
SIAM J. IMAGING SCIENCES c© 2013 Society for Industrial and Applied Mathematics
Vol. 6, No. 1, pp. 368–390

A Two-Stage Image Segmentation Method Using a Convex Variant of the
Mumford–Shah Model and Thresholding∗

Xiaohao Cai†, Raymond Chan†, and Tieyong Zeng‡

Abstract. The Mumford–Shah model is one of the most important image segmentation models and has been
studied extensively in the last twenty years. In this paper, we propose a two-stage segmentation
method based on the Mumford–Shah model. The first stage of our method is to find a smooth
solution g to a convex variant of the Mumford–Shah model. Once g is obtained, then in the second
stage the segmentation is done by thresholding g into different phases. The thresholds can be
given by the users or can be obtained automatically using any clustering methods. Because of the
convexity of the model, g can be solved efficiently by techniques like the split-Bregman algorithm
or the Chambolle–Pock method. We prove that our method is convergent and that the solution g
is always unique. In our method, there is no need to specify the number of segments K (K ≥ 2)
before finding g. We can obtain any K-phase segmentations by choosing (K − 1) thresholds after g
is found in the first stage, and in the second stage there is no need to recompute g if the thresholds
are changed to reveal different segmentation features in the image. Experimental results show that
our two-stage method performs better than many standard two-phase or multiphase segmentation
methods for very general images, including antimass, tubular, MRI, noisy, and blurry images.
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1. Introduction. Let Ω ⊂ R
2 be a bounded open connected set, Γ be a compact curve

in Ω, and f : Ω → R be a given image. Without loss of generality, we restrict the range
of f to [0,1], and hence f ∈ L∞(Ω). In [42, 43], Mumford and Shah proposed an energy
minimization problem which approximates the true solution by finding optimal piecewise
smooth approximations. More precisely, the energy minimization problem was formulated in
[43] as

(1.1) EMS(g,Γ) =
λ

2

∫
Ω
(f − g)2dx+

μ

2

∫
Ω\Γ

|∇g|2dx+ Length(Γ),

where λ and μ are positive parameters and g : Ω → R is continuous or even differentiable in
Ω \ Γ but may be discontinuous across Γ. Here, the length of Γ can be written as H1(Γ), the
1-dimensional Hausdorff measure in R

2; see [4]. Because model (1.1) is nonconvex, it is very
challenging to find or approximate its minimizer.
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In [1, 2], the Mumford–Shah energy (1.1) was approximated by a sequence of simpler
elliptic variational problems where the length of Γ was replaced by a phase field energy.
Later, nonlocal approximation of (1.1) was proposed in [11, 12, 25, 41]. By using a family of
continuous and nondecreasing functions, they avoid computing Γ explicitly. In particular, their
methods solve an anisotropic variant of the Mumford–Shah model (1.1). In [10], numerical
approaches based on a discrete functional were considered for solving (1.1). Recently, a novel
primal-dual algorithm based on a convex representation of (1.1) was proposed. It can solve
(1.1) accurately. However, for a 128 × 128 image, it requires 600 seconds on a Tesla C1060
GPU machine. Until now, the bottleneck of solving (1.1) has still been that the model itself
is nonconvex.

Over the years, people have tried to simplify the model (1.1). For example, if we restrict
∇g ≡ 0 on Ω \ Γ, then it results in a piecewise constant Mumford–Shah model. In [16], the
method of active contours without edges (Chan–Vese model) was introduced. It solves the
piecewise constant Mumford–Shah model but restricts the solution to be a piecewise constant
solution with only two constants. For works on the general piecewise constant Mumford–
Shah model, see [31, 49, 50], etc. These methods work well for certain image segmentation
tasks, for example for cartoon images. However, the main drawback of these methods is
that they can easily get stuck in local minima. In order to overcome the problem, convex
relaxation approaches [7, 14, 45] and the graph cut method [27] were proposed. There are
also many other models related to the Chan–Vese model [16, 49], for example, the two-
phase segmentation algorithms in [19, 52, 53] and multiphase segmentation algorithms in
[3, 8, 21, 32, 33, 34, 35, 47, 48, 54]. Specifically, in [33], the piecewise constant Mumford–Shah
model was convexified by using fuzzy membership functions. In [47], a new regularization term
was introduced which allows choosing the number of phases automatically. In [52, 53, 54],
efficient methods based on the fast continuous max-flow method were proposed. In [19], the
length term was replaced by a term involving framelets. In [32], the continuous multiclass
labeling approaches were discussed. Interested readers can read the references therein or see
[4] for more details.

