A}}^{\mathcal{I}}(u, v, w, \lambda, \eta)$ of (2.13) is given by

(2.15)
$$\mathcal{L}_{\mathcal{A}}^{\mathcal{I}}(u, v, w, \lambda, \eta) := \sum_{i} \left(\|\mathbf{w}_{i}\| - \lambda_{i}^{\top}(\mathbf{w}_{i} - D_{i}u) + \frac{\beta_{1}}{2} \|\mathbf{w}_{i} - D_{i}u\|^{2} \right) + I_{\mathcal{V}}(v) - \eta^{\top}(v - Wu) + \frac{\beta_{2}}{2} \|v - Wu\|^{2}.$$

Given λ^k and η^k , the ADM applied to (2.13) is an iterative algorithm based on the iteration

(2.16)
$$\begin{cases} (v,w)^{k+1} = \arg\min_{v,w} \mathcal{L}_{\mathcal{A}}^{\mathcal{I}}(u^k, v, w, \lambda^k, \eta^k), \\ u^{k+1} = \arg\min_{u} \mathcal{L}_{\mathcal{A}}^{\mathcal{I}}(u, v^{k+1}, w^{k+1}, \lambda^k, \eta^k), \\ \lambda_i^{k+1} = \lambda_i^k - \gamma \beta_1(\mathbf{w}_i^{k+1} - D_i u^{k+1}), \ \forall i, \\ \eta^{k+1} = \eta^k - \gamma \beta_2(v^{k+1} - W u^{k+1}). \end{cases}$$

The only difference between (2.16) and (2.4) lies in the minimization for v. It is easy to see that the vsubproblem of (2.16) is equivalent to $\min_{v \in \mathcal{V}} \|v - \zeta^k\|$, where $\zeta^k = Wu^k + \eta^k/\beta_2$. Let $\mathcal{P}_{\mathcal{V}}$ be the projection
onto \mathcal{V} . Clearly, $v^{k+1} = \mathcal{P}_{\mathcal{V}}(\zeta^k)$, or equivalently, $v_{\bar{P}}^{k+1} = \zeta_{\bar{P}}^k$ and

(2.17)
$$v_P^{k+1} = f + \min\left(\|\zeta_P^k - f\|, \delta\right) \frac{\zeta_P^k - f}{\|\zeta_P^k - f\|}.$$

Therefore, by replacing the formula for computing v_P^{k+1} in Algorithm 1 by (2.17), we obtain an ADM algorithm for solving (2.13), or equivalently, (2.11). We note that $v_P^{k+1} \equiv f$ when $\delta = 0$, and the resulting algorithm solves (2.12).

Based on previous discussions, it is easy to see that the ADM framework can be applied to solving (2.11) and (2.12) with minor modifications. In fact, ADM is also easily applicable to many other cases, e.g., local weighted and multichannel TV regularizations, nonnegativity or simple bound constraints, as well as models with the ℓ_1 -norm data fitting, see e.g., [56, 59]. The most influential feature of the ADM approach is perhaps its great versatility and universal effectiveness for a wide range of optimization problems in signal, image and data analysis, particularly for those involving ℓ_1 -like regularizations such as TV, ℓ_1 -norm, and nuclear-norm (sum of singular values), which have been used in the literature to promote different properties of the original signal. Due to its simplicity and efficiency, very recently ADM has found many applications in diverse areas in addition to image restoration such as compressive sensing [57], semidefinite programming [54], sparse and low-rank matrix separation [55, 49] and magnetic resonance imaging [59].

3. Numerical results. In this section, we present experimental results to show the practical efficiency of the proposed ADM scheme. Particularly, we compare Algorithm 1 with the optimization transfer algorithm [14] and the two-step iterative shrinkage/thresholding algorithm [7]. We did not compare with the gradient descent method [20] since it was shown in [14] that it is much slower and less accurate than the optimization transfer algorithm. In the following, we abbreviate the optimization transfer algorithm [14] and the two-step iterative shrinkage/thresholding algorithm [7] as OpT and TwIST, respectively, while Algorithm 1 will be refereed to as ADM. In all experiments, we initialized $u^0 = W^{\top}P^{\top}f$, and we call it "back projection", $\lambda^0 = 0$ and $\eta^0 = 0$. The quality of recovered images are measured by signal-to-noise ratio (SNR) defined by

$$SNR = 20 \log_{10} \frac{\|u^*\|}{\|u - u^*\|},$$

where u^* and u are respectively the original and the reconstructed images.

