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Abstract. Image inpainting in wavelet domain refers to the recovery of an image from incomplete and/or inaccurate

wavelet coefficients. To reconstruct the image, total variation (TV) models have been widely used in the literature and they

produce high-quality reconstructed images. In this paper, we consider an unconstrained TV-regularized, ℓ2-data-fitting model

to recover the image. The model is solved by the alternating direction method (ADM). At each iteration, ADM needs to solve

three subproblems, all of which have closed-form solutions. The per-iteration computational cost of ADM is dominated by two

Fourier transforms and two wavelet transforms, all of which admit fast computation. Convergence of the ADM iterative scheme

is readily obtained. We also discuss extensions of this ADM scheme to solving two closely related constrained models. We

present numerical results to show the efficiency and stability of ADM for solving wavelet domain image inpainting problems.

Numerical comparison results of ADM with some recent algorithms are also reported.
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1. Introduction. Image inpainting is an important image processing task in many applications, and it

has been studied extensively in the literature, see, e.g. [19]. Image inpainting refers to the problem of filling

in missing or damaged regions in images, either in the pixel domain or in a transformed domain, depending

on how the image is damaged. Let u∗ be an unknown image. Without loss of generality, we assume that u∗

is an n-by-n square image, and our discussions apply to non-square images as well. Following the standard

treatment, we vectorize two-dimensional images into one-dimensional vectors. Therefore, throughout this

paper we treat n-by-n images as vectors in Rn2
. In general, image inpainting problem can be viewed as

recovering an unknown image u∗ from

f = (PT u∗ + ω) ∈ Rp,(1.1)

where T ∈ Rn2×n2
represents a transform matrix, P ∈ Rp×n2

is a projection/downsampling matrix con-

taining p (< n2) rows of the identity matrix of order n2, ω ∈ Rp contains the contamination of noise

introduced during both the observation process of the original image and the subsequent transmissions of

the transformed and compressed coefficients, and f ∈ Rp denotes the remaining incomplete and inaccurate

transformed coefficients. The positions of the remaining (and thus those missed) transformed coefficients are

determined by P .

In [6], Bertalmio et al. first considered image inpainting in the pixel domain, i.e., T is the identity

matrix, and f contains approximate values of the p remaining pixels. Inpainting in the pixel domain is, in

∗Department of Mathematics, the Chinese University of Hong Kong, Shatin, Hong Kong. E-mail: rchan@math.cuhk.edu.hk.

Research supported by HKRGC grant no.: CUHK 400510 and DAG no.: 2060408.
†Department of Mathematics, Nanjing University, Nanjing, Jiangsu, 210093, China. E-Mail: jfyang@nju.edu.cn. Research

supported by National Science Foundation of China NSFC-11001123.
‡Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong. E-Mail: xmyuan@hkbu.edu.hk.

Research supported by HKRGC grant no.: HKBU 203009.

1



some sense, an interpolation problem, where values of the missed pixels are approximated by using those

of the remaining. Inpainting methods in the pixel domain usually take advantage of the property that the

missed pixels are local and hence their values can be estimated by utilizing neighboring information. We

here list some existing approaches in the literature. The authors of [6] used partial differential equations to

smoothly propagate information from the surrounding areas along the isophotes into the inpainting domain.

Subsequently, Ballester et al. proposed a variational inpainting model based on a joint cost functional on the

gradient vector field and gray values in [5]. Chan and Shen considered a total variational (TV) inpainting

model in [18] and the curvature driven diffusion model in [17]. The TV inpainting model fills in the missing

regions such that the TV is minimized, and its use is motivated by the wide applications of TV in image

restoration. In [16], Chan, Kang and Shen also introduced an inpainting technique using an Euler’s elastica

energy-based variational model. In [9], Cai, Chan and Shen used tight-frame approach for inpainting and

showed that it is equivalent to using an ℓ1 regularization on the tight-frame coefficients. All these works

concentrate on image inpainting in the pixel domain.

Inpainting in transformed domains is totally different because each single corruption of data can, in

general, affect the whole image, and thus an inpainting region in the pixel domain is not well defined. Trans-

formed domain inpainting arises in practical applications because images are usually formatted, transmitted

and stored in a transformed domain. For examples, in the JPEG standard images are transformed by cosine

transforms, while in the JPEG2000 standard images are transformed to a wavelet domain through wavelet

transforms. In such situations, the transform T is either a discrete cosine transform (DCT) or a discrete

wavelet transform (DWT). During storage and transmission, certain coefficients may be lost or corrupted,

which naturally leads to the transformed domain inpainting problem. In this paper, we consider recovering

the original image u∗ from incomplete and inaccurate wavelet coefficients, i.e., T is an orthonormal wavelet

transform.

