CIRCULANT INTEGRAL OPERATORS AS PRECONDITIONERS
FOR WIENER-HOPF EQUATIONS !
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In this paper, we study the solutions of finite-section Wiener-Hopf equations by the
preconditioned conjugate gradient method. Our main aim is to give an easy and general
scheme of constructing good circulant integral operators as preconditioners for such equa-
tions. The circulant integral operators are constructed from sequences of conjugate sym-
metric functions {C;},. Let k(¢) denote the kernel function of the Wiener-Hopf equation
and k(t) be its Fourier transform. We prove that for sufficiently large 7 if {C, }, is uniformly
bounded on the real line R and the convolution product of the Fourier transform of C'; with
k(t) converges to k(t) uniformly on R, then the circulant preconditioned Wiener-Hopf op-
erator will have a clustered spectrum. It follows that the conjugate gradient method, when
applied to solving the preconditioned operator equation, converges superlinearly. Several
circulant integral operators possessing the clustering and fast convergence properties are
constructed explicitly. Numerical examples are also given to demonstrate the performance
of different circulant integral operators as preconditioners for Wiener-Hopf operators.

1. INTRODUCTION.

In this paper, we study the solutions of Wiener-Hopf equations
ox(t) —i—/ k(t —s)x(s)ds =g(t), 0<t< o0, (1)
0

where o > 0, k(t) and g¢(¢) are given functions in L;(—o00,00) and Ly[0, c0) respectively.
For simplicity, we denote

(Kx)(#) = /OOO k(t— s)a(s)ds, 0<t< oo,

and Z the identity operator. In the following, we assume that the operator K is self-adjoint,
i.e. the kernel function k(t) of the Wiener-Hopf equation is conjugate symmetric,

k(=) = k(1)

and also that the operator K is positive definite.
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Since the half-line Wiener-Hopf equation cannot be solved explicitly, we use the
projection method [8,p.71] to approximate the solution of the Wiener-Hopf equation. More
precisely, the solution x of the Wiener-Hopf equation is approximated by the solution z, of
the operator equation

(0T + Kr)ar](t) = g(t), 0<t<T (2)
Here K, is given by
(Koz) (1) = 0/0 k(t — s)x,(s)ds, ](: <t<rm, 3)
, > T.

Recently, Gohberg, Hanke and Koltracht [10] employed the conjugate gradient algo-
rithm as an iterative method for solving finite-section Wiener-Hopf equations (2). In order
to speed up the convergence rate of the method, they used circulant integral operators C;
to precondition C,. Circulant integral operators are operators of the form

(Cop)(t) = /0 cr(t—s)y(s)ds, 0<t<r, (@)
0, t>T,

where ¢, is a T-periodic conjugate symmetric function in L;[—7, 7]. Instead of solving the
original finite-section Wiener-Hopf equation, we solve the preconditioned equation

(0T +C) " (0T + K.z, (t) = [(0T + C)Yg](t), 0<t<T.

For each iteration step of the conjugate gradient method, we need to solve the
operator equation
(6T +C,)y = z,

which can be solved by using the spectral decomposition of the operator, see [9,p.106]. The
convergence rate of the method has been analyzed by Gohberg et. al. [10]. They proved
that if

lim [[k = ¢r[|Lyj0,7/2) = 0, (5)

T—00

then the finite-section Wiener-Hopf integral operator can be approximated by circulant
integral operators within a sum of a small and a finite rank operators. It follows that the
spectra of the corresponding circulant preconditioned operators are clustered around 1 for
large 7 and the method converges superlinearly. More precisely, for all € > 0, there exists
a constant v > 0 such that the error x, — 29 of the preconditioned conjugate gradient

method at the jth iteration satisfies

J
€
oy <V | —m80 ——
L2020 < <1+m>

when 7 is sufficiently large, see [10]. Hence the circulant integral operators are good pre-
conditioners for solving the finite-section Wiener-Hopf equations.
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We remark that there is a close relationship between Wiener-Hopf integral equa-
tions and semi-infinite Toeplitz operators, see [8,p.5]. The idea of using the preconditioned
conjugate gradient method with circulant preconditioners for solving Toeplitz systems has
been studied recently by various researchers [5,7,11,13] and applied in different fields of
applied mathematics and engineering such as numerical partial differential equations [3,12]
and signal and image processing [4,14]. In Chan and Yeung [6], they considered circu-
lant preconditioners from the viewpoint of convolution products and proved that most of
the circulant preconditioners proposed for Toeplitz matrices can be derived by taking the
convolution products of the generating function p of the Toeplitz matrix with some well-
known convolution kernels such as the Dirichlet and the Fejér convolution kernels. They
proved that if the convolution product converges to p uniformly, then the spectrum of the
corresponding circulant preconditioned matrix will be clustered around 1.