3.1. Comparison with OpT. In [14], the authors proposed to solve (1.2) by an optimization transfer or majorization algorithm. First, problem (1.2) was converted to an equivalent problem of the form

(3.1)
$$\min_{u,v} \left\{ \text{TV}(u) + \frac{\mu(1+\tau)}{2\tau} \left(\|Pv - f\|^2 + \tau \|v - Wu\|^2 \right) \right\},$$

where $\tau > 0$ is a parameter. It can be shown that

(3.2)
$$||PWu - f||^2 = \min_{v} \frac{1+\tau}{\tau} \left(||Pv - f||^2 + \tau ||v - Wu||^2 \right).$$

Therefore, (3.1) is equivalent to (1.2). The advantage of considering (3.1) is that alternating minimization can be applied. For fixed u, the minimization of (3.1) with respect to v has a closed-form solution. On the other hand, for fixed v the minimization of (3.1) with respect to u is a TV denoising problem (because $||Wu-v||^2 = ||u-W^{\top}v||^2$), and therefore it can be solved efficiently by Chambolle's dual approach [12].

In this comparison, we tested three images of different sizes: Cameraman (256-by-256), Barbara (512-by-512) and Man (1024-by-1024). The intensity values of the original images are scaled into [0,1] before generating f. In all experiments, we corrupted each original image with random Gaussian noise of mean zero and standard deviation (std.) 0.0392 (equivalent to std. = 10 for images with intensity values varying between 0 and 255), and the model parameter μ was set to be 50. We used the Daubechies 7-9 bi-orthogonal wavelets with symmetric extensions at the boundaries [4, 21]. For each image, we tested the algorithms with 30%, 50%, and 70% randomly selected wavelet coefficients.

The parameter settings of ADM are as follows. We set $\gamma = 1.618$ in all experiments because, based on our experiments, ADM is not sensitive to its choice. Although fixed values of β_1 and β_2 suffice for convergence, we chose to select them adaptively. Since β_1 and β_2 are penalty parameters, we determine them in such a way that the variations of the constraints w = Du and v = Wu are balanced. Specifically, for given β_1 we determine β_2 by

(3.3)
$$\beta_2 = \min \left\{ \beta_1 \times \frac{\|w - Du\|}{\|v - Wu\|}, 2 \times 10^4 \right\}.$$

We initialize $\beta_1^0 = 0.1$ and set $\beta_1^k = \min\{1.15\beta_1^{k-1}, 2 \times 10^3\}$ at the kth iteration. We note that this dynamic parameter selection rule does not spoil the convergence theory of ADM, see e.g., [36] for a study of ADM with adaptive penalty parameters. In fact, the practical performance of ADM is not very sensitive to the choices of β_1 and β_2 provided that they are not extremely large or small. To illustrative this point, we tested several constant values of β_1 and β_2 . The convergence of ADM with constant β -values as well as the adaptive rule (3.3) described above in terms of function values and SNR values are given in Figure 3.1.

It can be seen from Figure 3.1 that the convergence speed of ADM is not very sensitive to the values of β_1 and β_2 as long as they are relatively not too large or small. Particularly, for the tested problem β_1 and β_2 can be randomly selected between, say, 0.5 and 30, and the corresponding iteration numbers differ slightly. In fact, ADM with the self-adaptive rule (3.3) is less sensitive to the scale of problem data and the suitable values for β_1 and β_2 can be found simultaneously.