In this paper, we separate the task of segmentation into two stages. The first stage
is to find a smooth image g that can facilitate the segmentation, and the second stage is
to threshold g to reveal different segmentation features. To find g, instead of tackling the
challenging problem of solving the Mumford–Shah model (1.1), we propose to use the model

(1.2) inf
g

{
λ

2

∫
Ω
(f −Ag)2dx+

μ

2

∫
Ω
|∇g|2dx+

∫
Ω
|∇g|dx

}
,

where A can be the identity operator (for noisy observed image f) or a blurring operator (if
there are noise and blur in f). We will see that our model (1.2) is closely related to (1.1) and
is convex with a unique smooth solution. In the first stage of our two-stage method, we solve
(1.2). Once g is found, then in the second stage, the segmentation is obtained by segmenting g
using properly chosen threshold(s). To segment g into K segments, K ≥ 2, we require (K−1)
thresholds which the users can provide themselves or obtain automatically by any clustering
methods such as the K-means methods [28, 38] or the convex K-means method named SON
clustering [36]. Figure 1 shows two multiphase segmentation results from our method using
thresholds from Matlab K-mean command kmeans on g.
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(a) Given image. (b) Three phases. (c) Given image. (d) Four phases.

Figure 1. Multiphase segmentation results given by our method.

We will prove that, under mild conditions, our model (1.2) has one and only one solution g
which can be solved very quickly by popular algorithms such as the split-Bregman algorithm
[26] or the Chambolle–Pock method [13, 44]. One nice aspect of our method is that there
is no need to recompute g if we have to change the thresholds in the second stage to reveal
different features in the image. Another nice aspect is that there is no need to specify K in
the first stage, i.e., before finding g. We can obtain any K-phase segmentation (K ≥ 2) by
choosing (K − 1) thresholds after g is computed in the first stage. In contrast, multiphase
methods such as those in [3, 8, 21, 32, 33, 34, 35, 45, 48, 54] require K to be given first; and,
if K changes, the minimization problem has to be solved again.

Our tests in section 4 show that our method can segment different kinds of images: anti-
mass image, tubular MRA image, brain MRI image, image with very high noise, and image
with blur and noise. For the blur and noisy image, all the multiphase methods we tested
[33, 47, 54, 3, 45] fail, while our method can provide a very good result; see Figures 1(c)–(d)
or 10. We will see that our method is fast compared to popular two-phase segmentation
methods [16, 19, 53] and multiphase segmentation methods [33, 47, 54, 3, 45].

Note that once g is obtained and the thresholds are given, the segmenting of g into K
segments requires very little time. In fact, the complexity is proportional to the number of
pixels in the image. Hence our method is quite suitable for users to play around with different
thresholds to determine the number of segments they prefer and to reveal the different features
within the image. However, we can also use the Matlab-provided K-means method to com-
pute the thresholds automatically for users who prefer an automated K-phase segmentation
algorithm.

Our model provides a better understanding of the link between image segmentation and
image restoration. Indeed, the effectiveness of our method suggests that for segmentation a
key idea is to extract the cartoon part in the image, i.e., g, and then cluster g into different
phases. Based on this two-stage idea, it is likely that more efficient segmentation methods
can be developed in the future along this line. As pointed out by one of the reviewers,
Esedoḡlu and Tsai also proposed a two-stage approach in [21]—one that also uses smoothing
followed by thresholding. Indeed, [21] proposed an extremely efficient PDE-based algorithm
for minimizing the piecewise constant Mumford–Shah segmentation model. Their algorithm
was inspired by the work of Merriman, Bence, and Osher (MBO) on diffusion generated
motion by curvature [39, 40]. Similar to the MBO algorithm, each iteration of [21] requires a
solution of a linear diffusion equation and then a thresholding. The main difference between
our method and the approach in [21] is clear: in [21], the smoothing and thresholding are
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(a) True. (b) Given. (c) Recovered. (d) Difference.

