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Abstract

In this paper� we propose a new type of preconditioners for Hermitian positive

de�nite Toeplitz systems Anx � b where An are assumed to be generated by func�

tions f that are positive and ���periodic� Our approach is to precondition An by

the Toeplitz matrix �An generated by 	�f � We prove that the resulting precondi�

tioned matrix �AnAn will have clustered spectrum� When �An cannot be formed

e
ciently� we use quadrature rules and convolution products to construct nearby

approximations to �An� We show that the resulting approximations are Toeplitz

matrices which can be written as sums of f�g�circulant matrices� As a side result�

we will prove that any Toeplitz matrix can be written as a sum of f�g�circulant
matrices� We then show that our Toeplitz preconditioners Tn are generalization

of circulant preconditioners and the way they are constructed is similar to the ap�

proach used in additive Schwarz method for elliptic problems� We �nally prove that

the preconditioned systems TnAn will have clustered spectra around 	�
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� Introduction

Toeplitz systems arise in a variety of practical applications in mathematics and engineer�
ing� For instance� in signal processing� solutions of Toeplitz systems are required in order
to obtain the 	lter coe
cients in the design of recursive digital 	lters� see Chui and A�
Chan ����� Time series analysis also involves solutions of Toeplitz systems for the unknown
parameters of stationary auto�regressive models� see King et� al� ��� p���������

There are a number of specialized fast direct methods for solving Toeplitz systems�
see for instance Trench ����� For an n�by�n Toeplitz system Anx � b� these algorithms
require O�n�� operations to solve it� Around ����� superfast direct solvers of complexity
O�n log� n� were developed� see for instance Brent� Gustavson and Yun ���� However�
recent research on using preconditioned conjugate gradient method as an iterative method
for solving Toeplitz systems has brought much attention� The most important result of
this methodology is that the complexity of solving a large class of Toeplitz systems can
be reduced to O�n logn��

The iterative approach is to use preconditioned conjugate gradient method with cir�
culant matrices as preconditioners for the solution of Toeplitz systems� see Strang �����
Several successful circulant preconditioners have been proposed and analyzed� see for
instance Chan ���� T� Chan ���� Huckle ����� Ku and Kuo ����� Tismenetsky ���� and Tyr�
tyshnikov ����� In these papers� the Toeplitz matrix An is assumed to be generated by a
generating function f � i�e� the diagonals of An are given by the Fourier coe
cients of f �
It has been shown that if f is a positive function in the Wiener class� then these circulant
preconditioned systems converge superlinearly�

A unifying approach of constructing circulant preconditioners is given in Chan and
Yeung �� where it is shown that many of the above�mentioned circulant preconditioners
can be derived by using the convolution products of f with some well�known kernels� For
example� Strang�s and T� Chan�s circulant preconditioners are generated by using the
Dirichlet and Fej�er kernels respectively� We remark that the convolution products of f
with these kernels are just smooth approximations of f � Chan and Yeung �� proved that
if the convolution product converges to f uniformly� i�e� if the convolution product is a
good approximation of f � then the circulant preconditioned systems will converge fast�

As alternatives to circulant preconditioners� band�Toeplitz matrices have also been
proposed as preconditioners for Toeplitz systems when the generating function f is not
positive� but only nonnegative with countable zeros� In this case� most of the circulant
preconditioners will fail whereas the spectra of band�Toeplitz preconditioned matrices are
still uniformly bounded by constants independent of n� see Chan ���� The motivation
behind using band�Toeplitz matrices is to approximate f by trigonometric polynomials of
	xed degree rather than by convolution products of f with some kernels� The advantage
here is that trigonometric polynomials can be chosen to match the zeros of f so that the

�



method still works when f has zeros� By using Remez�s algorithm to search for the best
trigonometric approximation of f � band�Toeplitz preconditioned systems can be made to
converge at about the same rate as those circulant preconditioned systems even when f
is positive� see Chan and Tang ����

In this paper� we propose a new type of preconditioners for Hermitian positive de	nite
Toeplitz systems� Our approach is to use the Toeplitz matrix �An generated by ��f to
approximate the inverse of An� i�e� the preconditioned matrix will be �AnAn� We remark
that the inverse of An is non�Toeplitz in general� but it is closely related to Toeplitz
matrices� see Friedlander et� al� ����� Since �An is a Toeplitz matrix� the matrix�vector
product �Any� which is required in every iteration of the preconditioned conjugate gradient
method� can be performed in O�n logn� operations by using Fast Fourier Transforms
�FFTs�� see Strang ����� Hence the cost per iteration is of O�n logn��

As for the convergence rate� it is well�known that it depends on the spectrum of the
preconditioned matrix �AnAn� the more cluster it is� the faster the convergence rate will
be� see Axelsson and Barker ��� p����� Presumably� we want �AnAn � In � Ln � Un where
In is the n�by�n identity matrix� Ln is a low�rank matrix and Un is a small norm matrix�
We will 	rst show that if f is a 	nite trigonometric series� then the rank of �AnAn � In
is 	xed independent of n� Then in the general case when f is a ���periodic continuous
function� we show that �AnAn� In is indeed equal to a low rank matrix plus a small norm
matrix� Hence we can then conclude that the spectrum of the preconditioned matrix is
clustered around � and therefore if preconditioned conjugate gradient method is applied
to the preconditioned system� we expect fast convergence�

We note however that in general it may be di
cult to compute the Fourier coe
cients
of ��f explicitly and hence �An cannot be formed e
ciently� In these cases� we derive

families of Toeplitz preconditioners T
�s�
n by using di�erent kernel functions and di�erent

levels of approximation in approximating the Fourier coe
cients of ��f � We will show

that for the 	rst level of approximation� s � �� our Toeplitz preconditioners T
���
n reduce

to the well�known circulant preconditioners mentioned above� depending on the kernel
function we used� As an example� if the kernel function is the Fej�er function� then T

���
n is

just the inverse of the T� Chan circulant preconditioner proposed in ����

For integers s � �� we will show that the Toeplitz preconditioner T
�s�
n thus constructed

can be written as a sum of so�called f�g�circulant matrices� �see Davis ���� p���� or x� for
de	nition�� More precisely� we have

T �s�
n �

�

s

s��X
t��

Vt

where Vt are f�tg�circulant matrices with �t � e���it�s� As a side result� we will see that
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given any Toeplitz matrix An and integer s � �� we have

An �
�

s

s��X
t��

Wt�

where Wt are also f�tg�circulant matrices� We note that for s � �� this formula is 	rst
discovered by Pustylnikov ����� We further show that for any � � t � s� W��

t � Vt
provided that Dirichlet kernel is used and Wt is invertible� In particular� if all Wt are
invertible� we have

T �s�
n �

�

s

s��X
t��

W��
t �

In this aspect� our Toeplitz preconditioner is closely related to the additive Schwarz type
preconditioners proposed by Dryja and Widlund �����

For the convergence rate� we will prove that the preconditioned system T
�s�
n An has

clustered spectrum around � and converges at the same rate as other well�known circulant
preconditioned systems� Numerical results show that our methods converges faster than
those preconditioned by circulant preconditioners or best band�Toeplitz preconditioners�

The outline of the paper is as follows� In x�� we study Toeplitz preconditioners gener�
ated by ��f and prove some of their clustering properties� The preconditioners serve as

motivation of the general Toeplitz preconditioners T
�s�
n we construct in x�� Two ways of

constructing T
�s�
n are given� In x�� we show that T

�s�
n and in fact any Toeplitz matrix can

be written as a sum of f�g�circulant matrices� In x�� we prove that Toeplitz precondition�
ers have clustering and superlinear convergence properties� Finally� numerical examples
and concluding remarks are given in x� and x�

� Toeplitz Preconditioner Generated by ��f

Let C�� be the set of all ���periodic continuous real�valued functions� For all f � C��� let

ak �
�

��

Z ��

�

f���e�ik�d�� k � �������� � � �

be the Fourier coe
cients of f � T �f � be the semi�in	nite Toeplitz matrix with the �j� k�th
entry given by aj�k and Tn�f � be the n�by�n principal submatrix of T �f �� Since f is
real�valued� we have

a�k � �ak� k � �������� � � � �
It follows that T �f � and Tn�f � are Hermitian� We note that the spectrum 	�Tn�f �� of Tn�f �
satis	es

	�Tn�f �� � �fmin� fmax�� �n 	 �� ���
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where fmin and fmax are the minimum and maximum of f respectively� see for instance�
Grenander and Szeg�o ���� p�������� In particular� if f is positive� then Tn�f � is positive
de	nite for all n�

For the Toeplitz systems Anx � b considered in this paper� we will assume that
An � Tn�f � for some functions f in C��� The systems will be solved by using preconditioned
conjugate gradient method� see Axelsson and Barker ��� p����� Thus instead of solving
the original system� we solve PnAnx � Pnb� In order to have fast convergence rate�
the preconditioner Pn should be chosen such that the spectrum of PnAn is clustered�
Speci	cally� we want PnAn to be of the form In �Ln � Un where In is an n�by�n identity
matrix� Ln is a matrix of low rank and Un is a matrix of small 
� norm�

In this section� we will consider using the Toeplitz matrix Tn���f � generated by ��f
as preconditioner for Tn�f �� Our motivation for choosing Tn���f � as preconditioner is
given by the following lemma by Widom ���� p������ We 	rst note that a function f �not
necessarily real�valued� is said to be of analytic type �or respectively coanlytic type� if
ak � � for k � � �or respectively� ak � � for k � ���

Lemma � Let f be of analytic type �or respectively coanalytic type� and a� 
� �� Then
T �f � is invertible if and only if ��f is bounded and of analytic type �or respectively coana�
lytic type�� In either case� we have T ���f �T �f � � T �f �T ���f � � I where I is the identity
operator�

As an immediate corollary� we have Tn���f �Tn�f � � In for all n 	 �� i�e� if Tn�f � is an
upper or lower triangular Toeplitz matrix� then its inverse is the Toeplitz matrix Tn���f �
generated by ��f � In the remaining of this section� we assume that the Fourier coe
cients
of ��f are given explicitly or easily found and hence Tn���f � is readily available�

Lemma � Let f be a positive trigonometric polynomial of degree K in C��� i�e�

f��� �
KX

k��K

ake
ik��

Then for n � �K� rank �Tn���f �Tn�f �� In� � �K�

Proof� Let
�

f���
�

�X
k���

�ke
ik��

We see that
KX

k��K

ak�m�k �

�
� if m � ��
� otherwise�
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Hence for n � �K� the entries of the matrix Tn���f �Tn�f ��In are all zeros except possibly
entries in its 	rst and last K columns�

As an example� consider the Kar�Murdock�Szeg�o matrices ���� whose generating func�
tion is given by

f��� �
� � �� � �ei� � �e�i�

�� ��

for j�j � �� Hence Tn�f � is a tridiagonal Toeplitz matrix� Since

�

f���
�

�X
k���

�jkjeik� �
�� ��

��� �ei����� �e�i��
�

Tn���f � is a dense Toeplitz matrix� However� by Lemma �� the rank of the matrix
Tn���f �Tn�f ��In is at most two� therefore the conjugate gradient method will converge in
at most three steps� see Axelsson and Barker ��� p����� We end this section by considering
general f in C���
Lemma 	 Let f � C�� be positive� Then for all  � �� there exist positive integers M
and N such that for all n � N �

Tn���f �Tn�f � � In � Ln � Un ���

where rank �Ln� �M and jjUnjj� � �

Proof� By Weierstrass Theorem� see Cheney ��� p������ there exists a positive trigono�
metric polynomial

pK��� �
KX

k��K

�ke
ik�

with ��k � ��k such that pK��� satis	es the following conditions�

�

�
fmin � pK��� � �fmax� �� � ��� ���� ���

and

max
��������

jf���� pK���j � fmin

�
� ��� �

p
� � � �minf fmin

�fmax

� �g� ���

Since f is positive� it follows from ��� and ��� that the matrices Tn���f �� Tn�pK� and
Tn���pK� are all positive de	nite for all n� Write

Tn���f �Tn�f � � Tn���f �T ��
n ���pK�Tn���pK�Tn�pK �T ��

n �pK�Tn�f �
� �In � Vn��Tn���pK�Tn�pK ���In �Wn� ���
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where
Vn � �Tn���f �� Tn���pK��T ��

n ���pK�

and
Wn � T ��

n �pK ��Tn�f �� Tn�pK���
Note that by ���� ��� and ���� we have

kT ��
n �pK �k� � �

fmin
� ���

kT ��
n ���pK�k� � �fmax� ��

kTn�f �� Tn�pK�k� � ��� �
p
� � �fmin

�
���

and

kTn���f �� Tn���pK�k� � max
��������

j �

f���
� �

pK���
j

� �

f �
min

� max
��������

jf���� pK���j � ��� �
p
� � �

�fmax

� ���

From Lemma �� we have when n � �K�

Tn���pK�Tn�pK � � In � �Ln

with rank��Ln� � �K� Therefore� ��� becomes

Tn���f �Tn�f � � �In � Vn��In � �Ln��In �Wn� � In � Ln � Un ����

where
Un � Vn �Wn � VnWn

and
Ln � �Ln�In �Wn� � Vn �Ln�In �Wn��

It is clear that rank�Ln� � �K and from ���� ��� ��� and ���� we see that kUnk� � �

We now show that the spectrum of Tn���f �Tn�f � is clustered around ��

Theorem � Let f � C�� be positive� Then for all  � �� there exist positive integers M
and N � � such that for all n � N � at most M eigenvalues of Tn���f �Tn�f � � In have
absolute values greater than �





Proof� First we note that since f is positive� it follows from ��� that Tn���f � is a Hermitian

positive de	nite matrix� Hence its square root T ���
n ���f � is well�de	ned and is also a

Hermitian positive de	nite matrix� Moreover� the norms jjT ����
n ���f �jj� and jjT ���

n ���f �jj�
are uniformly bounded independent of n� Next we note that the non�Hermitian matrix
Tn���f �Tn�f � is similar to the Hermitian positive de	nite matrix

Xn � T ���
n ���f �Tn�f �T ���

n ���f ��

therefore the eigenvalues of Tn���f �Tn�f � are the same as the singular values of Xn� In the
following� we will show that the singular values of Xn are clustered�

By ���� we have

Xn � In � T ����
n ���f �LnT ���

n ���f � � T ����
n ���f �UnT ���

n ���f ��

Using the properties of Ln and Un as stated in Lemma � and the uniform boundedness
of jjT ����

n ���f �jj� and jjT ���
n ���f �jj�� we see that the matrices T ����

n ���f �LnT ���
n ���f � and

T ����
n ���f �UnT ���

n ���f � are matrices of low rank and small 
� norm respectively� Therefore�
we have

X�
nXn � In � �Ln � �Un�

where �Ln is of low rank� �Un is of small 
� norm and that both matrices are Hermitian�
Using Cauchy�s interlace theorem� see for instance� Wilkinson ��� p������ we see that the
singular values of Xn are clustered around ��

Using Theorem �� we can easily prove that if the conjugate gradient method is used
to solve the preconditioned system

Tn���f �Tn�f �x � Tn���f �b�
the method will converge superlinearly� see Chan ���� Thus� we see that Tn���f � is a good
choice of preconditioner for Tn�f �� However� we remark that in order to construct Tn���f ��
the 	rst nth Fourier coe
cients of ��f should be generated easily and this may not be
true in general�

� Construction of General Toeplitz Preconditioners

In this section� we construct our Toeplitz preconditioners for cases where the Fourier
coe
cients of ��f � i�e�

�

��

Z ��

�

�

f���
e�ik�d�� ����

cannot be evaluated e
ciently� There are three di�erent cases where this can happen�

�



�a� f is given explicitly but the evaluation of the de	nite integral ���� cannot be done
e
ciently�

�b� f is given but that the evaluations of ��f are costly� e�g� f is given in series form�

�c� f is not given explicitly� e�g� only the Toeplitz matrix An is given rather than f �

Our approach is to approximate the integral by rectangular rule and f by convolution
product of f with some kernel functions�

Let us begin with case �a�� We subdivide the interval ��� ��� into sn� � subintervals
of equal length� Here s is a positive integer independent of n� Then we approximate ����
by

z
�s�
k �

�

sn

sn��X
j��

�

f���j
sn

�
e���ijk�sn� k � ����� � � � ���n� ��� ����

Our preconditioner is then de	ned to be the Toeplitz matrix Tn�g�s�n � generated by

g�s�n ��� �
n��X

k���n���

z
�s�
k eik�� �� � ��� ���� ����

We remark that we have de	ned a family of Toeplitz preconditioners indexed by s� Notice
that the 	rst column of the Toeplitz matrix Tn�g�s�n � is given by the numbers fz�s�k gn��k���

In case �b�� we further approximate f in ���� by using its �n � ��th partial sum� i�e�
we replace f in ���� by

fn����� �
n��X

k���n���

ake
ik�� �� � ��� ���� ����

and the numbers fz�s�k gn��k�� so obtained will again give the 	rst column of the Toeplitz

preconditioner Tn�g�s�n �� In case �c�� we associate the entries of the 	rst column of An with

a generating function fn����� given by ����� Then the numbers fz�s�k gn��k�� can be obtained
similarily as in case �b��

We remark that we can unify the notations employed above by using convolution
products� Given a kernel function K and a positive integer s� we de	ne our approximation
to the Fourier coe
cients in ���� to be

z
�s�
k �

�

sn

sn��X
j��

�

�K � f����j
sn

�
e���ijk�sn� k � ����� � � � ���n� ��� ����

�



Here K � f is the convolution product of K and f � see Walker ���� p����� In the 	rst case
���� above� we are just using the Dirac delta kernel K � � and in the second case �����
K � Dn��� the Dirichlet kernel� see Walker ���� p�� and p���� respectively� We note that
there are other kernels that one can use such as the Fej�er kernel Fn� see Walker ���� p����
We remark that in ����� we are assuming that the values of K � f at the sampled points
f��j�sngsn��j�� are non�zero�

In all cases� the Toeplitz preconditioner Tn�g�s�n � is the Toeplitz matrix with the 	rst

column given by z
�s�
k in ����� The cost of obtaining the numbers z

�s�
k depends on the kernel

we used� For the Dirichlet and the Fej�er kernels� or more generally� for kernels that can
be written as

�K � f���� �
n��X

k���n���

bn�ke
ik�� �� � ��� ���� ����

the values f�K � f����j�sn�gsn��j�� can be obtained in O�sn log sn� operations by using a

sn�dimensional FFT� After getting the values� the numbers fz�s�k gn��k�� in ���� can then be
obtained by using another sn�dimensional FFT in O�sn log�sn�� operations� For a list of
kernels that satisfy ���� and their corresponding bn�k� see Chan and Yeung ���

We note that another way of constructing the Toeplitz preconditioners is by embed�
ding� In fact� by ����� we have

�K � f����j
sn

� �
n��X

k���n���

bn�ke
��ijk�sn �

sn��X
k��

�bn�ke
��ijk�sn

where for s � ��
�bn�k � bn�k � bn�k�n� k � �� � � � � n� ��

and for s � ��

�bn�k �
��
�

bn�k � � k � n�
� n � k � sn� n�
bn�k�sn sn� n � k � sn�

Thus �K � f����j�sn�� j � �� � � � � sn � �� are eigenvalues of a sn�by�sn circulant matrix
with the 	rst column given by f�bn�kgsn��k�� � see Davis ���� p���� Let us denote this circulant
matrix by Csn� Clearly� the eigenvalues of C

