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In this paper, we consider Boundary Value Methods (BVMs) for finding transient solu-
tions of Markovian queueing networks. Algebraic Multigrid (AMG) methods with mod-
ified restriction operator are applied to solve the resulting system of linear equations.
Numerical examples are given to demonstrate the efficiency of our proposed method.

1. Introduction

Markovian queueing networks are common stochastic models for a number of physical
systems such as telecommunication systems [9], manufacturing systems [10] and inventory
systems [11]. For long-run system performance analysis, the steady-state probability
distribution of the system is required. The steady-state probability distribution can be
obtained by solving a large linear system. Direct methods [5,12,18] and iterative methods
[3,7,9,10] have been developed for this purpose.

However, to analyze the system in a finite horizon, the transient solution of the queue-
ing system is required, and it can be found by solving a system of ordinary differential
equations (ODEs). Many classical numerical methods can be applied to solve the ODE
systems. The Initial Value Methods (IVMs) such as the Runge-Kutta method are good
explicit methods for its efficiency and easy implementation. But they may require small
time step in order to converge. A survey on numerical methods for solving transient
solutions of homogeneous irreducible Markov chains can be found in [20].

In this paper, we propose to use the Boundary Value Methods (BVMs) [2,15] to solve the
ODE systems. BVMs are implicit stable methods and hence there is no restriction on the
size of the time step for the method to converge. However, the disadvantage is that they
require solutions of large linear systems, and hence may require longer computational time

*Research supported in part by RGC Grant No. CUHK 4243/01P and CUHK DAG 2060220.
tResearch supported in part by RGC Grant No. HKU 7126/02P and HKU CRCG Grant No. 10205105
and 10204436.



when compared with the IVMs. Here we propose to use the algebraic multigrid (AMG)
method to solve the resulting linear systems from BV Ms.

AMG methods have been developed for more than two decades [22] and have been
applied to many applications such as solving partial differential equations [1] and imag-
ing problems [17]. They also have been used successfully for finding the steady-state
probability distributions of queueing networks by using an appropriate coarse grid ap-
proximation, see [7]. In this paper, we use it for queues in transient states. The ODEs are
first discretized by BVMs and the resulting linear systems are solved by AMG methods.
For overflow queueing networks, we will see that the resulting method is much more effi-
cient than IVMs, especially when the systems are ill-conditioned. We will illustrate the
effectiveness of our method through 2-queue overflow networks. A comparison with other
iterative methods will also be given.

The paper is organized as follows. In Section 2, we present the overflow queues. IVMs
and BVMs are introduced in Section 3 while the AMG method is given in Section 4. In
Section 5, numerical examples are given to demonstrate the efficiency of our method.

2. Queueing Networks

For continuous-time Markovian queueing networks, the transient probability distribu-
tion can be found by solving Kolmogorov’s backward equations [8,23]. We introduce the
equations here. We remark that our proposed method can be applied to many different
queueing networks. For simplicity of discussion, here we only consider overflow queues,
see [3,16] for instance.

We begin our discussion with a simple two-queue free queueing network. In this queue-
ing network, there are no interactions between the two Markovian M /M /s;/(n; — s; — 1)
queues. Here i = 1,2, and s; and (n; —s; —1) denote the number of parallel servers and the
number of queueing spaces in Queue i. By state (i, j), we mean that there are i customers
in Queue 1 and j customers in Queue 2 respectively. Let p; ;(¢) be the probability that
the network is in state (7, ) at time ¢. If we let

p(t) = (p0,0(t)a ey 7p0,n2—1(t)7p1,0(t)7 v 7p1,n2—1(t)7 v 7pn1—1,0(t)7 v 7pn1—1,n2—1(t))T7
then the Kolmogorov backward equations can be written as
dp(t
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and \; and p; are the mean arrival rate and the mean service rate of the servers in Queue .
Since there are no interactions between the queues, the transient solution can be obtained



in tensor product forms from the solutions of individual queues, i.e., if q;(¢) is the transient
solution for Queue 4, i =1, 2, then (q;(f) ® q2(¢)) is the transient solution for (1). In fact,
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See [13] for the transient solutions of one-dimensional Markovian queues.