In all experiments, we terminated Algorithm 1 when the relative change between two consecutive points becomes small, i.e.,

(3.4)
$$\frac{\|u^k - u^{k-1}\|}{\|u^{k-1}\|} \le tol,$$

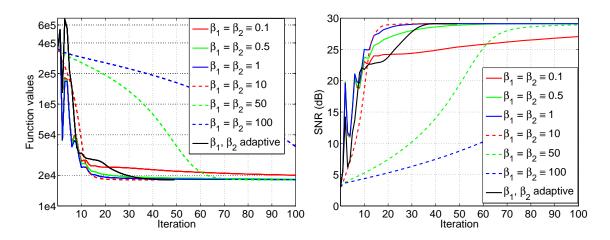


Fig. 3.1. Convergence of ADM with different β values. Test image: Boat.

where tol > 0 is a tolerance. For the OpT algorithm, we used the same settings as in [14]. All the experiments were performed under Windows XP and Matlab v7.9 (R2009b) running on a Dell desktop with an Intel Xeon CPU at 3GHz and 3GB of memory.

To examine carefully the convergence behavior of ADM, we first tested the Cameraman image with different percentage of available data. The ADM is terminated by (3.4) with relatively stringent tolerance: $tol = 10^{-5}$. The decrease of function values and the increase of SNR values as functions of iteration numbers are illustrated in Figure 3.2, in comparison with the OpT algorithm [14]. Note that in this test we set the maximum allowed iteration number to be 10 for each call of Chambolle's dual algorithm for solving the TV denoising subproblem in OpT.

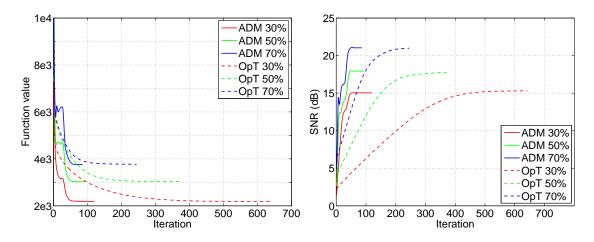


Fig. 3.2. Comparison results with the OpT algorithm about the convergence behavior of function values and SNR values. Test image: Cameraman; $p/n^2 = 30\%, 50\%$ and 70%.

It can be seen form Figure 3.2 that ADM converges much faster than OpT. Specifically, for all the three tests ADM requires about $50 \sim 60$ iterations to reach the lowest function values and the highest SNR values achievable by the model. In contrast, OpT improves the solution quality continuously but at a much slower speed. OpT takes about 250 iterations at the least for the case of 70% available data. For the case of 30%

available data, OpT takes more than 600 iterations to recover a solution of approximately the same quality as that obtained by the ADM.

Given the above observations, in the next set of experiments we terminated ADM with a looser tolerance: $tol = 5 \times 10^{-4}$. In this set of experiments, we tested all the three images with three levels of available data (30%, 50% and 70%). The results of finial objective function values, SNR values and the consumed CPU time are summarized in Figure 3.3.

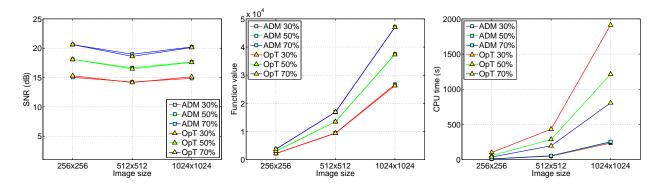


Fig. 3.3. Comparison results of function values, SNR values and CPU time.

From the first and the second plot in Figure 3.3, we can see that, for all tests, the final function values and SNR values obtained by both algorithms are approximately the same, because that they solve the same model. However, from the third plot in Figure 3.3 it is clear that ADM converges much faster than OpT. The faster convergence of ADM over OpT becomes more evident when image size becomes large. For example, for the 1024-by-1024 "Man" image, OpT takes up to 1,900 seconds for the test on 30% data, while ADM only takes about 250 seconds. Another advantage of ADM over OpT is that its speed seems less sensitive to the amount of available data. The CPU time consumed by ADM remains roughly the same for the tests on 30%, 50% and 70% data, while those taken by OpT becomes longer for less data. These comparison results clearly demonstrate the superiority of the proposed ADM approach. Recall that OpT applies the method in [12] to solve the resulting TV denoising subproblem at each iteration. In this experiment, we set the maximal number of iterations as 5 for the inner iterations, as suggested in [14]. If the TV denoising subproblems are solved to higher accuracy, OpT becomes even slower. The original images, back projections $(W^T P^T f)$ and those recovered images by both algorithms from 50% wavelet coefficients are presented in Figure 3.4 along with the resulting SNR values and the consumed CPU time.