In this paper, we will consider the circulant integral operators from the same view-
point. The main aim of the paper is to give an easy and general scheme for constructing
circulant integral operators for Wiener-Hopf equations. We will also study their conver-
gence property by using convolution products. For ease of presentation, let us denote by ¢
the Fourier transform of any function ¢. Our first step is to relate ¢, () in (4) to a sequence
of conjugate symmetric functions {C-(t)}, and translate the convergence requirement (5)
on ¢,(t) to conditions on {C,(t)},. Basically we want C,(¢) to be such that the convolu-
tion product C; x ke will converge uniformly to k. We will see that the “wrap-round” and
“optimal” circulant integral operators, proposed by Gohberg et. al. in [10], can be derived
from this approach.

Using the result in [10], we prove that for sufficiently large 7, if {C;}, is uniformly
bounded on the real line R and the convolution product of C, with k( ) converges to
l%(t) uniformly on R, then the spectra of our circulant preconditioned operators will be
clustered around 1. It follows that the conjugate gradient method, when applied to solving
the preconditioned operator equation, converges superlinearly. We show that {C.(¢)}, can
be derived easily from the Dirac delta function or from approzimate convolution identities
commonly used in Fourier analysis. Several circulant integral operators possessing the
clustering and superlinear convergence properties are constructed explicitly by our scheme.

The outline of the paper is as follows. In §2, we introduce our scheme of constructing
circulant integral operators. In §3, we prove that if {C}}, is uniformly bounded on R and
the convolution product converges to l%(t) uniformly on R, then the spectra of the circulant
preconditioned operators will be clustered around 1. Finally, we design in §4 some circulant
integral operators by using well-known functions C. in Fourier analysis. Finally, numerical
examples are given in §5 to demonstrate the performance of different circulant integral
operators as preconditioners for Wiener-Hopf integral operators.

2. CONSTRUCTION OF CIRCULANT INTEGRAL OPERATORS.

We first recall the relationship between the circulant integral operators and their
eigenvalues. Let ¢, (t) be a 7-periodic and conjugate symmetric function in L;[—7, 7], i.e.

cr(t) =c(t+7) and ¢, (t) =c,(—t), Vte[-7,7]



Let C, be the associated circulant integral operator, see (4). We remark that C, is a
compact, self-adjoint operator on Ly[—7, 7] and its complete set of eigenfunctions is given

by
1 .
{un(t) | un(t) = Ffi?mt/ﬂ n € 7},

where Z is the set of all integers. Hence the eigenvalues A\, (C,) of the operator C, is given
by
T/2 _
n(Cr) = / cr(t)e Tt Y € Z, (6)
—7/2
see [9,p.106]. We note that the eigenvalues of the circulant integral operator are charac-

terized by its corresponding 7-periodic function ¢, (¢). Next we derive a general scheme for
constructing circulant integral operators.

LEMMA 1 Let {C,}, be a sequence of conjugate symmetric functions defined on
R. Define
C.()k(t)+ C.(t—71)k(t—71), 0<t<T,
c-(t) = (7)

Cr(t+ 1)kt +71)+ Cr(D)k(t), —7<t<L0,

Then c, is T-periodic and conjugate symmetric function. Moreover, if C. is defined as in
(4), then the eigenvalues of C; are given by

T/2 _ T _
n(Cr) = / cr(t)e T gt = / Cr(t)k(t)e 2™/ dqt,  Vn € Z. (8)

—7/2 -7

PROOF: It is easy to check that ¢, is a 7-periodic and conjugate symmetric func-
tion. Using the definition of ¢, and (6), (8) can be derived straightforwardly.

As examples, we can show that the “wrap-round” and “optimal” circulant integral
operators, proposed by Gohberg et. al. in [10], can be derived from this approach. Before
we begin, let us recall that the Fourier transform ¢ of a function ¢ is defined by

q(s) E/ q(t)e "'dt, Vs €R,

oo

and the convolution product C, x k is defined by

(C, % k)(s) = /00 C-(t)k(t)e ™'dt, Vs e R, 9)

— 00

where C and k(t) are the Fourier transforms of C; and k(t) respectively.