Next we present two-queue overflow networks. Unlike two-queue free networks, they
allow overflow from one queue to another. Here we consider the following overflow disci-
pline: (i) when Queue 1 is full, customers arriving at Queue 1 are allowed to overflow to
Queue 2 if it is not yet full, and (ii) overflow from Queue 2 to Queue 1 is not allowed, see
[16] for instance. Then the transient solution p(¢) satisfies
dp(t)
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where e} = (0,...,0,1) € R™ and
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For two-queue overflow networks, there are no product form solutions, and thus numerical
methods must be used to find the solutions. One can easily extend these ideas to obtain
the backward equations for more general g-queue overflow networks, see [4].

3. ODE Solvers

In this section, we present examples of IVMs and BVMs for solving Kolmogorov’s
backward equations. Suppose we want to find p(7’) for some final time 7" < co. Then
we divide the time horizon into N steps, with step size h = T/N. Denote py = p(kh),
0 < k < N, the probability distribution that we want to find.

One of the most powerful IVMs for solving a general ODE is the Runge-Kutta method
of order 4 (RK4), see [21, p. 414]. For a general ODE

dp(?)
—~ = —Hpl(t 4
o p(t), (4)
RK4 can be simplified as follows:
1 1 1
Pey1 = ([ — hH + 5hZH2 — 6h3H3 + ﬂh‘lH‘l)pk, k=0,1,...,N—1,

with po being the given initial condition. The method is fast, requiring only matrix-vector
multiplications. But it is stable only if ||/ — hH + h?H? — $h3H® + 5;h*H*|| < 1.



For the overflow network in (3), we have
H=G ®I,+1I, ®G,+e,e. QR,. (5)

We note that for some queueing parameters, ||H || may increase as the sizes of the queues
increase. In these cases, h has to be small in order that RK4 converges.

To alleviate the requirement on h, one can solve (4) by BVMs which are stable im-
plicit methods, see [2]. An example of BVMs is the third order generalized backward
differentiation formulae (GBDF3):

%(2pk+1 + 3pk - 6pk71 + Pk72) = hfka k= 27 37 R N — 17
:(—ps + 6p2 — 3p1 — 2py) = hfy,
s(11py — 18py—_1 +9pN-2 — 2pn_3) = hiw,

see [2, p. 132]. In matrix form, it is
AT, ®I,, +hly ® Hjx = —a ® po, (6)
where a”’ = (—1,1,0,...,0) € RY, and A is the N-by-N matrix
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GBDF3 is stable in the sense that a very large time step can be used, while the drawback
is that we need to solve the big linear system (6) which has size N times the size of
H. There are many alternative ways to solve (6), such as the GMRES method [19, p.
164]. But we will see in the numerical examples that if H is ill-conditioned, the GMRES
method does not work, even if a preconditioner is used. Hence, we propose to solve it by
the AMG method.

4. The Algebraic Multigrid Method
For the 2-queue overflow network in (3), (6) becomes
[A® I, ® In, + hIy @ (G1 ® Iy, + I, ® Ga + ey e ® Ry)]x = —a® po. (7)

Here we describe our method for solving (7). Let A = PDP~! be the spectral decompo-
sition of A with D being a diagonal matrix with diagonal entries p;, 1 <7 < N, where p;
are complex numbers with positive real part, see for instance [2, Figure 5.2].