In practical applications, the downsampling matrix P in (1.1) is usually determined according to certain

“thresholding” rule, i.e., those transformed coefficients with magnitudes bigger than some threshold value

are kept, while the others are discarded. In this situation, P is also known as a thresholding compressing

operator. We note that, in addition to thresholding based image compression, other compression approaches

are certainly applicable in practical applications. For example, P can be a “quantization” based compressing

operator, in which case the binary representation of T u∗ is quantized so that only bits with order higher than

a prescribed value are kept, while the remaining bits of lower orders are discarded, see [10] for details about

an iterative frame-based algorithm for image inpainting in the bits domain. In this paper, we concentrate

on the case that P is a selection/downsampling operator.

1.1. Wavelet domain inpainting via TV regularization. Rane et al. in [42, 43] considered wavelet

domain inpainting in wireless networks, where separated reconstruction techniques are used for image struc-

tures and textures. Inspired by the great success of TV in image restoration, Chan, Shen and Zhou in [20]

proposed to utilize TV regularization for image inpainting in wavelet domain. In [20], the following TV

regularized data-fitting model was solved to approximately reconstruct the original image:

min
u

∑
i
∥Diu∥2 +

µ

2
∥PWu− f∥22,(1.2)
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where W ∈ Rn2×n2
represents a discrete orthonormal wavelet transform matrix, f contains those remaining

inaccurate wavelet coefficients (given by (1.1) with T = W ), ∥ · ∥2 represents the ℓ2-norm,
∑

i ∥Diu∥2 is a

discretization of the total variation of u where
∑

i is taken over all pixels, and µ > 0 is a scalar balancing

regularization and fidelity. In this paper, we assume that the contamination of noise is random Gaussian,

and thus the ℓ2-norm square fidelity is used. In Section 2.3, we will briefly address a constrained alternative

of (1.2), as well as an equality constrained model which is suitable for noiseless data.

1.2. Some existing approaches for TV models. TV regularization was first proposed by Rudin,

Osher and Fatemi in [45, 44] for image denoising and deconvolution. Subsequently, TV regularization was

studied extensively in image restoration, see e.g. [11, 15] and references therein. The advantage of TV

regularization is that it can exploit image blocky structures and preserve edges. The superiority of TV

over Tikhonov regularization [50] is analyzed in [1, 26] for recovering images containing piecewise smooth

objects. Despite these advantages, it is generally challenging to solve TV models efficiently in practice

because imaging problems are usually large scale, ill-conditioned, and moreover the TV is non-smooth. Here

we review some existing approaches to TV models.

Early researches on the numerical solution of TV models concentrated on smoothed TV models, where

the TV is approximated by
∑

i

√
∥Dix∥22 + ϵ with small ϵ > 0. As such, ordinary optimization methods for

smooth function minimization can be applied, e.g., the time-marching scheme used in the pioneering work

[45], the linearized gradient method proposed in [51] for denoising and in [52] for deconvolution. Another class

of algorithms for TV problems are those based upon the iterative shrinkage/thresholding (IST) operator,

see e.g. [24, 28, 30, 47, 23]. At each iteration of IST-based algorithms, a TV denoising problem needs to be

solved, either exactly or approximately.

Recent approaches to TV models are based on appropriate splitting of the TV norm. A novel splitting

of the TV norm was proposed in [53], where the authors utilized the quadratic penalty technique to derive

an efficient alternating minimization algorithm. This splitting of TV allows the use of a multidimensional

shrinkage operator and fast Fourier transform for deconvolution problem. Given its efficiency, the technique

used in [53] was extended to multichannel image deconvolution in [56] and impulsive noise elimination in [58].

Goldstein and Osher [35] applied the classical augmented Lagrangian method [37, 41], where the authors

derived the algorithm based on the Bregman distance [8]. In [35], the authors used an alternating strategy

to minimize the augmented Lagrangian function. The authors proposed to solve the inner subproblem

approximately by only one alternating step, which reduces to the classical alternating direction method.

Lately, the alternating direction method has been applied to a set of imaging problems, see e.g. [29, 46,

59, 2, 3, 39]. Recently, a first-order primal-dual algorithm was proposed in [13], which is shown to have

attractive convergence results for uniformly convex problems and is closely related to the Douglas-Rachford

splitting algorithm [25] as well as the alternating direction method [34, 31] to be discussed in this paper.

For solving problem (1.2), an explicit gradient descent scheme was used in [16]. An optimization transfer

algorithm was recently proposed in [14], which is related to the half-quadratic technique [32]. Lately, model

(1.2) has been extended in [60] to recover textures and local geometry structures of natural images by utilizing

a nonlocal TV regularizer, where the Bregman iteration [40] and the operator splitting algorithms [22, 61]

were applied to solve the underlying problems. The main contribution of this paper is to introduce a simple,

yet very efficient algorithm for solving (1.2) and some related problems as well. In addition, we compare
3



the proposed algorithm with the optimization transfer algorithm recently proposed in [14] and the two-step

iterative shrinkage/thresholding algorithm in [7].