Now, we dig into the reason why OpT is slower than ADM. It is easy to show that, for given $u = u^k$, the minimizer v^{k+1} of (3.2) is given by

(3.5)
$$\begin{cases} v_{\bar{P}}^{k+1} = W_{\bar{P}}u^k, \\ v_{P}^{k+1} = \frac{f + \tau W_{\bar{P}}u^k}{1 + \tau}, \end{cases}$$

where W_P is the submatrix of W containing those rows with indices selected by P, and $W_{\bar{P}}$ contains the remaining rows. By plugging v^{k+1} into (3.1) and ignoring constant quantities, we see that u^{k+1} generated by the OpT algorithm in [14] is the unique solution of

(3.6)
$$\min_{u} \left\{ \text{TV}(u) + \frac{\mu(1+\tau)}{2} \|u - \xi^{k}\|^{2} \right\},$$

Fig. 3.4. Recovered images by both algorithms from 50% wavelet coefficients. First row: original images; Second row: back projections; Third row: recovered by OpT; Bottom row: recovered by ADM.

where $\xi^k = W^\top v^{k+1}$. From (3.5) and $W_P^\top W_P + W_{\bar{P}}^\top W_{\bar{P}} = I$, it is easy to show that

$$\xi^{k} = W^{\top} v^{k+1} = W_{P}^{\top} v_{P}^{k+1} + W_{\bar{P}}^{\top} v_{\bar{P}}^{k+1}$$

$$= \frac{W_{P}^{\top} f + \tau W_{P}^{\top} W_{P} u^{k}}{1 + \tau} + W_{\bar{P}}^{\top} W_{\bar{P}} u^{k}$$

$$= \frac{1}{1 + \tau} \left(W_{P}^{\top} f + \tau u^{k} + W_{\bar{P}}^{\top} W_{\bar{P}} u^{k} \right)$$

$$= u^{k} - \left(u^{k} - \frac{1}{1 + \tau} \left(W_{P}^{\top} f + \tau u^{k} + W_{\bar{P}}^{\top} W_{\bar{P}} u^{k} \right) \right)$$

$$= u^{k} - \frac{1}{1 + \tau} W_{P}^{\top} \left(W_{P} u^{k} - f \right) = u^{k} - \delta g^{k}.$$

$$(3.7)$$

where $\delta = \frac{1}{1+\tau}$ and $g^k = W_P^\top \left(W_P u^k - f\right)$ is the gradient of $\frac{1}{2} \|PWu - f\|^2$ at $u = u^k$. From (3.6) and (3.7), it is clear that the optimization transfer algorithm proposed in [14] is essentially a proximal forward-backward operator splitting algorithm with the constant steplength $\frac{1}{1+\tau}$, which is strictly less than 1 since $\tau > 0$. We note that in general the proximal forward-backward operator splitting algorithm converges for varying steplengths δ^k provided that the sequence $\{\delta^k\}_{k=1}^{+\infty}$ satisfies:

$$0 < \inf_{k} \{\delta^k\} \le \sup_{k} \{\delta^k\} < 2/\lambda_{\max}(AA^\top).$$

where, under the circumstance, A = PW for problem (1.2), and $\lambda_{\max}(\cdot)$ denotes the maximum eigenvalue. We also note that in general bigger steplength δ^k leads to faster convergence. For A = PW, it holds that $\lambda_{\max}(AA^{\top}) = \lambda_{\max}(PP^{\top}) = 1$. Therefore, according to the convergence theory of the proximal forward-backward operator splitting algorithm, the steplength δ in (3.7) can be relaxed to a value as large as 2 without spoiling its convergence. On the other hand, the ADM is a variant of the classical augmented Lagrangian method, which has a close relationship with Newton's method. In fact, recent studies on semidefinite program conducted in [48] show that the augmented Lagrangian method can be locally regarded as an approximate generalized Newton's method applied to a semismooth equation. This partially explains why the OpT algorithm converges slower than ADM. For details about the proximal forward-backward operator splitting algorithm, we refer interested readers to [22] and the references therein.