Let y = (P ® I, ® I,,)x. Then (7) becomes

[D® I, @ I, + hIy @ (G @ Iy, + I, ® Go + ey, e ® Ry)]ly = —Pa® po.
We decompose this system of equations into N sub-systems of smaller size:

[pi(Ln, @ Ip,) + h(G1 @ Iy, + I, ® Go + ey, ® Ry)]y; = cipo, 1 <i <N, (8)



where ¢; is the ith entry of —Pa and yT = (y7,yZ,...,y%).
In [7], an AMG method has been used successfully to solve a system of the form

(G1® I, + I, ® Gy + e, el ® Ri)x =b,

which is the system corresponds to the steady-state queues, and is equal to the transient
system in (8) but without the first term. Here we will use the same AMG method to solve
(8).

Suppose in the finest grid we have (22 — 1) equations and at the coarsest grid we have
(2™ — 1) equations. We use the V-cycle algorithm here with one pre-smoothing and one
post-smoothing at each grid. The smoother we used is the Gauss-Seidel iterative method
[14, p. 49]. Traditionally, the one-dimensional restriction operator is defined as

1 21 0
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where its size is (2™ — 1)-by-(2™"!' — 1). The prolongation operator I is equal to
2(Im, )", For queueing networks, we use the modified restriction operator flnnﬂ described
in [7] which is defined as follows. Suppose I/, = (c;;), then I, | = (¢;;) where
51',]' = %, and dj = Zci,j.

J 7
If A™ is the matrix at grid m, i.e., there are (2™ — 1) equations, then at grid m — 1, the
matrix A”! satisfies A™~1 = [™=1A™[™  The reason for using the modified restriction
operator is to keep the singularity as well as the structure of G; and G, see [7] for more
details.

For two-queue systems, the prolongation operator and the modified restriction operator
are I @I+ and I, ® I | respectively, and the two dimensional coarse grid matrix
can be defined accordingly. Note that the coarse grid matrix of an identity matrix is a
matrix with 3 bands. We will use this fact in the cost analysis.

5. Numerical Experiments

In this section, we first compare the cost of using IVMs and BVMs for solving overflow
queues. Then we illustrate the efficiency of our method on three overflow queues. At the
end of this section, we compare the results with the GMRES method [19].

Consider a general two-queue network with Queue ¢ having n; states. For a general
IVM, in each time step, it requires only a few matrix-vector multiplications which are
of order O(nyny) as the matrix H in (5) is a banded matrix of size niny-by-nins with 5
bands. If A, is the largest time step guaranteed for convergence, then the IVM will require
T/h.'s time steps to get to the final time 7. But in order for the method to converge, h,
should be of order O(1/||H||). Thus the total cost of the IVM is of O(ninsy||H||T).

For a general BVM, there are T//h’s sub-systems to be solved. We solve each sub-
system by the AMG method. The cost for each V-cycle is of O(nyns) operations since
the coefficient matrix of each sub-system is of size nins-by-niny and has at most 9 bands.



Thus the total cost is about O(ninokT/h), where k is the maximum of the numbers of
V-cycles required for convergence for each sub-system.

We remark that if || H|| is bounded independent of n;, then both methods will be of the
same order. However, if ||H|| is increasing with n;, then the BVM will be an order less
costly than the IVM. We illustrate this by three examples. The first example describes
the situation that the arrival and service rate are independent of the size of the queues.
The second and the third examples, on the other hand describe the situations with arrival
and service rate dependent on the size of the queues.

EXAMPLE 1: Fori = 1,2, let GM be the same (2" —1)-by-(2" — 1) matrix as in (2) with
S; =0, [y =1, A= Silb; — %(nl — 1)71 =5— %(2M — 2)71.
EXAMPLE 2: For i = 1,2, let GM be the (24 — 1)-by-(2M — 1) matrix,

2M71 _2M71 0 ]
_2M—1 2M _2M—1
G — 5 y
_2M—1 2M _2M—1
0 _2M71 2M71

EXAMPLE 3: For i = 1,2, let GM be the same (2 —1)-by-(2 — 1) matrix as in (2) with
Wi = 2M_1, S; = 5, A = Silli — %(nz — 1)_1 =5.2M-1 _ %(QM — 2)_1.