1.3. Notation and organization. Let the superscript “⊤” be the transpose operator for real matrices

or vectors. For vectors vi and matrices Ai, i = 1, 2, we let (v1; v2) = (v⊤
1 , v⊤2 )⊤ and (A1; A2) = (A⊤

1 , A⊤
2 )⊤. As

used in (1.2), for each i, Di is a 2-by-n2 matrix such that the two entries of Diu represent the horizontal and

vertical local finite differences of u at pixel i (boundary conditions will be specified later). The corresponding

horizontal and vertical global finite difference matrices are denoted by D(1) and D(2), respectively. As such,

D(1) and D(2) contain, respectively, the first and second rows of Di for all i’s. For the rest of the paper, we

let ∥ · ∥ = ∥ · ∥2. Additional notation will be defined when it occurs.

The paper is organized as follows. In Section 2, we present the basic algorithm for solving (1.2) and

discuss its extensions to solving some related problems. Section 3 reports experimental results in comparisons

with the optimization transfer algorithm [14] and the two-step iterative shrinkage/thresholding algorithm

[7]. Finally, some concluding remarks are given in Section 4.

2. Basic algorithm and related work. The main difficulty of solving (1.2) is due to the nondiffer-

entiability of the involved TV norm. Analogous to [53], we shall first reformulate (1.2) into an minimization

problem with linear constraints. Then, we shall apply the influential alternating direction method [31] to

solve the reformulation. In the following, we first present the reformulation and review briefly the classical

augmented Lagrangian method (ALM, see e.g. [37, 41]), from which ADM is motivated. Then, we delineate

the iterative scheme of ADM for solving (1.2). Finally, we discuss some extensions of the ADM to some

other relevant models.

2.1. Reformulation and ALM. By introducing auxiliary variables w = [w1, . . . ,wn2 ], where each

wi is a column vector in R2, the model (1.2) is equivalent to

min
u,w

{∑
i
∥wi∥+

µ

2
∥Pv − f∥2

∣∣ v = Wu, wi = Diu,∀ i
}

.(2.1)

Here w = [w1, . . . ,wn2 ] is a 2-by-n2 matrix. For convenience, the j-th row of w is denoted by w⊤
j , j = 1, 2.

Thus, the constraints {wi = Diu,∀i} are equivalent to wj = D(j)u, j = 1, 2, or more compactly, w = Du,

where w = (w1;w2) and D = (D(1); D(2)). Since w and w are the same variables with different ordering,

in the following we choose to use either w or w subject to convenience. The motivation of considering the

reformulation problem (2.1) is that the selection operator P , the finite difference operator D and the wavelet

transform operator W are separated in such a way that their special structures can be fully utilized. This is

actually the key idea of the efficient implementation of the ADM algorithm to be presented.

Then, the model (2.1) is a standard convex program with linear constraints, for which a classical approach

is the augmented Lagrangian method (see e.g. [37, 41]). More specifically, let the augmented Lagrangian

function of (2.1) be denoted by

LA(u, v, w, λ, η) :=
∑

i

(
∥wi∥ − λ⊤

i (wi −Diu) +
β1

2
∥wi −Diu∥2

)
(2.2)

+
µ

2
∥Pv − f∥2 − η⊤(v −Wu) +

β2

2
∥v −Wu∥2,

where λi ∈ R2 (for all i) and η ∈ Rn2
are multipliers, and β1, β2 > 0 are penalty parameters. The iterative

scheme of ALM for (2.1) is given by:
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(u, v, w)k+1 = arg minLA(u, v, w, λk, ηk),

λk+1
i = λk

i − γβ1(wk+1
i −Diu

k+1), ∀i,

ηk+1 = ηk − γβ2(vk+1 −Wuk+1),

(2.3)

where γ > 0 is a relaxation parameter. Note that at each iteration the ALM needs to solve a joint mini-

mization problem with respect to (u, v, w), either exactly or approximately.

2.2. Solving (2.1) by ADM. Let us revisit the minimization task in (2.3) which aims at solving all the

variables (u, v, w) simultaneously. Note that the augmented Lagrangian function LA(u, v, w, λ, η) (2.2) has

favorable separable structures. First, variables w and v are completely separated from each other, and thus

their minimization can be implemented in parallel. Second, with fixed u, the minimization for w reduces to

the minimization with each wi, and the minimization for v is componentwisely separable. Hence, the direct

application of ALM, which minimizes the variables (u, v, w) jointly, treats (2.1) as a generic convex program

and ignores completely the favorable separable structure.

The influential alternating direction method (ADM, [31]) takes full advantage of the separable structure

and decomposes the joint minimization task of ALM into some smaller and easier ones in the alternating

order. In the literature, ADM has been well studied especially in the context of convex programming and

variational inequalities. We refer to [33, 46] for the connection between ADM and the classical Douglas-

Rachford splitting method [25] and [27] for the relationship of ADM with the renowned proximal point

algorithm. More specifically, with the given (u, λ, η)k := (uk, λk, ηk), the iterative scheme of ADM for (2.1)

is as follows.



(v, w)k+1 = arg minv,w LA(uk, v, w, λk, ηk),

uk+1 = arg minu LA(u, vk+1, wk+1, λk, ηk),

λk+1
i = λk

i − γβ1(wk+1
i −Diu

k+1), ∀i,

ηk+1 = ηk − γβ2(vk+1 −Wuk+1).