��
sn are given by ����K�f����j�sn��� Therefore�

the 	rst column of the circulant matrix C��
sn will be given by

�C��
sn ���k �

�

sn

sn��X
j��

�

�K � f����j
sn

�
e���ijk�sn� � � k � sn�

see also Davis ���� p���� By comparing this formula with ����� we see that our Toeplitz

matrix Tn�g�s�n � is just the n�by�n principal submatrix of C��
sn �

��



Notice that if bn�k are known� then the second method requires only one sn�dimensional
FFT and we don�t need to generate the values f�K � f����j�sn�gsn��j�� explicitly� For
example� if the Dirichlet kernel Dn�� is used� then bn�k � ak for all n and k� Hence in this

case� we just embed An into a sn�by�sn circulant matrix Csn as de	ned by �bn�k above and
our Toeplitz preconditioner is given by the n�by�n principal submatrix of C��

sn �
Let us end the section by considering the cost per iteration in applying the precondi�

tioned conjugate gradient method to the preconditioned system

Tn�g�s�n �Anx � Tn�g�s�n �b�

We 	rst recall that the multiplication of an n�vector to an n�by�n circulant matrix requires
only two n�dimensional FFTs� Since both matrices Tn�g�s�n � and An are Toeplitz� products

of the form Tn�g�s�n �v and Anv can be obtained by 	rst embedding the matrices into �n�by�
�n circulant matrices and using �n�dimensional FFTs� see Strang ����� Thus the cost per
iteration is about the same as the cost of applying four �n�dimensional FFTs� For circulant
preconditioned systems� we still have to compute product of the formAnv in each iteration�
but the product Tn�g�s�n �v will be replaced by a circulant matrix�vector multiplication
which can be done by two n�dimensional FFTs� Thus the actual cost per iteration of
our method is roughly � � times higher than that required by circulant preconditioned
systems on sequential machines� On parallel computers using Single Instruction stream�
Multiple Data stream �SIMD� architecture �see for instance Aki ��� p����� because the real
time required by �n�dimensional FFT is of O�log��n��� �see Aki ��� p������� which is about
the same as the cost of n�dimensional FFT� there will be no signi	cant time di�erence
per iteration between our method and those that use circulant preconditioners�

� Properties of Toeplitz Preconditioners

In this section� we give some interesting properties of the Toeplitz preconditioners which
will be useful in proving the convergence rate of the Toeplitz preconditioners in the next
section� We 	rst show below that the Toeplitz preconditioner can always be written as a
sum of so�called f�g�circulant matrices� which are de	ned as follows �see also Davis ����
p���� for an equivalent de	nition��

De�nition Let � � ei�� with �� � ��� ���� A matrix Wn is said to be a f�g�circulant
matrix if it has the spectral decomposition

Wn � DnFn!nF
�
nD

�
n� ���

Here Fn is the Fourier matrix with entries

�Fn�k�j �
�p
n
e���ijk�n� ����

��



Dn � diag��� ���n� � � � � ��n����n�

and !n is a diagonal matrix holding the eigenvalues of Wn�

Notice that f�g�circulant matrices are Toeplitz matrices with the 	rst entry of each
row obtained by multiplying the last entry of the preceding row by �� In particular� f�g�
circulant matrices are circulant matrices while f��g�circulant matrices are skew�circulant
matrices� Also from the spectral decomposition in ���� we see that the entries in the 	rst
column of Wn and the eigenvalues �j�Wn� of Wn are related by the following formula

�Wn�k�� �
�k�n

n

n��X
j��

�j�Wn�e
���ijk�n� k � �� � � � � n� �� ����

Theorem � Let �K � f����j�sn� 
� � for � � j � sn� Then the Toeplitz preconditioner

Tn�g�s�n � can be expressed as

Tn�g�s�n � �
�

s

s��X
t��

Tn�g�s�t�n �� ����

where Tn�g�s�t�n �� � � t � s� are f�tg�circulant matrices with �t � e���it�s and eigenvalues
given by

�j�Tn�g�s�t�n �� �
�

�K � f����j
n

� �t�
sn

�
� � � j � n� � � t � s� ����

In particular� if �K � f����j�sn� � � for � � j � sn� the Toeplitz preconditioner Tn�g�s�n �
is positive de�nite�

Proof� We replace the index j in ���� by sj � t where � � t � s and � � j � n� Then
we have

z
�s�
k �

�

s

s��X
t��

�
e���itk�sn

n

n��X
j��

�

�K � f����j
n

� �t�
sn

�
e���ijk�n

�
� �

s

s��X
t��

z
�s�t�
k �

for k � ����� � � � ���n� ��� Here

z
�s�t�
k �

�
k�n
t

n

n��X
j��

�
�

�K � f����j
n

� �t�
sn

�
e���ijk�n

�
� ����

for � � t � s� � � j � n� Correspondingly� we de	ne

g�s�t�n ��� �
n��X

k���n���

z
�s�t�
k eik�� � � t � s� �� � ��� ����

��



and rewrite ���� as

g�s�n ��� �
�

s

s��X
t��

g�s�t�n ��� �
�

s

s��X
t��

n��X
k���n���

z
�s�t�
k eik�� s 	 �� �� � ��� ����

By the linearity of the operator Tn���� we see that ���� holds� Moreover� since Tn�g�s�t�n �

are Toeplitz matrices with their 	rst columns given by fz�s�t�k gn��k��� by comparing ���� with