(a) “Wrap-round” Circulant Integral Operator D,



Given the operator K, as in (3), the “wrap-round” circulant integral operator D,
is defined as

/ d.(t —s)y(s)ds, 0<t<r,
0
0, t>T.

(Dry)(t) =

Here the function d, is a 7-periodic function defined by
d.(t) =k(t), —-1/2<t<71/2,

see Gohberg et. al. [10]. Such operator can be obtained from Lemma 1 by setting C there

to be the function " /
1, |t £7/2,
D (t) = { 0. |t > /2

(b) “Optimal” Circulant Integral Operator F;

Given the operator K, the “optimal” circulant integral operator F, is defined as

Fag =] f, e o< rss (10)
0, t>T.

Here f,(t) is a 7-periodic function defined by

£.(t) = (T _t> k(1) + <3> Ki—1), 0<t<r

T T

This operator can also be obtained from Lemma 1 by setting C. there to be the function

T — |t] 1] <

-

F,(t) = F o =D (11)
0, |t| > 7.

By (8) and (9), the eigenvalues of F, are given by

M(Fr) = / ' F(t)k(t)e™ 2™t/ gy

T

= /oo F,(t)k(t)e 27 dt = (F, « A)(QW—”), Vn € Z, (12)

00 T

where F. is a Fejér convolution kernel given by

o) = 4 Sin2(72't/2) ‘

Tt

We remark that Gohberg et. al. [10] have derived the same formula (12) by showing that
JF, minimizes

11 = ¢ E/OT /OT[k(s—t) o — OG5 D) — er(5 — Bdsdt,




over all circulant integral operators C..

In §4, we will use the method in Lemma 1 to construct other circulant integral
operators to be used as preconditioners for Wiener-Hopf equations.

3. SPECTRA OF CIRCULANT PRECONDITIONED OPERATORS.

In this section, we study the superlinear convergence property of the circulant pre-
conditioned operators for those circulant integral operators derived from Lemma 1. In the
following, we will assume that the given sequence of functions {C. }, satisfies

ASSUMPTION (A):

(i) {C-}; is a sequence of conjugate symmetric functions,

(ii) For sufficiently large 7,
C-(t)] < B < o0, VtER, (13)

(iii) For all functions k() in Ly (—o00, c0),

lim ||C; % k — k||oo = 0, (14)
T— 00
where || - || denotes the supremum norm.

As an example, we show that

LEMMA 2 The sequence of functions {F,}, given by (11) satisfies Assumption
(A).

PROOF: Clearly F; satisfies (A) (i) and (ii). To prove (A) (iii), we first note that
the Fourier transform of any function in L;(—o00, 00) is bounded and uniformly continuous
on (—oo,0), (see for instance Champeney [2,Theorem 8.1]), hence by Theorem 8.10 (vi)
in [2], the result follows.

Now we state our main lemma on clustering.

LEMMA 3 Let k(t) € Li(—00,00) and IC; be the operator given by (3). Let {C;},
be a sequence of functions satisfying Assumption (A). If C, is the circulant integral operator
with ¢, defined by (7), then for any given € > 0, there exist a positive integer N and a 7 > 0
such that for all T > 7%, there exists a decomposition

K:—=C,=R,+&;
with self-adjoint operators R, and &, satisfying

rank R, < N



and
1€l <.

Here || - ||2 is the operator norm on the Hilbert space Ls[0,00).

We emphasize that Lemma 3 basically states that a sequence of conjugate symmetric
functions satisfying Assumption (A) will satisfy the conditions of Theorems 2.1 and 3.1 in
Gohberg et. al. [10]. In fact, by Lemma 2, the conclusion of Lemma 3 should hold for the
“optimal” circulant integral operator F, defined by (10). But this result for F, was already
proved in Gohberg et. al. [10] as a corollary of Theorem 2.1 there. We restate this result
here as the following Lemma.

LEMMA 4 Let k(t) € Li(—o00,00) and K, be the operator given by (3). Let F, be
the “optimal” circulant integral operator defined by (10). Then for any given € > 0, there
exist a positive integer N and a 7 > 0 such that for all T > 7*, there exists a decomposition

Ki=—F. =R, +&;
with self-adjoint operators R, and &, satisfying
rank R, < N

and
€[l <.

Using this Lemma, we can easily prove Lemma 3.