(2.4)

It is easy to see that ADM inherits the spirit of the Gauss-Seidel iteration in the sense that the minimization

for u uses the most up-to-date iterates of v and w.

Now, let us delineate the way of solving the subproblems of ADM. Clearly, the v-subproblem in (2.4) is

equivalent to

min
v

µ

2
∥Pv − f∥2 +

β2

2
∥v − ζk∥2,(2.5)

where ζk = Wuk + ηk/β2. We let vP (resp. vP̄ ) be the subvector of v formed by those entries selected (resp.

not selected) by P . Thus, Pv = vP . It is easy to show that the minimizer vk+1 of (2.5) is given by

vk+1
P =

β2ζ
k
P + µf

β2 + µ
and vk+1

P̄
= ζk

P̄ .(2.6)

For the minimization of w (or equivalently w) in (2.4). For each i ∈ {1, 2, . . . , n2}, we let ξk
i = Diu

k +

λk
i /β1, and the minimization for wi is given by (see e.g., [53], [35])

wk+1
i = arg min

wi

∥wi∥+
β1

2
∥wi − ξk

i ∥2 = max
{
∥ξk

i ∥ −
1
β1

, 0
}
× ξk

i

∥ξk
i ∥

,(2.7)
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where we follow the convention 0× (0/0) = 0.

Finally, with the fixed v = vk+1 and w = wk+1, the u-subproblem in (2.4) is a least-squares problem

whose normal equations are given by

Auk+1 = bk,(2.8)

where, by noting the orthnormality of W , A = β1

∑
i D⊤

i Di + β2I = β1D
⊤D + β2I,

bk = D⊤(β1w
k+1 − λk) + W⊤(β2v

k+1 − ηk).
(2.9)

Under the periodic boundary conditions, D⊤D is a blockwise circulant matrix with circulant blocks and thus

can be diagonalized by two-dimensional discrete Fourier transform. Therefore, (2.8) can be easily solved by

two FFTs (fast Fourier transforms). Specifically, uk+1 is given by

uk+1 = F−1
(
F(bk)./diag(FAF−1)

)
,(2.10)

where F and F−1 represent, respectively, the two-dimensional forward and inverse Fourier matrix, diag(·)
takes the diagonal elements, and “./” denotes componentwise division. Alternatively, under the Neumann

boundary conditions, D⊤D is a block Toeplitz-plus-Hankel matrix (see e.g., [38]) and the system (2.8) can be

solved efficiently by two-dimensional DCTs. Therefore, all the subproblems arising in ADM for solving (2.1)

have closed-form solutions. This feature is very beneficial for resulting in attractive numerical performance,

as we shall show in the next section.

Although one can circularly apply (2.6), (2.7) and (2.10) until LA(u, v, w, λk, ηk) is minimized jointly

with respect to (u, v, w) and update the multipliers as in the ALM (2.3), we choose to update λk and ηk

immediately after merely one round of minimizations in the alternating order. Now, we are ready to present

the algorithm of ADM for solving (2.1) (or equivalently (1.2)).

Algorithm 1. Input problem data P, f and model parameters µ > 0. Given β1, β2 > 0 and γ ∈(
0, (
√

5 + 1)/2
)
. Initialize u = u0, λ = λ0 and η = η0. Set k = 0. Compute Λ := F

(
β1D

⊤D + β2I
)
F−1.

While “not converged”, Do

1) Compute vk+1 and wk+1:

ζk = Wuk + ηk/β2,

ξk
i = Diu

k + λk
i /β1, ∀i,

vk+1
P = β2ζk

P +µf
β2+µ ,

vk+1
P̄

= ζk
P̄

,

wk+1
i = max

{
∥ξk

i ∥ − 1
β1

, 0
}
× ξk

i

∥ξk
i ∥

, ∀i.

2) Compute uk+1:{
bk = D⊤(β1w

k+1 − λk) + W⊤(β2v
k+1 − ηk),

uk+1 = F−1
(
F(bk)./diag(Λ)

)
.

3) Update λk and ηk by{
λk+1

i = λk
i − γβ1(wk+1

i −Diu
k+1), ∀i,

ηk+1 = ηk − γβ2(vk+1
i −Wuk+1).
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4) k ← k + 1.

End Do

We note that the per iteration cost of this ADM framework is dominated by two DWTs (one forward

for computing Wuk and one inverse DWT for computing bk) and two FFTs (one forward and one inverse

for computing uk+1). The complexity of each of such computation is O(N log N) for a vector of length N .

All other computations have linear complexity. We also note that this ADM framework is applicable if the

isotropic TV in (1.2) is replaced by an anisotropic TV of the form TV(u) =
∑

i ∥Diu∥1. In this case, the

only modification of Algorithm 1 lies in the computation for wk+1, which is given by

wk+1
i = max

{
|ξk

i | − 1/β1, 0
}
◦ sgn(ξk

i ), ∀i,

where “sgn(·)” denotes the signum function, and | · | and “◦” represent, respectively, componentwise absolute

value and multiplication.