3.2. Comparison with TwIST. Given the above observations, next we compare the ADM with TwIST [7], which is actually a variant of the proximal forward-backward operator splitting algorithm. Note that TwIST solves the general problem:

(3.8)
$$\min_{u} \left\{ \Phi_{\text{reg}}(u) + \frac{\mu}{2} ||Au - b||^2 \right\},$$

where $\Phi_{\text{reg}}(\cdot)$ can be either TV or ℓ_1 regularization. Given u^k , we let $\xi^k = u^k - A^{\top}(Au^k - b)$ and

(3.9)
$$\Psi(\xi^k) := \arg\min_{u} \left\{ \Phi_{\text{reg}}(u) + \frac{\mu}{2} \|u - \xi^k\|^2 \right\}.$$

Initialized at u^0 and u^1 , the TwIST algorithm iterates as

(3.10)
$$u^{k+1} = (1 - \alpha)u^{k-1} + (\alpha - \theta)u^k + \theta\Psi(\xi^k),$$

where $\alpha, \theta > 0$ are properly selected constant parameters. It is easy to see that (3.10) reduces to (3.6) (with $\delta = 1$ in (3.7)) if $\Phi_{\text{reg}}(u) = \text{TV}(u)$ and $\alpha = \theta = 1$. In the implementation of TwIST, the parameters α

and θ were determined carefully based on the spectral distribution of AA^{\top} . In our case, A = PW and the minimum and the maximum eigenvalues of AA^{\top} are obviously 0 and 1, respectively. Therefore, we assigned a relatively small value 10^{-4} to the TwIST parameter lam1 (which is used to compute α and θ), as recommended in the TwIST_v2's documentation. In the TwIST codes, the problem (3.9) is also solved by Chambolle's denoising algorithm [12]. To speed up TwIST, we set the maximum iteration number to be 5 for each call of Chambolle's algorithm to solve (3.9). TwIST is terminated when the relative change in function values of two consecutive iterations falls below tolA= 10^{-5} . For ADM, we set $tol = 10^{-4}$ and kept other parameter settings as used in Section 3.1.

In these set of experiments, we used the Haar wavelet transform provided by the Rice Wavelet Toolbox [62] with its default settings. The test results on three other images of different sizes (Boy: 290×240 , Boat: 512×512 and Bird: 800×782) with 30%, 50% and 70% data are reported in Figure 3.5.

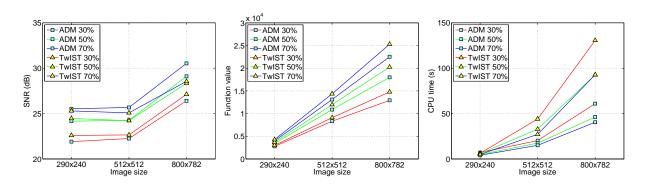


Fig. 3.5. Comparison results of function values, SNR values and CPU time.

It can be seen from the left plot in Figure 3.5 that ADM reaches lower SNR values for 4 of the 9 tests. However, from the middle and the right plots, ADM obtains smaller function values within less CPU times for all the 9 tests. Also, by comparing the last plot in Figure 3.5 with that in Figure 3.3, we can see that TwIST is faster than OpT since the gap in CPU time is narrowed to a large extent. The original images, back projections and those recovered by ADM and TwIST from 50% Haar wavelet coefficients are given in Figure 3.7.

The convergence of ADM and TwIST in terms of function values and SNR values for the 512 × 512 sized Boat image are plotted in Figure 3.6. It can be seen from the left plot in Figure 3.6 that ADM is much faster than TwIST in decreasing function values. For TwIST to obtain function values as good as those results of ADM, much stringent tolerance must be enforced. In that case, the consumed iteration numbers by TwIST will increase greatly, which is not required since the SNR values obtained by both methods are, roughly speaking, equally good, as shown by the plot on the right-hand-side in Figure 3.6.