In all examples, we solve for the probability distribution vector at 7' = 10. We assume
that the initial state is (0, 0). In solving (8) by the AMG method or the GMRES method,
we use a stopping tolerance of 10°¢. For the AMG method, we set m,, the coarsest grid
level, to be 2.

In Example 1, ||GM]| and hence ||H|| is bounded. Thus, the total costs for both the
IVM and the BVM are of order O(2?M). Tn Examples 2 and 3, ||H|| is of order O(2M). So
for the IVM, the total cost is O(23M). But for the BVM, h can be kept constant regardless
of |[H||. Thus the total cost for each V-cycle is still of order O(2?*). To be more specific,
in the following we estimate the total costs for RK4 and GBDF3 in terms of number of
scalar multiplications.

For RK4, 4 matrix-vector multiplications, 4 vector-vector operations, and 6 scalar-
vector multiplications are required in each time step. The matrix involved is a 5-band
matrix of size (2 — 1)%by-(2™ — 1)2. Thus

4-102™ — 12 +402M —1)2 +6(2M —1)2 = 50(2™ — 1)?

operations are required in each time step. In Example 1, h, = 0.25. Since T'/h. = 40 time
steps are required, the total cost is (2000 - (2M — 1)2) operations. In Example 2, since
(10 - 2M*1) time steps are required, the total cost is (1000 - 2M(2M — 1)2) operations. In
Example 3, since (10-2Y73) time steps are required, the total cost is (4000- 2" (2M —1)2).

For GBDF3 with the AMG method, we first estimate the cost for each V-cycle. As the
cost of a Gauss-Seidel iteration for a 9-band matrix is 18 operations for each update of a
variable, the cost for each V-cycle is

M M
2) 18(20 — 1) <36 (4') <12-4MF =48.22M
=2

=2



operations. We can take h =1 for all three examples as the method is stable. Thus there
are 10 sub-systems to be solved by the AMG solvers. The total cost is therefore less than
(480k - 22M) operations.

Tables 1 to 3 give h,., k, the total number of operations as estimated above, and the
CPU times in solving the problems by Matlab. We can see that the BVM together with
the AMG method is more efficient in finding the transient solutions when compared with
the IVM. We see also that the AMG method is very efficient in solving these systems—the
number of V-cycles required for convergence is independent of the queue sizes even when
||H|| increases.

Regarding Examples 2 and 3, it may seem that the matrix G in these two examples
can be made better conditioned by scaling down by the factor 2M~1 as follows: divide
2M=1 from both sides in the ODE (4) and let t = 2"~1¢, then we have

dp(t) _ 7 -

o = —Hp(1),
where ||H|| is independent of M. However, in order to find p(t) at time 7', one has to
find p(t) at time T = 2M-1T. By the previous results, the total cost for the IVMs on this
new ODE is of order O(nyny|H||T) = O(nyny||H||T). That means the order of the total
cost cannot be reduced by scaling.

Finally, we compare the AMG method with the preconditioned GMRES method [19].
We will use T. Chan’s preconditioner as proposed in [6]. If ¢(G;) are T. Chan’s precondi-

tioners for G}, then the preconditioner for (8) is
pi(In, @ In,) + h(c(Gh) @ Iy + In, @ ¢(Ga)).

Table 4 gives the maximum number of iterations for the (preconditioned) GMRES method
over each sub-system in (8). We note that the cost per iteration of the GMRES method is
of the same order as the AMG method, as it requires mainly matrix-vector multiplications.
However, as we can see from Table 4, its number of iterations required for convergence
increases with the size of queues for Examples 2 and 3. Hence it is more costly than the
AMG method.

We will present a theoretical analysis of the method and its applications to more general
Markovian queueing networks in a forthcoming paper.
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