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In this paper� we consider Boundary Value Methods �BVMs� for �nding transient solu�
tions of Markovian queueing networks� Algebraic Multigrid �AMG� methods with mod�
i�ed restriction operator are applied to solve the resulting system of linear equations�
Numerical examples are given to demonstrate the e�ciency of our proposed method�

�� Introduction

Markovian queueing networks are common stochastic models for a number of physical
systems such as telecommunication systems 	
�� manufacturing systems 	��� and inventory
systems 	���� For long�run system performance analysis� the steady�state probability
distribution of the system is required� The steady�state probability distribution can be
obtained by solving a large linear system� Direct methods 	
������� and iterative methods
	����
���� have been developed for this purpose�
However� to analyze the system in a �nite horizon� the transient solution of the queue�

ing system is required� and it can be found by solving a system of ordinary di�erential
equations �ODEs�� Many classical numerical methods can be applied to solve the ODE
systems� The Initial Value Methods �IVMs� such as the Runge�Kutta method are good
explicit methods for its e�ciency and easy implementation� But they may require small
time step in order to converge� A survey on numerical methods for solving transient
solutions of homogeneous irreducible Markov chains can be found in 	����
In this paper� we propose to use the Boundary Value Methods �BVMs� 	���
� to solve the

ODE systems� BVMs are implicit stable methods and hence there is no restriction on the
size of the time step for the method to converge� However� the disadvantage is that they
require solutions of large linear systems� and hence may require longer computational time
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when compared with the IVMs� Here we propose to use the algebraic multigrid �AMG�
method to solve the resulting linear systems from BVMs�
AMG methods have been developed for more than two decades 	��� and have been

applied to many applications such as solving partial di�erential equations 	�� and imag�
ing problems 	���� They also have been used successfully for �nding the steady�state
probability distributions of queueing networks by using an appropriate coarse grid ap�
proximation� see 	��� In this paper� we use it for queues in transient states� The ODEs are
�rst discretized by BVMs and the resulting linear systems are solved by AMG methods�
For over�ow queueing networks� we will see that the resulting method is much more e��
cient than IVMs� especially when the systems are ill�conditioned� We will illustrate the
e�ectiveness of our method through ��queue over�ow networks� A comparison with other
iterative methods will also be given�
The paper is organized as follows� In Section �� we present the over�ow queues� IVMs

and BVMs are introduced in Section � while the AMG method is given in Section �� In
Section 
� numerical examples are given to demonstrate the e�ciency of our method�

�� Queueing Networks

For continuous�time Markovian queueing networks� the transient probability distribu�
tion can be found by solving Kolmogorov�s backward equations 	������ We introduce the
equations here� We remark that our proposed method can be applied to many di�erent
queueing networks� For simplicity of discussion� here we only consider over�ow queues�
see 	����� for instance�
We begin our discussion with a simple two�queue free queueing network� In this queue�

ing network� there are no interactions between the two Markovian M�M�si��ni� si� ��
queues� Here i � �� �� and si and �ni�si��� denote the number of parallel servers and the
number of queueing spaces in Queue i� By state �i� j�� we mean that there are i customers
in Queue � and j customers in Queue � respectively� Let pi�j�t� be the probability that
the network is in state �i� j� at time t� If we let

p�t� � �p����t�� � � � � � p��n����t�� p����t�� � � � � p��n����t�� � � � � pn������t�� � � � � pn����n����t��
T �

then the Kolmogorov backward equations can be written as

dp�t�

dt
� ��G� � In� � In� �G��p�t�� ���

where

Gi �

�
�������������

�i ��i �
��i �i � �i ���i

� � � � � � � � �

��i �i � si�i �si�i
� � � � � � � � �

��i �i � si�i �si�i
� ��i si�i

�
�������������

� ���

and �i and �i are the mean arrival rate and the mean service rate of the servers in Queue i�
Since there are no interactions between the queues� the transient solution can be obtained
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in tensor product forms from the solutions of individual queues� i�e�� if qi�t� is the transient
solution for Queue i� i ��� �� then �q��t��q��t�� is the transient solution for ���� In fact�

d

dt
�q��t�� q��t�� �

dq��t�

dt
� q��t� � q��t��

dq��t�

dt
� �G�q��t�� q��t�� q��t��G�q��t�

� ��G� � In� � In� �G���q��t�� q��t���

See 	��� for the transient solutions of one�dimensional Markovian queues�
Next we present two�queue over�ow networks� Unlike two�queue free networks� they

allow over�ow from one queue to another� Here we consider the following over�ow disci�
pline� �i� when Queue � is full� customers arriving at Queue � are allowed to over�ow to
Queue � if it is not yet full� and �ii� over�ow from Queue � to Queue � is not allowed� see
	��� for instance� Then the transient solution p�t� satis�es

dp�t�

dt
� ��G� � In� � In� �G� � en�e

T
n�
� R��p�t�� ���

where eTn� � ��� � � � � �� �� � Rn� and

R� � �� �

�
��������

� �
�� �

� � � � � �

�� �
� �� �

�
��������
�

For two�queue over�ow networks� there are no product form solutions� and thus numerical
methods must be used to �nd the solutions� One can easily extend these ideas to obtain
the backward equations for more general q�queue over�ow networks� see 	���

�� ODE Solvers

In this section� we present examples of IVMs and BVMs for solving Kolmogorov�s
backward equations� Suppose we want to �nd p�T � for some �nal time T � �� Then
we divide the time horizon into N steps� with step size h � T�N � Denote pk � p�kh��
� � k � N � the probability distribution that we want to �nd�
One of the most powerful IVMs for solving a general ODE is the Runge�Kutta method

of order � �RK��� see 	��� p� ����� For a general ODE

dp�t�

dt
� �Hp�t�� ���

RK� can be simpli�ed as follows�

pk�� � �I � hH �
�

�
h�H� �

�

�
h�H� �

�

��
h�H��pk� k � �� �� � � � � N � ��

with p� being the given initial condition� The method is fast� requiring only matrix�vector
multiplications� But it is stable only if kI � hH � �

�
h�H� � �

�
h�H� � �

��
h�H�k � ��
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For the over�ow network in ���� we have

H � G� � In� � In� �G� � en�e
T
n�
�R�� �
�

We note that for some queueing parameters� kHk may increase as the sizes of the queues
increase� In these cases� h has to be small in order that RK� converges�
To alleviate the requirement on h� one can solve ��� by BVMs which are stable im�

plicit methods� see 	��� An example of BVMs is the third order generalized backward
di�erentiation formulae �GBDF���

�

�
��pk�� � �pk � �pk�� � pk��� � hfk� k � �� �� � � � � N � ��

�

�
��p� � �p� � �p� � �p�� � hf��

�

�
���pN � ��pN�� � 
pN�� � �pN��� � hfN �

see 	�� p� ����� In matrix form� it is

	A� In� � In� � hIN �H�x � �a� p�� ���

where aT � ���

�
� �
�
� �� � � � � �� � RN � and A is the N �by�N matrix

A �

�
������������

��

�
� ��

�
�

�� �

�

�

�
�

�
�� �

�

�

�
�

�
�� �

�

�

�

� � � � � � � � � � � �
�

�
�� �

�

�

�

� ��

�

�

�
�� ��

�

�
������������

�

GBDF� is stable in the sense that a very large time step can be used� while the drawback
is that we need to solve the big linear system ��� which has size N times the size of
H� There are many alternative ways to solve ���� such as the GMRES method 	�
� p�
����� But we will see in the numerical examples that if H is ill�conditioned� the GMRES
method does not work� even if a preconditioner is used� Hence� we propose to solve it by
the AMG method�

�� The Algebraic Multigrid Method

For the ��queue over�ow network in ���� ��� becomes

	A� In� � In� � hIN � �G� � In� � In� �G� � en�e
T
n�
� R���x � �a� p�� ���

Here we describe our method for solving ���� Let A � PDP�� be the spectral decompo�
sition of A with D being a diagonal matrix with diagonal entries �i� � � i � N � where �i
are complex numbers with positive real part� see for instance 	�� Figure 
����
Let y � �P � In� � In��x� Then ��� becomes