4. Concluding remarks. In this paper, we proposed a fast alternating direction algorithm for solving the total variation wavelet domain inpainting problem. The proposed algorithm is a variant of the classical augmented Lagrangian method which takes fully the separable structures of the problem. At each iteration, the main computational cost of the proposed algorithm is dominated by two DWTs and two FFTs. Upon profiling the ADM algorithm in Matlab, we found that about 60% of CPU time was consumed by the computation of fast transforms (DWT, FFT and their inverse transforms). The remaining time was consumed

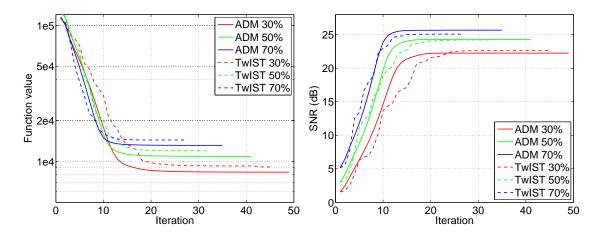


FIG. 3.6. Convergence of ADM and TwIST in terms of function values and SNR values for the Boat image; $p/n^2 = 30\%, 50\%$ and 70%.

by the computation of finite differences, function values, SNR values, overhead, ect. The CPU time consumed by fast (forward and inverse) wavelet transforms versus that by (forward and inverse) Fourier transforms is determined by their average speed since the number of calls to each of them is equal (ignoring overhead computations). Our experimental results clearly demonstrate that the proposed ADM is stable, efficient and much faster than some existing methods, including the optimization transfer algorithm [14] and the two-step iterative/shrinakge algorithm [7].

Acknowledgments. We are grateful to three anonymous referees for their valuable comments and suggestions which have helped us improve the presentation of this paper.

REFERENCES

- [1] R. Acar and C. R. Vogel, Analysis of total variation penalty methods, Inverse Prob., 10, pp. 1217-1229, 1994.
- [2] M. V. Afonso, J. Bioucas-Dias, and M. Figueiredo, Fast image recovery using variable splitting and constrained optimization, Available at: http://arxiv.org/abs/0910.4887, 2009.
- [3] M. V. Afonso, J. Bioucas-Dias, and M. Figueiredo, A fast algorithm for the constrained formulation of compressive image reconstruction and other linear inverse problems, Available at: http://arxiv.org/abs/0909.3947v1, 2009.
- [4] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, *Image coding using wavelet transform*, IEEE Trans. Image Process., 1(2), pp. 205–220, 1992.
- [5] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels, IEEE Trans. Image Process., 10(8), pp. 1200–1211, 2001.
- [6] M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester, Image Inpainting, In Kurt Akeley, editor, SIGGRAPH 2000, Computer Graphics Proceedings, pp. 417–424, ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.
- [7] J. Bioucas-Dias, and M. Figueiredo, A new TwIST: Two-step iterative thresholding algorighm for image restoration, IEEE Trans. Imag. Process., 16 (12), pp. 2992–3004, 2007.
- [8] L. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization, USSR Computational Mathematics and Mathematical Physics, 7, pp. 200–217, 1967.
- [9] J.-F. Cai, R. Chan, and Z. Shen, A Framelet-Based Image Inpainting Algorithm, Appl. Comput. Harmon. Anal., 24, 131–149, 2008.
- [10] J.-F. Cai, H. Ji, F. Shang, and Z. Shen, *Inpainting for compressed images*, Appl. Comput. Harmon. Anal., 29 (3), pp. 368–381, 2010.