It is easy to see that the fast and exact minimization of the u-subproblem in the ADM framework (2.4)

is attainable provided that T is orthonormal and D⊤D is diagonalizable by fast transforms. Therefore, the

ADM framework (2.4) can be easily generalized to other problem scenarios including image inpainting from

cosine transformed or tight frame coefficients [9].

Implementation details of Algorithm 1 including stopping criteria and choices of parameters will be

specified in Section 3. The convergence of the proposed algorithm can be found in the literature of ADM,

e.g. [31, 33]. For succinctness, we only present the convergence theorem without detailed proof.

Theorem 2.1. For any β1, β2 > 0 and γ ∈ (0, (
√

5 + 1)/2), the sequence {(uk, vk, wk)} generated by

Algorithm 1 from any starting point (u0, λ0, η0) converges to a solution of (2.1).

2.3. Extensions and remarks. In this subsection, we discuss extensions of the ADM to solving two

closely related TV models. The first one is the constrained alternative of (1.2), i.e.,

min
u

{∑
i
∥Diu∥

∣∣ ∥PWu− f∥ ≤ δ
}

.(2.11)

where δ > 0 is related to the noise level. Note that from optimization theory, it is easy to see that (1.2)

and (2.11) are equivalent in the sense that solving one of them can determine an appropriate parameter for

the other such that these two problems share common solutions. Compared with (1.2), the advantage of

(2.11) is that δ can be properly selected whenever a reasonable estimation of the noise level is available. For

noiseless data, we recover u∗ via solving

min
u

{∑
i
∥Diu∥

∣∣ PWu = f
}

.(2.12)

In the following, we briefly sketch the ADM scheme for solving (2.11), where δ = 0 is also permitted and the

resulting algorithm solves (2.12).

By introducing auxiliary variables, problem (2.11) is clearly equivalent to

min
u,v,w

{∑
i
∥wi∥+ IV(v)

∣∣ v = Wu, wi = Diu,∀ i
}

,(2.13)

where V , {v ∈ Rn2
: ∥Pv − f∥ ≡ ∥vP − f∥ ≤ δ}, and IV(v) is the indicator function of V, i.e.,

IV(v) =

{
0, if v ∈ V;

+∞, otherwise.
(2.14)
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The augmented Lagrangian function LI
A(u, v, w, λ, η) of (2.13) is given by

LI
A(u, v, w, λ, η) :=

∑
i

(
∥wi∥ − λ⊤

i (wi −Diu) +
β1

2
∥wi −Diu∥2

)
(2.15)

+ IV(v)− η⊤(v −Wu) +
β2

2
∥v −Wu∥2.

Given λk and ηk, the ADM applied to (2.13) is an iterative algorithm based on the iteration

(v, w)k+1 = arg minv,w LI
A(uk, v, w, λk, ηk),

uk+1 = arg minu LI
A(u, vk+1, wk+1, λk, ηk),

λk+1
i = λk

i − γβ1(wk+1
i −Diu

k+1), ∀i,

ηk+1 = ηk − γβ2(vk+1 −Wuk+1).

(2.16)

The only difference between (2.16) and (2.4) lies in the minimization for v. It is easy to see that the v-

subproblem of (2.16) is equivalent to minv∈V ∥v − ζk∥, where ζk = Wuk + ηk/β2. Let PV be the projection

onto V. Clearly, vk+1 = PV(ζk), or equivalently, vk+1
P̄

= ζk
P̄

and

vk+1
P = f + min

(
∥ζk

P − f∥, δ
) ζk

P − f

∥ζk
P − f∥

.(2.17)

Therefore, by replacing the formula for computing vk+1
P in Algorithm 1 by (2.17), we obtain an ADM

algorithm for solving (2.13), or equivalently, (2.11). We note that vk+1
P ≡ f when δ = 0, and the resulting

algorithm solves (2.12).

Based on previous discussions, it is easy to see that the ADM framework can be applied to solving

(2.11) and (2.12) with minor modifications. In fact, ADM is also easily applicable to many other cases, e.g.,

local weighted and multichannel TV regularizations, nonnegativity or simple bound constraints, as well as

models with the ℓ1-norm data fitting, see e.g., [56, 59]. The most influential feature of the ADM approach is

perhaps its great versatility and universal effectiveness for a wide range of optimization problems in signal,

image and data analysis, particularly for those involving ℓ1-like regularizations such as TV, ℓ1-norm, and

nuclear-norm (sum of singular values), which have been used in the literature to promote different properties

of the original signal. Due to its simplicity and efficiency, very recently ADM has found many applications

in diverse areas in addition to image restoration such as compressive sensing [57], semidefinite programming

[54], sparse and low-rank matrix separation [55, 49] and magnetic resonance imaging [59].