	D � In� � In� � hIN � �G� � In� � In� �G� � en�e
T
n�
�R���y � �Pa� p��

We decompose this system of equations into N sub�systems of smaller size�

	�i�In� � In�� � h�G� � In� � In� �G� � en�e
T
n�
� R���yi � cip�� � � i � N� ���






where ci is the ith entry of �Pa and yT � �yT� �y
T
� � � � � �y

T
N��

In 	��� an AMG method has been used successfully to solve a system of the form

�G� � In� � In� �G� � en�e
T
n�
�R��x � b�

which is the system corresponds to the steady�state queues� and is equal to the transient
system in ��� but without the �rst term� Here we will use the same AMG method to solve
����
Suppose in the �nest grid we have ��m� � �� equations and at the coarsest grid we have

��m� � �� equations� We use the V�cycle algorithm here with one pre�smoothing and one
post�smoothing at each grid� The smoother we used is the Gauss�Seidel iterative method
	��� p� �
�� Traditionally� the one�dimensional restriction operator is de�ned as

Imm�� �
�

�

�
����

� � � �
� � �

� � � � � � � � �
� � � �

�
���� �

where its size is ��m � ���by���m�� � ��� The prolongation operator Im��
m is equal to

��Imm���
T � For queueing networks� we use the modi�ed restriction operator �Imm�� described

in 	�� which is de�ned as follows� Suppose Imm�� � �ci�j�� then �Imm�� � ��ci�j� where

�ci�j �
ci�j
dj
� and dj �

X
i

ci�j�

If Am is the matrix at grid m� i�e�� there are ��m � �� equations� then at grid m� �� the
matrix Am�� satis�es Am�� � �Im��

m AmImm��� The reason for using the modi�ed restriction
operator is to keep the singularity as well as the structure of G� and G�� see 	�� for more
details�
For two�queue systems� the prolongation operator and the modi�ed restriction operator

are Im��
m �Im��

m and �Imm��� �Imm�� respectively� and the two dimensional coarse grid matrix
can be de�ned accordingly� Note that the coarse grid matrix of an identity matrix is a
matrix with � bands� We will use this fact in the cost analysis�

�� Numerical Experiments

In this section� we �rst compare the cost of using IVMs and BVMs for solving over�ow
queues� Then we illustrate the e�ciency of our method on three over�ow queues� At the
end of this section� we compare the results with the GMRES method 	�
��
Consider a general two�queue network with Queue i having ni states� For a general

IVM� in each time step� it requires only a few matrix�vector multiplications which are
of order O�n�n�� as the matrix H in �
� is a banded matrix of size n�n��by�n�n� with 

bands� If hc is the largest time step guaranteed for convergence� then the IVM will require
T�hc�s time steps to get to the �nal time T � But in order for the method to converge� hc
should be of order O���kHk�� Thus the total cost of the IVM is of O�n�n�kHkT ��
For a general BVM� there are T�h�s sub�systems to be solved� We solve each sub�

system by the AMG method� The cost for each V�cycle is of O�n�n�� operations since
the coe�cient matrix of each sub�system is of size n�n��by�n�n� and has at most 
 bands�
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Thus the total cost is about O�n�n�kT�h�� where k is the maximum of the numbers of
V�cycles required for convergence for each sub�system�
We remark that if kHk is bounded independent of ni� then both methods will be of the

same order� However� if kHk is increasing with ni� then the BVM will be an order less
costly than the IVM� We illustrate this by three examples� The �rst example describes
the situation that the arrival and service rate are independent of the size of the queues�
The second and the third examples� on the other hand describe the situations with arrival
and service rate dependent on the size of the queues�
Example �� For i � �� �� let GM

i be the same ��M � ���by���M � �� matrix as in ��� with
si � 
� �i � �� �i � si�i �

�

�
�ni � ���� � 
� �

�
��M � �����

Example �� For i � �� �� let GM
i be the ��M � ���by���M � �� matrix�

GM
i �

�
��������

�M�� ��M�� �
��M�� �M ��M��

� � � � � � � � �

��M�� �M ��M��

� ��M�� �M��

�
��������
�

Example �� For i � �� �� let GM
i be the same ��M � ���by���M � �� matrix as in ��� with

�i � �M��� si � 
� �i � si�i �
�

�
�ni � ���� � 
 � �M�� � �

�
��M � �����

In all examples� we solve for the probability distribution vector at T � ��� We assume
that the initial state is ��� ��� In solving ��� by the AMG method or the GMRES method�
we use a stopping tolerance of ����� For the AMG method� we set m�� the coarsest grid
level� to be ��
In Example �� kGM

i k and hence kHk is bounded� Thus� the total costs for both the
IVM and the BVM are of order O���M�� In Examples � and �� kHk is of order O��M�� So
for the IVM� the total cost is O���M�� But for the BVM� h can be kept constant regardless
of kHk� Thus the total cost for each V�cycle is still of order O���M�� To be more speci�c�
in the following we estimate the total costs for RK� and GBDF� in terms of number of
scalar multiplications�
For RK�� � matrix�vector multiplications� � vector�vector operations� and � scalar�

vector multiplications are required in each time step� The matrix involved is a 
�band
matrix of size ��M � ����by���M � ���� Thus

� � ����M � ��� � ���M � ��� � ���M � ��� � 
���M � ���

operations are required in each time step� In Example �� hc � ���
� Since T�hc � �� time
steps are required� the total cost is ����� � ��M � ���� operations� In Example �� since
��� � �M��� time steps are required� the total cost is ����� � �M��M � ���� operations� In
Example �� since ��� ��M��� time steps are required� the total cost is ����� ��M��M������
For GBDF� with the AMG method� we �rst estimate the cost for each V�cycle� As the

cost of a Gauss�Seidel iteration for a 
�band matrix is �� operations for each update of a
variable� the cost for each V�cycle is

�
MX
i	�

����i � ��� � ��
MX
i	�

��i� � �� � �M�� � �� � ��M
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operations� We can take h � � for all three examples as the method is stable� Thus there
are �� sub�systems to be solved by the AMG solvers� The total cost is therefore less than
����k � ��M� operations�
Tables � to � give hc� k� the total number of operations as estimated above� and the

CPU times in solving the problems by Matlab� We can see that the BVM together with
the AMG method is more e�cient in �nding the transient solutions when compared with
the IVM� We see also that the AMG method is very e�cient in solving these systems�the
number of V�cycles required for convergence is independent of the queue sizes even when
kHk increases�
Regarding Examples � and �� it may seem that the matrix GM

i in these two examples
can be made better conditioned by scaling down by the factor �M�� as follows� divide
�M�� from both sides in the ODE ��� and let �t � �M��t� then we have

dp��t�

d�t
� � �Hp��t��

where k �Hk is independent of M � However� in order to �nd p�t� at time T � one has to
�nd p��t� at time �T � �M��T � By the previous results� the total cost for the IVMs on this
new ODE is of order O�n�n�k �Hk �T � � O�n�n�kHkT �� That means the order of the total
cost cannot be reduced by scaling�
Finally� we compare the AMG method with the preconditioned GMRES method 	�
��

We will use T� Chan�s preconditioner as proposed in 	��� If c�Gi� are T� Chan�s precondi�
tioners for Gi� then the preconditioner for ��� is

�i�In� � In�� � h�c�G��� In� � In� � c�G����

Table � gives the maximum number of iterations for the �preconditioned� GMRES method
over each sub�system in ���� We note that the cost per iteration of the GMRES method is
of the same order as the AMGmethod� as it requires mainly matrix�vector multiplications�
However� as we can see from Table �� its number of iterations required for convergence
increases with the size of queues for Examples � and �� Hence it is more costly than the
AMG method�
We will present a theoretical analysis of the method and its applications to more general

Markovian queueing networks in a forthcoming paper�
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