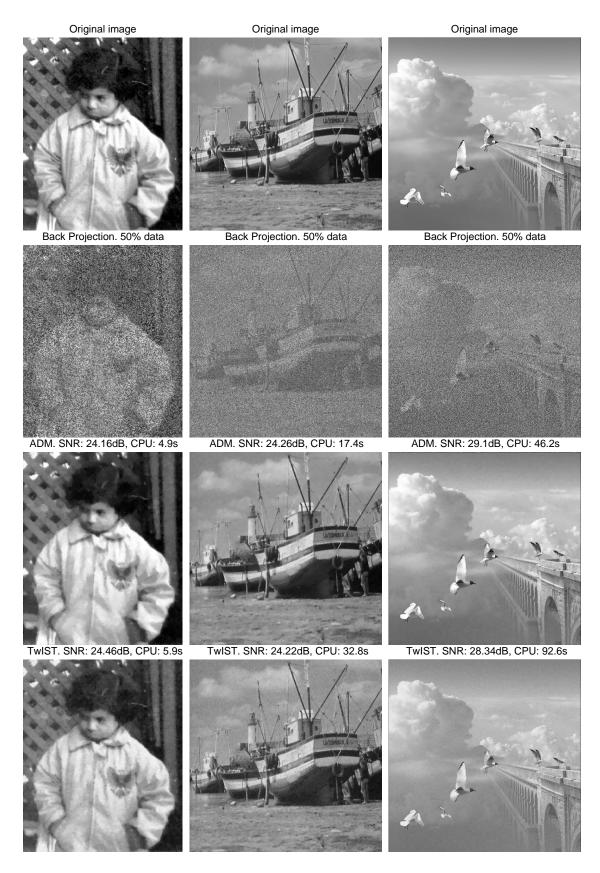


Fig. 3.7. Recovered results by ADM and TwIST from 50% Haar wavelet coefficients. First row: original images (from left to right: Boy, Boat and Bird); Second row: back projections; Third row: recovered by ADM; Bottom row: recovered by TwIST.

- [11] A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76, pp. 167–188, 1997.
- [12] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imag. Vis., 20, pp. 89–97, 2004.
- [13] A. Chambolle, and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Mathematical Imaging and Vision, DOI: 10.1007/s10851-010-0251-1.
- [14] R. Chan, Y. W. Wen, and A. M. Yip, A Fast Optimization Transfer Algorithm for Image Inpainting in Wavelet Domains, IEEE Trans. Image Proc., 18, pp. 1467–1476, 2009.
- [15] T. Chan, S. Esedoglu, F. Park and A. Yip, Recent developments in total variation image restoration, TR05–01, CAM, LICLA
- [16] T. Chan, S. Kang, and J. Shen, Euler's elastica and curvature-based inpainting, SIAM J. Appl. Math., 63(2), pp. 564–592, 2002.
- [17] T. Chan and J. Shen, Nontexture inpainting by curvature-driven diffusions, J. Vis. Commun. Image Represent., 12(4), pp. 436–449, 2001.
- [18] T. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math., 62(3), pp. 1019–1043, 2002.
- [19] T. Chan and J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, SIAM, Philadelphia, PA, 2005.
- [20] T. Chan, J. Shen, and H. Zhou, Total variation wavelet inpainting, J. Math. Imaging Vision, 25(1), pp. 107–125, 2006.
- [21] A. Cohen, I. Daubeches, and J.C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math., 45(5), pp. 485–560, 1992.
- [22] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4, pp. 1168–1200, 2005.
- [23] I. Daubechies, M. Defriese, and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., vol. LVII, pp. 1413–1457, 2004.
- [24] C. De Mol, and M. Defrise, A note on wavelet-based inversion algorithms, Contemp. Math., 313, pp. 85–96, 2002.
- [25] J. Douglas, and H. Rachford, On the Numerical Solution of Heat Conduction Problems in Two and Three Space Variables, Transactions of the American mathematical Society, 82, pp. 421–439, 1956.
- [26] D. C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data, SIAM J. Appl. Math., 56, pp. 1181–1198, 1996.
- [27] J. Eckstein, and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55, North-Holland, 1992.
- [28] M. Elad, Why simple shrinkage is still relevant for redundant representations?, IEEE Transactions on Information Theory, 52, pp. 5559–5569, 2006.
- [29] E. Esser, Applications of Lagrangian-Based alternating direction methods and connections to split Bregman, UCLA CAM Report 09–31, 2009.
- [30] M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process., 12(8), pp. 906–916, 2003.
- [31] D. Gabay, and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations, Comp. Math. Appl., 2, pp. 17–40, 1976.
- [32] D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization, IEEE Trans. Image Process., 4(7), pp. 932–946, 1995.
- [33] R. Glowinski, and P. Le Tallec, Augmented Lagrangian and Operator splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, Philadelphia, PA, 1989.
- [34] R. Glowinski, and A. Marrocco, Sur lapproximation par elements finis dordre un, et la resolution par penalisation-dualite dune classe de problemes de Dirichlet nonlineaires, Rev. Francaise dAut. Inf. Rech. Oper., R-2, pp. 41–76, 1975.
- [35] T. Goldstein, and S. Osher, The split Bregman method for ℓ₁-Regularized Prolbems, SIAM J. Imag. Sci., vol. 2, pp. 323–343, 2009
- [36] B. S. He, S. L. Wang, and H. Yang A modified variable-penalty alternating directions method for monotone variational inequalities, J. Computational Mathematics, 21, pp. 495–504, 2003.
- [37] M. R. Hestenes, Multiplier and gradient methods, J. Optimiz. Theory App., 4, pp. 303-320, 1969.