3. Numerical results. In this section, we present experimental results to show the practical efficiency

of the proposed ADM scheme. Particularly, we compare Algorithm 1 with the optimization transfer algorithm

[14] and the two-step iterative shrinkage/thresholding algorithm [7]. We did not compare with the gradient

descent method [20] since it was shown in [14] that it is much slower and less accurate than the optimization

transfer algorithm. In the following, we abbreviate the optimization transfer algorithm [14] and the two-step

iterative shrinkage/thresholding algorithm [7] as OpT and TwIST, respectively, while Algorithm 1 will be

refereed to as ADM. In all experiments, we initialized u0 = W⊤P⊤f , and we call it “back projection”, λ0 = 0

and η0 = 0. The quality of recovered images are measured by signal-to-noise ratio (SNR) defined by

SNR = 20 log10

∥u∗∥
∥u− u∗∥

,

where u∗ and u are respectively the original and the reconstructed images.
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3.1. Comparison with OpT. In [14], the authors proposed to solve (1.2) by an optimization transfer

or majorization algorithm. First, problem (1.2) was converted to an equivalent problem of the form

min
u,v

{
TV(u) +

µ(1 + τ)
2τ

(
∥Pv − f∥2 + τ∥v −Wu∥2

)}
,(3.1)

where τ > 0 is a parameter. It can be shown that

∥PWu− f∥2 = min
v

1 + τ

τ

(
∥Pv − f∥2 + τ∥v −Wu∥2

)
.(3.2)

Therefore, (3.1) is equivalent to (1.2). The advantage of considering (3.1) is that alternating minimization

can be applied. For fixed u, the minimization of (3.1) with respect to v has a closed-form solution. On

the other hand, for fixed v the minimization of (3.1) with respect to u is a TV denoising problem (because

∥Wu− v∥2 = ∥u−W⊤v∥2), and therefore it can be solved efficiently by Chambolle’s dual approach [12].

In this comparison, we tested three images of different sizes: Cameraman (256-by-256), Barbara (512-

by-512) and Man (1024-by-1024). The intensity values of the original images are scaled into [0,1] before

generating f . In all experiments, we corrupted each original image with random Gaussian noise of mean

zero and standard deviation (std.) 0.0392 (equivalent to std. = 10 for images with intensity values varying

between 0 and 255), and the model parameter µ was set to be 50. We used the Daubechies 7-9 bi-orthogonal

wavelets with symmetric extensions at the boundaries [4, 21]. For each image, we tested the algorithms with

30%, 50%, and 70% randomly selected wavelet coefficients.

The parameter settings of ADM are as follows. We set γ = 1.618 in all experiments because, based on our

experiments, ADM is not sensitive to its choice. Although fixed values of β1 and β2 suffice for convergence,

we chose to select them adaptively. Since β1 and β2 are penalty parameters, we determine them in such a

way that the variations of the constraints w = Du and v = Wu are balanced. Specifically, for given β1 we

determine β2 by

β2 = min
{

β1 ×
∥w −Du∥
∥v −Wu∥

, 2× 104

}
.(3.3)

We initialize β0
1 = 0.1 and set βk

1 = min{1.15βk−1
1 , 2× 103} at the kth iteration. We note that this dynamic

parameter selection rule does not spoil the convergence theory of ADM, see e.g., [36] for a study of ADM

with adaptive penalty parameters. In fact, the practical performance of ADM is not very sensitive to the

choices of β1 and β2 provided that they are not extremely large or small. To illustrative this point, we tested

several constant values of β1 and β2. The convergence of ADM with constant β-values as well as the adaptive

rule (3.3) described above in terms of function values and SNR values are given in Figure 3.1.

It can be seen from Figure 3.1 that the convergence speed of ADM is not very sensitive to the values of

β1 and β2 as long as they are relatively not too large or small. Particularly, for the tested problem β1 and β2

can be randomly selected between, say, 0.5 and 30, and the corresponding iteration numbers differ slightly.

In fact, ADM with the self-adaptive rule (3.3) is less sensitive to the scale of problem data and the suitable

values for β1 and β2 can be found simultaneously.

In all experiments, we terminated Algorithm 1 when the relative change between two consecutive points

becomes small, i.e.,

∥uk − uk−1∥
∥uk−1∥

≤ tol,(3.4)
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Fig. 3.1. Convergence of ADM with different β values. Test image: Boat.

where tol > 0 is a tolerance. For the OpT algorithm, we used the same settings as in [14]. All the experiments

were performed under Windows XP and Matlab v7.9 (R2009b) running on a Dell desktop with an Intel Xeon

CPU at 3GHz and 3GB of memory.

To examine carefully the convergence behavior of ADM, we first tested the Cameraman image with

different percentage of available data. The ADM is terminated by (3.4) with relatively stringent tolerance:

tol = 10−5. The decrease of function values and the increase of SNR values as functions of iteration numbers

are illustrated in Figure 3.2, in comparison with the OpT algorithm [14]. Note that in this test we set the

maximum allowed iteration number to be 10 for each call of Chambolle’s dual algorithm for solving the TV

denoising subproblem in OpT.
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Fig. 3.2. Comparison results with the OpT algorithm about the convergence behavior of function values and SNR values.