PROOF OF LEMMA 3: Given that {C;}, satisfies Assumption (A), we first
rewrite K, — C, as
K, —F +F —-C,

where F, is the “optimal” circulant integral operator given by (10). In view of Lemma 4,
it suffices to show that

lim ||, — C,||s = 0.

T— 00

We note that
||:FT - CT||2 < Sulzj |>‘n(:FT) - An(CT)L
ne

see [9,p.112]. Since the eigenvalues of F, and C, are given by (12) and (8) respectively, we
have

1Fr = Crlla < sup [Au(F7) — An(Cr)|

nez

2 .
sup |(F, + k)( 7m /C’ t)e2mint/T gy |

nez

IN



2mn ~ 2N 2mn 2mn

< E xk —k (=) = (C, « k)(—
< sup |(Frx k) (=) = R(= )+ sup k(= =) = (Cr+ B)(= ) +
N ~ 2 T .
sup (G # k) (22 — / (1) (t)e2mimt/7 gy |
nez T -7
< By sk = koo + |1k = Cr 5kl +
sup | [ Co(t)k(t)e™>™™/dt]. (15)
n€Z J|t|>t

Here the last term of (15) is obtained by using definition (9). In view of (14) and Lemma
2, it suffices to estimate the last term of (15). However, we note that

|| Co@)k(t)e T dt| < / C-(D|k(®)]dt < 5 |k (t)ldt,
[t[>7 [t[>7 [t[>7
where [ is the constant given by (13). Since k(¢) is in L;(—00,00), the result follows.

Next we show that the circulant integral operator oZ + C, is positive definite and
uniformly invertible for large 7.

LEMMA 5 Let k(t) € L1(—o0,00) and {C}; be a sequence of functions satisfying
Assumption (A). If C. is the circulant integral operator with ¢, defined by (7), then for any
giwen 0 < € < o, there exists a 7™ > 0 such that for oll T > 7%, we have

1

— €

(6T +Cr) 7|2 <
g

PROOF: We first note that all the eigenvalues of the “optimal” circulant integral
operator F, are positive, see Gohberg et. al. [10,Corollary 4.3]. From (15), we see that for
7 sufficiently large, we have

[An(Cr) = Au(Fr)[ <€, Vn€eZ

Hence the lemma follows.

Combining Lemmas 3 and 5, we have our main theorem.

THEOREM Let k(t) € Li(—o0,00) and K. be given by (3). Let {C;}; be a
sequence of functions satisfying Assumption (A). If C, is the circulant integral operator
with ¢, defined by (7), then for any given 0 < € < o, there exist a positive integer N and a
7* > 0 such that for all T > 7*, at most N eigenvalues of (6Z+C,) Y2 (6 T+K,)(cT+C, )~ /?
are at distance greater than € from 1.

PROOF: We just note that

(0T +Cr) V20T + Ko ) (0L +C;) V2 = T+ (0T +C;) 2Ky = Cr) (0T +Cr) 2.



It follows easily from the theorem that the conjugate gradient method, when applied
to solving preconditioned operator equation, converges superlinearly, see Chan and Strang
[5] or Gohberg et. al. [10].

4. APPROXIMATE CONVOLUTION IDENTITY.

In this section, we give a useful method for constructing sequences of functions
{C;}, that satisfy Assumption (A). The idea is to use approximate convolution identity,
see Champeney [2,p.33] for its definition.

LEMMA 6 Let h(t) be a conjugate symmetric function in Ly(—o0,00). If we define

for each T,

A Th(Tt)

C,(t) = a.e. on R, (16)

||h||L1(—00,<x>)
then the sequence of functions {C.}, satisfies Assumption (A).

PROOF: Clearly (A) (i) is satisfied. For (A) (ii), we just note that

1 o0
<______/ h(s)|ds <1, VieR.

1 o0 .
|04ﬂh:——————W/ h(s)ei*tmds| <
Pz (-~ c0,00) 1/ —00 [P ] 21 (—00,00)

o0

To prove (A) (iii), we first note that the sequence {C}, forms an approximate convolution
identity. Recall that the Fourier transform of any function in L;(—o00,00) is bounded and
uniformly continuous on (—oo, 00), (see for instance Champeney [2,Theorem 8.1]), (A) (iii)
then follows from Theorem 5.2 (iii) of [2].