- [38] M. K. Ng, R. H. Chan, and W.-C. Tang, A fast algorithm for deblurring models with Neumann boundary conditions, SIAM J. Sci. Comput., 21, pp. 851–866, 1999.
- [39] M. K. Ng, P. A. Weiss and X. M. Yuan, Solving constrained total-variation problems via alternating direction methods, SIAM J. Sci. Comput., 32(5), pp. 2710–2736, 2010.
- [40] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Modeling and Simulation, 4 (2), pp. 460–489, 2005.
- [41] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, R. Fletcher, ed., Academic Press, New York, NY, pp. 283–298, 1969.
- [42] S. Rane, J. Remus, and G. Sapiro, Wavelet-domain reconstruction of lost blocks in wireless image transmission and packet-switched networks, IEEE ICIP, 2002.
- [43] S. Rane, G. Sapiro and M. Bertalmio, Structure and texture filling-in of missing image blocks in wireless transmission and compression applications, IEEE Trans. Image Processing, 12, pp. 296–303, 2003.
- [44] L. Rudin and S. Osher, Total variation based image restoration with free local constraints, Proc. 1st IEEE ICIP, no. 1, pp. 31–45, 1994.
- [45] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, pp. 259–268, 1992.
- [46] S. Setzer, Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage, Proc. 2nd International Conference on Scale Space Methods and Variational Methods in Computer Vision, Lecture Notes in Computer Science, 2009.
- [47] J. L. Starck, M. Nguyen, and F. Murtagh, Wavelets and curvelets for image deconvolution: a combined approach, Signal Processing, 83 (2003), pp. 2279–2283.
- [48] D. F. Sun, J. Sun, and L. W. Zhang, The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming, Mathematical Programming, 114, pp. 349–391, 2008.
- [49] M. Tao and X. M. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim, 21(1), pp. 57–81, 2011.
- [50] A. Tikhonov and V. Arsenin, Solution of ill-posed problems, Winston, Washington, DC, 1977.
- [51] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17, pp.227–238, 1996.
- [52] C. R. Vogel and M. E. Oman, A fast, robust total variation based reconstruction of noisy, blurred images, IEEE Trans. Image Process., 7, pp. 813–824, 1998.
- [53] Y. Wang, J.-F. Yang, W. Yin, and Y. Zhang, A new alternating minimization alrorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1, pp. 948–951, 2008.
- [54] Z. Wen, W. Yin, and D. Goldfarb, Alternating direction augmented Lagrangian methods for semideffinite programming, Technical Report, IEOR, Columbia University, 2009.
- [55] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented lagrange multiplier method for exact recovery of a corrupted low-rank matrices, Mathematical Programming, submitted, 2009.
- [56] J.-F. Yang, W. Yin, Y. Zhang, and Y. Wang, A fast algorithm for edge-preserving variational multichannel image restoration, SIAM J. Imag. Sci., 2(2), pp. 569–592, 2009.
- [57] J.-F. Yang, and Y. Zhang, Alternating direction algorithms for ℓ₁-problems in compressive sensing, TR 09–37, CAAM, Rice University.
- [58] J.-F. Yang, Y. Zhang, and W. Yin, An efficient TVL1 algorithm for deblurring of multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., vol. 31, no. 4, pp. 2842–2865, 2009.
- [59] J.-F. Yang, Y. Zhang, and W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE J. Sel. Top. Signa., Special Issue on Compressive Sensing, 4(2), pp. 288–297, 2010.
- [60] X. Q. Zhang, and T. Chan, Wavelet inpainting by nonlocal total variation, Inverse Problems and Imaging, 4(1), pp. 191–210, 2010.
- [61] X. Q. Zhang, M. Burger, X. Bresson, and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM Journal on Imaging Sciences, to appear.
- [62] Rice Wavelet Toolbox, http://www.dsp.rice.edu/software/rwt.shtml.