����� we see that Tn�g�s�t�n � are f�tg�circulant matrices with eigenvalues given by ����� If

�K � f����j�sn� � � for � � j � sn� then Tn�g�s�t�n � will be positive de	nite for � � t � s�

Hence Tn�g�s�n � is positive de	nite�

As an application� we note that our Toeplitz preconditioners are generalization of
circulant preconditioners� Indeed when s � �� then by Theorem �� Tn�g���n � is a circulant
matrix� This can also be seen simply from ���� as

z
���
n�k � �z

���
k � k � �� � � � � n� ��

Using the characterization of circulant preconditioners in Chan and Yeung ��� we can
further show that if in ����� we choose the kernel K to be Dbn��c� Dn�� and Fn respec�

tively� then the inverse of Tn�g���n � equals to the Strang� Chan and T� Chan circulant
preconditioner respectively� see Chan and Yeung ���

We next show that indeed any Toeplitz matrix can be written as a sum of f�tg�
circulant matrices� We 	rst note that from the de	nition of f�tg�circulant matrix� the

inverse T ��
n �g

�s�t�
n � of Tn�g�s�t�n � is still an f�tg�circulant matrix� Moreover� by ����� its

eigenvalues are given by

�j�T ��
n �g�s�t�n �� � �K � f����j

n
�

�t�

sn
�� � � j � n� � � t � s�

Therefore by ����� we see that

T ��
n �g�s�t�n � � Tn�h�s�t�n �

where

h�s�t�n ��� �
n��X

k���n���

y
�s�t�
k eik�� � � t � s� �� � ��� ����

with

y
�s�t�
k � �

k�n
t

n

n��X
j��

�
�K � f����j

n
�

�t�

sn
�

�
e���ijk�n� ����

��



for � � t � s� � � j � n� Clearly� we also have

T ��
n �h�s�t�n � � Tn�g�s�t�n �� ����

and

�j�Tn�h�s�t�n �� � �K � f����j
n

�
�t�

sn
�� � � j � n� � � t � s� ����

Now let us add up the matrices Tn�h�s�t�n � together� More precisely� let

h�s�n ��� �
�

s

s��X
t��

h�s�t�n ��� �
n��X

k���n���

�
�

s

s��X
t��

y
�s�t�
k

�
eik�� ����

We now show that for most kernels K� h
�s�
n does give us back K � f exactly�

Lemma 
 Let K be a kernel of the form given by ��	�� Then for all s � ��

h�s�n ��� � �K � f����� �� � ��� ����

Proof� By comparing ���� and ����� it su
ces to show that

bn�k �
�

s

s��X
t��

y�s�t�k � k � ����� � � � � �n� ��� ���

However� by �����

�

s

s��X
t��

y
�s�t�
k �

�

s

s��X
t��

e���itk�sn

n

n��X
j��

�
�K � f����j

n
�

�t�

sn
�

�
e���ijk�n

�
�

sn

sn��X
���

�K � f����

sn

�e���i�k�sn� k � ����� � � � ���n� ���

where the last equality is obtained by setting the index sj � t to be 
� Using ���� again�
we have� for any s 	 � and k � ����� � � � ���n� ���

�

s

s��X
t��

y
�s�t�
k �

�

sn

sn��X
���

��
�

n��X
j���n���

bn�je
��ij��sn

	

� e���i�k�sn

�
n��X

j���n���

bn�j

�
�

sn

sn��X
���

e��i��j�k��sn

�
�

��



Since
�

sn

sn��X
���

e��i��j�k��sn �

�
� j � k� k � sn� k � �sn� � � � �
� otherwise�

��� follows by noting that s � ��

We can now show that any Toeplitz matrix can be written as the sum of f�tg�circulant
matrices where � � t � s� s � ��

Theorem 	 Given any Toeplitz matrix An and s � �� we have

An �
�

s

s��X
t��

W �s�t�
n �

where W
�s�t�
n are f�tg�circulant matrices with �t � e���it�s� Moreover� if all W

�s�t�
n are

invertible� then the Toeplitz preconditioner Tn�g�s�n � corresponding to the Dirichlet kernel
Dn�� is given by

Tn�g�s�n � �
�

s

s��X
t��

�W �s�t�
n ����

Proof� Given An with the 	rst column entries fakgn��k��� we can write it as An � Tn�fn���
where

fn����� �
n��X

k���n���

ake
ik��

Since

�Dn�� � fn������ �
n��X

k���n���

ake
ik� � fn������

we have by Lemma � and �����

An � Tn�fn��� � Tn�Dn�� � fn��� � Tn�h�s�n � �
�

s

s��X
t��

Tn�h�s�t�n �

where Tn�h�s�t�n � are f�tg�circulant matrix corresponding to the Dirichlet kernel Dn���
Moreover� by ���� and �����

Tn�g�s�n � �
�

s

s��X
t��

Tn�g�s�t�n � �
�

s

s��X
t��

T ��
n �h�s�t�n ��

��



provided that Tn�h�s�t�n � are invertible�

When s��� the theorem gives

An �
�

�
�W �����

n �W �����
n �

where W
�����
n is a circulant matrix and W

�����
n is a skew�circulant matrix� We remark that

this formula was 	rst discovered by Pustylnikov ����� Also from the theorem� we see that
any Toeplitz matrix can be decomposed as a sum of f�tg�circulant matrices and that our
Toeplitz preconditioner is just the sum of the inverses of these f�tg�circulant matrices�

We recall that in additive Schwarz method� a matrix A is 	rst decomposed into sum
of individual matrices�

A � A��� � A��� � � � �� A�s��

and then the generalized inverses of these individual matrices are added back together to
form a preconditioner P of the original matrix A� i�e�

P � A���	 � A���	 � � � �� A�s�	�

see Dryja and Widlund ����� Thus� the construction of our Toeplitz preconditioner is very
similar to the approach used in additive Schwarz method�

� Analysis of Convergence Rate

In this section� we discuss the convergence rate of the preconditioned systems Tn�g�s�n �An�
Before we start� we recall the following two lemmas which are useful in the following
analysis� The proof can be found in Chan ��� and Chan and Yeung �� respectively�

Lemma � Let f � C�� and �f��� � f�� � ��� where �� � ��� ���� Then for all n � ��

Tn� �f � � D�
nTn�f �Dn�

where
Dn � diag��� ei��� ei��� � � � � � ei�n�������

Lemma � Let f � C�� and K be a kernel such that K � f converges to f uniformly on
��� ���� De�ne !n to be the diagonal matrix with diagonal entries

�!n�j�j � �K � f����j
n

�� � � j � n�

Then for all  � �� there exist positive integers N and M such that for all n � N � at most
M eigenvalues of Tn�f �� Fn!nF

�
n have absolute value greater than �

��



We note that the matrix Fn in Lemma � is the Fourier matrix de	ned in ���� and hence

Fn!nF
�
n is an n�by�n circulant matrix and by ����� it is equal to Tn�h�s���n �� The lemma

thus state that the matrix Tn�f � � Tn�h�s���n � has clustered spectrum around zero� Using

Lemmas � and �� we now show that the spectrum of Tn�f � � Tn�h�s�t�n � is also clustered
around zero for � � t � s�

Theorem 
 Let f � C�� and s 	 �� Let K be a kernel such that K � f converges to f
uniformly on ��� ��� and

W �s�t�
n � DnFn!

�s�t�
n F �

nD
�
n

be f�tg�circulant matrices with �t � e���it�s and

�!�s�t�
n �jj � �K � f����j

n
�

�t�

sn
�� � � j � n� � � t � s� ����

Then for all  � �� there exist positive integers N and M such that for all n � N � at most
M eigenvalues of Tn�f ��W

�s�t�
n have absolute value greater than �

Proof� For all � � t � s� de	ne

�ft��� � f�� �
��t

sn
��

Then we have

�!�s�t�
n �jj � �K � f����j

n
�

��t

sn
� � �K � �ft��

��j

n
�� j � �� �� � � � � n� ��

Since by Lemma �� we have
D�

nTn�f �Dn � Tn� �ft��
it follows that

Tn�f ��W �s�t�
n � Dn�Tn� �ft�� Fn!

�s�t�
n F �

n�D
�
n�

As K � f converges uniformly to f on ��� ���� K � �ft also converges to �ft uniformly on
��� ��� for all � � t � s� Hence the theorem follows by applying Lemma � and noting that
jjDnjj� � ��

An an immediate corollary� we can show that each Tn�g�s�t�n �� � � t � s� is already a
good approximation to Tn�f ��
Lemma  Let f � C�� be positive and s 	 �� Let K be a kernel such that K�f converges
to f uniformly on ��� ���� Then for all  � � and � � t � s� there exist positive integers

N and M such that for all n � N � at most M eigenvalues of In � Tn�g�s�t�n �Tn�f � have
absolute value greater than �

�



Proof� For any 	xed � � t � s� by comparing ���� and ���� and recalling Tn�h�s�t�n � are

f�tg�circulant matrices� we see that the spectrum of Tn�f �� Tn�h�s�t�n � is clustered around
zero� Since K�f converges to f uniformly and fmin � �� it follows that for su
ciently large
n� K� f will be positive� Therefore by ���� and ����� Tn�h�s�t�n � and its inverse Tn�g�s�t�n � are
positive de	nite and uniformly invertible for large n� The lemma then follows by noting
that

In � Tn�g�s�t�n �Tn�f � � In � T ��
n �h�s�t�n �Tn�f � � T ��

n �h�s�t�n ��Tn�h�s�t�n �� Tn�f ���

Now we can prove the main theorem of this section� namely that the spectrum of the
preconditioned system Tn�g�s�n �Tn�f � is clustered around ��

Theorem � Let f � C�� be positive and s 	 �� Let K be a kernel such that K�f converges
to f uniformly on ��� ��� and Tn�g�s�n � be the Toeplitz preconditioner de�ned in �
��� Then
for all  � �� there exist positive integers N and M such that for all n � N � at most M
eigenvalues of In � Tn�g�s�n �Tn�f � have absolute value greater than �

Proof� Since the spectrum of Tn�g�s�t�n �Tn�f � is clustered around � for � � t � s� we have

Tn�g�s�t�n �Tn�f � � In � L�s�t�
n � U �s�t�

n

where L
�s�t�
n is a matrix with rank independent of n and U

�s�t�
n is a matrix with 
� norm

less than � We note that by ����

Tn�g�s�n �Tn�f � � �

s

s��X
t��

�Tn�g�s�t�n �Tn�f �� � �

s

s��X
t��

�In � L�s�t�
n � U �s�t�

n � � In � L�s�
n � U �s�

n

where L
�s�
n � �

s

Ps��
t�� L

�s�t�
n and U

�s�
n � �

s

Ps��
t�� U

�s�t�
n � As s is independent of n� the rank of

L
�s�
n is also independent of n and jjU �s�

n jj� � � The remaining part of the proof is similar
to that in Theorem ��

It follows easily by Theorem � that the conjugate gradient method� when applied to the
preconditioned system Tn�g�s�n �An� converges superlinearly� Recall that in each iteration�
the work is of order O�n logn�� therefore� the work of solving equation Anx � b to a given
accuracy is also of order O�n logn��

��



� Numerical Examples

In this section� we compare our Toeplitz preconditioners with band�Toeplitz precondi�
tioners and circulant preconditioners� We test their performances on six continuous
functions de	ned on ���� ��� They are �i� �
 � �� �ii�

P�
k����� � jkj�����eik�� �iii�

�� � ���ei����� � ���ei�� � �� � ���e�i����� � ���e�i��� �iv� � � �� � ���� �v� �
 and �vi�
������������� We note that the 	rst two functions are ���periodic continuous� the third
one is a positive rational function and it can be written as

����� ��� cos���

����� ��� cos���
�

the fourth one has a jump at � � ��� and the last two are functions with zeros� The
matrices An are formed by evaluating the Fourier coe
cients of the test functions�

In the test� we used the vector of all ones as the right hand side vector and the
zero vector as the initial guess� The stopping criterion is jjrqjj��jjr�jj� � ����� where
rq is the residual vector after q iterations� All computations are done on a Vax ����
with double precision arithmetic� Tables ��� show the numbers of iterations required
for convergence with di�erent choices of preconditioners� In the tables� I denotes no
preconditioner was used� T

�s�
� � T

�s�
D and T

�s�
F are the Toeplitz preconditioners based on

the Dirac delta function� the Dirichlet kernel Dn�� and the Fej�er kernel Fn respectively�
For comparison� we also used Strang�s circulant preconditioner CS� see Strang ����� and
the best band�Toeplitz preconditioner B� with half�bandwidth �� see Chan and Tang ����
We emphasize that for the circulant and band�Toeplitz preconditioners� the inverse of the
matrix is used as the preconditioner� In particular� T

���
D and T

���
F are the inverse of the

circulant preconditioners proposed by Chan ���� and T� Chan ��� respectively� whereas CS

is the inverse of the Toeplitz preconditioner corresponding to the Dirichlet kernel Dbn��c

with s � ��
In Table �� since the generating function is not known explicitly� B� and T

�s�
� are

not available� In Table �� the Remez�s algorithm fails to give the best trigonometric
approximation to the discontinuous generating function� Hence B� is also not available
in that case� In Tables � and �� since f has zeros� the kernel functions may be zero at
some of the mesh points ��j�sn and hence some of the matrices Tn�g�s�t�n � are unde	ned�

see ����� In that case� we just replace those eigenvalues of Tn�g�s�t�n � by zeros� We note

that although Tn�g�s�t�n � may be singular� the preconditioners

Tn�g�s�n � �
�

s

s��X
t��

Tn�g�s�t�n �

are non�singular in all the cases we tested� except in Table �� T
���
� is singular as f��� � ��

��



From the numerical results� we see that in all tests� the Toeplitz preconditioner T
�
�
�

performs better than the other preconditioners and the di�erences are more profound
when f is either discontinuous or nonnegative� For other Toeplitz preconditioners� the
number of iterations in most cases decreases as s is increased� We note that the larger
the s is� the better the rectangular rule ���� will be in approximating the de	nite integral
�����
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� Concluding Remarks

In this paper� we have proposed and analyzed new types of preconditioners for Hermitian
positive de	nite Toeplitz systems� The preconditioners are Toeplitz matrices and can
be considered as generalization of circulant preconditioners proposed previously in other
literature� In this preliminary report� we have only considered using rectangular rule to
approximate the de	nite integral ����� We note that other Newton�Cotes formula can
also be employed �see Stoer and Bulirsch ���� p����������� The de	nite integral ���� will

��



then be approximated by
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where �j are the weights used in the approximating formula� For example� for Simpson�s
rule� ���� will be approximated by

z
�s�
k �

�

�sn

�
�

f���
�

�

f���
sn
�
e���ik�sn �

�

f�
�
sn
�
e�
�ik�sn � � � �� �

f���sn����
sn

�
e���i�sn���k�sn

�
�

for k � ����� � � � ���n � ��� Presumably� such higher order quadrature rules will yield
better preconditioners�
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