Test image: Cameraman; p/n2 = 30%, 50% and 70%.

It can be seen form Figure 3.2 that ADM converges much faster than OpT. Specifically, for all the three

tests ADM requires about 50 ∼ 60 iterations to reach the lowest function values and the highest SNR values

achievable by the model. In contrast, OpT improves the solution quality continuously but at a much slower

speed. OpT takes about 250 iterations at the least for the case of 70% available data. For the case of 30%
10



available data, OpT takes more than 600 iterations to recover a solution of approximately the same quality

as that obtained by the ADM.

Given the above observations, in the next set of experiments we terminated ADM with a looser tolerance:

tol = 5× 10−4. In this set of experiments, we tested all the three images with three levels of available data

(30%, 50% and 70%). The results of finial objective function values, SNR values and the consumed CPU

time are summarized in Figure 3.3.
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Fig. 3.3. Comparison results of function values, SNR values and CPU time.

From the first and the second plot in Figure 3.3, we can see that, for all tests, the final function values

and SNR values obtained by both algorithms are approximately the same, because that they solve the same

model. However, from the third plot in Figure 3.3 it is clear that ADM converges much faster than OpT. The

faster convergence of ADM over OpT becomes more evident when image size becomes large. For example,

for the 1024-by-1024 “Man” image, OpT takes up to 1, 900 seconds for the test on 30% data, while ADM

only takes about 250 seconds. Another advantage of ADM over OpT is that its speed seems less sensitive to

the amount of available data. The CPU time consumed by ADM remains roughly the same for the tests on

30%, 50% and 70% data, while those taken by OpT becomes longer for less data. These comparison results

clearly demonstrate the superiority of the proposed ADM approach. Recall that OpT applies the method in

[12] to solve the resulting TV denoising subproblem at each iteration. In this experiment, we set the maximal

number of iterations as 5 for the inner iterations, as suggested in [14]. If the TV denoising subproblems are

solved to higher accuracy, OpT becomes even slower. The original images, back projections (W⊤P⊤f) and

those recovered images by both algorithms from 50% wavelet coefficients are presented in Figure 3.4 along

with the resulting SNR values and the consumed CPU time.

Now, we dig into the reason why OpT is slower than ADM. It is easy to show that, for given u = uk,

the minimizer vk+1 of (3.2) is given by {
vk+1

P̄
= WP̄ uk,

vk+1
P = f+τWP uk

1+τ ,
(3.5)

where WP is the submatrix of W containing those rows with indices selected by P , and WP̄ contains the

remaining rows. By plugging vk+1 into (3.1) and ignoring constant quantities, we see that uk+1 generated

by the OpT algorithm in [14] is the unique solution of

min
u

{
TV(u) +

µ(1 + τ)
2

∥u− ξk∥2
}

,(3.6)
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Original image Original image Original image

Back Projection. 50% data Back Projection. 50% data Back Projection. 50% data

OpT. SNR: 18.08dB, CPU: 56.9s OpT. SNR: 16.47dB, CPU: 288.3s OpT. SNR: 17.58dB, CPU: 1214s

ADM. SNR: 18.09dB, CPU: 10.3s ADM. SNR: 16.66dB, CPU: 53s ADM. SNR: 17.66dB, CPU: 247.1s

Fig. 3.4. Recovered images by both algorithms from 50% wavelet coefficients. First row: original images; Second row:

back projections; Third row: recovered by OpT; Bottom row: recovered by ADM.
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where ξk = W⊤vk+1. From (3.5) and W⊤
P WP + W⊤

P̄
WP̄ = I, it is easy to show that

ξk = W⊤vk+1 = W⊤
P vk+1

P + W⊤
P̄ vk+1

P̄

=
W⊤

P f + τW⊤
P WP uk

1 + τ
+ W⊤

P̄ WP̄ uk

=
1

1 + τ

(
W⊤

P f + τuk + W⊤
P̄ WP̄ uk

)
= uk −

(
uk − 1

1 + τ

(
W⊤

P f + τuk + W⊤
P̄ WP̄ uk

))
= uk − 1

1 + τ
W⊤

P

(
WP uk − f

)
= uk − δgk.(3.7)

where δ = 1
1+τ and gk = W⊤

P

(
WP uk − f

)
is the gradient of 1

2∥PWu−f∥2 at u = uk. From (3.6) and (3.7), it

is clear that the optimization transfer algorithm proposed in [14] is essentially a proximal forward-backward

operator splitting algorithm with the constant steplength 1
1+τ , which is strictly less than 1 since τ > 0.

We note that in general the proximal forward-backward operator splitting algorithm converges for varying

steplengths δk provided that the sequence {δk}+∞
k=1 satisfies:

0 < inf
k
{δk} ≤ sup

k
{δk} < 2/λmax(AA⊤),

where, under the circumstance, A = PW for problem (1.2), and λmax(·) denotes the maximum eigenvalue.