It follows from Lemma 3 that circulant integral operators constructed from ap-
proximate convolution identity as in (16) will be good preconditioners for Wiener-Hopf
equations. Table 1 lists some functions h(t) together with their corresponding C, and C,.
We note that the C, listed are summation functions frequently used in Fourier analysis, see
[15,p.85] and we have here an approach of constructing circulant integral operators from
any given summation functions.

Let us illustrate our construction by using the Poisson function given in Table 1.
By (7), the 7-periodic function ¢, is equal to

1 1
e (t) = 5e*"f/f‘lc(t) + 56*‘('5”)/7%(15 —7), 0<t<T.

The associated circulant integral operator is then given by (4).

We emphasize that there are sequences of functions {C, }, that satisfy Assumption
(A) but not approximate convolution identities. For instance, by the convolution identity,
the Dirac delta function ¢ satisfies

(0% k)(t) = k(t), VteR,



| (0 [ o | C.()
b T 1 -1
1+ 1+ 7242
(Poisson function
[15,p.85])
et re— ()7 e~ (t/7)?
(Gauss-Weierstrass function
[15,p.86])

12sin*t 1 :
t4 12sin*(7t/2) ) 277t| Ar?
(Jackson function 344 Z(2 — )3, T < |t| < 2,
[1,p.119]) 0, lt| > 27
)

3t 3t
— 53t <

e~ T T
2 2 T2 4 12
(Abel-Poisson function

[1,p.119])

Table 1: The definitions of h(t) and their corresponding C, and C,.

see Walker [15,p.87]. Thus (14) is satisfied by letting C; = 6. Since the Dirac delta function
is just the Fourier transform of

C.(t)=1, VteR,

see [2,p.118] and C;(t) is uniformly bounded and conjugate symmetric, the assumptions
(A) (i) and (ii) are also satisfied. The 7-periodic function ¢, is given by

er(t)=k(t)+k(t—7), 0<t<T,

see (7). By our main theorem, this circulant integral operator is also a good choice of
preconditioner for the finite-section Wiener-Hopf equations.

5. NUMERICAL RESULTS.

In this section, we present numerical results on the performance of different circulant
integral operators as preconditioners for Wiener-Hopf operators. The kernel function we

tested is ( 1y "
1+e)/2, t| <1,
k(t) = { el 1> 1.
The right hand side function ¢(t) in (1) is selected such that the corresponding solution of
the Wiener-Hopf equation is
o)~ {

; 0<t<7,

1
0, t> . (17)



We used the rectangular rule to discretize the finite-section Wiener-Hopf integral operator
and all circulant integral operators C,. We remark that the kernel function has a jump at
t = 1. The mesh-size we used in the discretization scheme is of 1 unit. Therefore the size
of the matrix is the same as 7 for integral-valued 7.

In the test, zeros vector is used as our initial guess and the stopping criterion
is ||rkl|2/]|rollz < 107!, where ry is the residual vector of the preconditioned conjugate
gradient method after k iterations. We have chosen o (given in (1)) to be (1 —e™1)/2
so that the main diagonal entry of the discretization matrix is 1. The parameter 7y in
(17) is arbitrarily chosen to be 8. All computations are done by Matlab on an HP-715
workstation. Table 2 shows the numbers of iterations required for convergence for different
choices of preconditioners. In the table, Z denotes no preconditioner is used, D and F are the
“wrap-round” and “optimal” circulant integral operators respectively. For ¢ = 1,2,---,5,
C; are respectively the circulant integral operators constructed by using Poisson, Gauss-
Weierstrass, Jackson, Abel-Poisson and Dirac delta functions as discussed in §4.

We see from the table that the numbers of iterations of the preconditioned systems
are significantly less than that of the non-preconditioned system. The circulant integral
operator Cs constructed by using Dirac delta functions is the overall best amongst the
preconditioners tested. Moreover, we see that the convergence performance of the “optimal”
circulant operators is not good compared with that of the other circulant integral operators
constructed by approximate convolution identities.

-

Preconditioners || 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048
7 18 | 44 | 128 | 180 | 667 | ** ok ok
D 916 | 6 Y 6 Y 5 6
F 14116 19 | 17 | 19 | 20 | 20 18
Cy 14116 19 | 17 | 19 | 20 | 20 18
Co 10191 9 8 8 9 7 8
Cs 1119 |10 | 8 9 10 7 8
Cy 10191 9 8 8 9 7 8
Cs 715 6 5 6 5 3 6

Table 2. Number of Iterations for Different Preconditioners.
(** means > 1000 iterations)
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