We also note that in general bigger steplength δk leads to faster convergence. For A = PW , it holds that

λmax(AA⊤) = λmax(PP⊤) = 1. Therefore, according to the convergence theory of the proximal forward-

backward operator splitting algorithm, the steplength δ in (3.7) can be relaxed to a value as large as 2 without

spoiling its convergence. On the other hand, the ADM is a variant of the classical augmented Lagrangian

method, which has a close relationship with Newton’s method. In fact, recent studies on semidefinite program

conducted in [48] show that the augmented Lagrangian method can be locally regarded as an approximate

generalized Newton’s method applied to a semismooth equation. This partially explains why the OpT

algorithm converges slower than ADM. For details about the proximal forward-backward operator splitting

algorithm, we refer interested readers to [22] and the references therein.

3.2. Comparison with TwIST. Given the above observations, next we compare the ADM with

TwIST [7], which is actually a variant of the proximal forward-backward operator splitting algorithm. Note

that TwIST solves the general problem:

(3.8) min
u

{
Φreg(u) +

µ

2
∥Au− b∥2

}
,

where Φreg(·) can be either TV or ℓ1 regularization. Given uk, we let ξk = uk −A⊤(Auk − b) and

(3.9) Ψ(ξk) := arg min
u

{
Φreg(u) +

µ

2
∥u− ξk∥2

}
.

Initialized at u0 and u1, the TwIST algorithm iterates as

(3.10) uk+1 = (1− α)uk−1 + (α− θ)uk + θΨ(ξk),

where α, θ > 0 are properly selected constant parameters. It is easy to see that (3.10) reduces to (3.6) (with

δ = 1 in (3.7)) if Φreg(u) = TV(u) and α = θ = 1. In the implementation of TwIST, the parameters α

13



and θ were determined carefully based on the spectral distribution of AA⊤. In our case, A = PW and

the minimum and the maximum eigenvalues of AA⊤ are obviously 0 and 1, respectively. Therefore, we

assigned a relatively small value 10−4 to the TwIST parameter lam1 (which is used to compute α and θ),

as recommended in the TwIST v2’s documentation. In the TwIST codes, the problem (3.9) is also solved

by Chambolle’s denoising algorithm [12]. To speed up TwIST, we set the maximum iteration number to be

5 for each call of Chambolle’s algorithm to solve (3.9). TwIST is terminated when the relative change in

function values of two consecutive iterations falls below tolA= 10−5. For ADM, we set tol = 10−4 and kept

other parameter settings as used in Section 3.1.

In these set of experiments, we used the Haar wavelet transform provided by the Rice Wavelet Toolbox

[62] with its default settings. The test results on three other images of different sizes (Boy: 290× 240, Boat:

512× 512 and Bird: 800× 782) with 30%, 50% and 70% data are reported in Figure 3.5.
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Fig. 3.5. Comparison results of function values, SNR values and CPU time.

It can be seen from the left plot in Figure 3.5 that ADM reaches lower SNR values for 4 of the 9 tests.

However, from the middle and the right plots, ADM obtains smaller function values within less CPU times

for all the 9 tests. Also, by comparing the last plot in Figure 3.5 with that in Figure 3.3, we can see that

TwIST is faster than OpT since the gap in CPU time is narrowed to a large extent. The original images,

back projections and those recovered by ADM and TwIST from 50% Haar wavelet coefficients are given in

Figure 3.7.

The convergence of ADM and TwIST in terms of function values and SNR values for the 512×512 sized

Boat image are plotted in Figure 3.6. It can be seen from the left plot in Figure 3.6 that ADM is much

faster than TwIST in decreasing function values. For TwIST to obtain function values as good as those

results of ADM, much stringent tolerance must be enforced. In that case, the consumed iteration numbers

by TwIST will increase greatly, which is not required since the SNR values obtained by both methods are,

roughly speaking, equally good, as shown by the plot on the right-hand-side in Figure 3.6.

4. Concluding remarks. In this paper, we proposed a fast alternating direction algorithm for solving

the total variation wavelet domain inpainting problem. The proposed algorithm is a variant of the classical

augmented Lagrangian method which takes fully the separable structures of the problem. At each iteration,

the main computational cost of the proposed algorithm is dominated by two DWTs and two FFTs. Upon

profiling the ADM algorithm in Matlab, we found that about 60% of CPU time was consumed by the

computation of fast transforms (DWT, FFT and their inverse transforms). The remaining time was consumed
14
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Fig. 3.6. Convergence of ADM and TwIST in terms of function values and SNR values for the Boat image; p/n2 =

30%, 50% and 70%.

by the computation of finite differences, function values, SNR values, overhead, ect. The CPU time consumed

by fast (forward and inverse) wavelet transforms versus that by (forward and inverse) Fourier transforms

is determined by their average speed since the number of calls to each of them is equal (ignoring overhead

computations). Our experimental results clearly demonstrate that the proposed ADM is stable, efficient and

much faster than some existing methods, including the optimization transfer algorithm [14] and the two-step

iterative/shrinakge algorithm [7].
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