Figure 2. Segmentation from smooth image. (a) True 128 × 128 binary image; (b) given smoothed image
of (a) by a Gaussian filter; (c) segmented binary result from (b) using threshold 0.5; (d) the difference image
between (a) and (c), where nonzero pixel values are scaled to 1 to reveal them clearly.

done alternatively for a number of iterations, while in our two-stage method, the smoothing
and the thresholding are done only once: smoothing in the first stage and thresholding in the
second stage. For more details along the direction of smoothing and filtering, see [21, 39, 40]
and references therein.

The rest of the paper is organized as follows. In section 2, we derive our convex model
(1.2) which is based on the Mumford–Shah model. We then show that our model has a unique
solution. In section 3, we give the detailed implementation of our method and show that the
resulting algorithm converges. In section 4, we compare our method on various synthetic and
real images with three two-phase segmentation algorithms [19, 16, 53] and five multiphase
segmentation methods [33, 47, 54, 3, 45]. The relationship between our model and models in
image restoration is discussed in section 5. Conclusions are given in section 6.

2. Two-stage method. Our model is motivated by the following simple but important
observation about binary images: a binary image can be recovered quite well from its smoothed
version by thresholding with a proper threshold. Figure 2 is an example to illustrate our point.
Figure 2(a) is the true binary image, and 2(b) is its smoothed version obtained by a Gaussian
filter with size [5,5] and standard deviation 3. Obviously, pixel values near the boundary are
smoothed. However, by using a threshold of 0.5 to threshold Figure 2(b) back to a binary
image, we obtain Figure 2(c). We see that all the pixels of Figure 2(a) except some on the
boundary are correctly recovered; see the difference image in Figure 2(d). Inspired by this
idea, we will modify model (1.1) step by step to arrive at our model (1.2). Briefly, our method
consists of two stages. In the first stage, we will find the smooth minimizer of (1.2); then in
the second stage, we apply a simple thresholding strategy to carry out the segmentation. In
the following, we derive our model (1.2).

Assume that Γ is a Jordan curve. Let Σ = Inside(Γ); then Γ = ∂Σ. Model (1.1) can be
written as

Ẽ(Σ, g1, g2) :=
λ

2

∫
Σ\Γ

(f − g1)
2dx+

μ

2

∫
Σ\Γ

|∇g1|2dx+
λ

2

∫
Ω\Σ

(f − g2)
2dx

+
μ

2

∫
Ω\Σ

|∇g2|2dx+ Per(Σ),

(2.1)

where g1 and g2 are defined on Σ \Γ and Ω \Σ, respectively, and Per(·) denotes the perimeter
of Σ; i.e., Per(Σ) = Length(Γ). Note that (2.1) is similar to (9) in [14]. Observe that once Σ
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is fixed, then g1 and g2 are determined by the following two minimization problems:

(2.2) inf
g1∈W 1,2(Σ\Γ)

{
λ

∫
Σ\Γ

(f − g1)
2dx+ μ

∫
Σ\Γ

|∇g1|2dx
}

and

(2.3) inf
g2∈W 1,2(Ω\Σ)

{
λ

∫
Ω\Σ

(f − g2)
2dx+ μ

∫
Ω\Σ

|∇g2|2dx
}
.

For the definition of W 1,2(Ω), see [22, Chapter 5]. The existence and uniqueness of the
solutions g1 and g2 are guaranteed by the following proposition.

Proposition 2.1. Let f ∈ L2(Ω). Then the two minimization problems (2.2) and (2.3) have
unique minimizers.

Proof. Since Σ is closed, both the sets Ω \Σ and Σ \Γ are open. Using the conclusions of
Proposition 1 in [4] or Proposition 3 in [18], we conclude that problems (2.2) and (2.3) have
unique minimizers.

From the analysis above we can conclude that once the boundary Γ is fixed, i.e., Σ is
fixed, then g1 and g2 are determined uniquely. Note that in [14], the Chan–Vese model is
made convex once the mean values of f inside and outside of Γ are fixed. Here, motivated by
Theorem 2 of [14], we can derive and prove the following similar theorem for the model (2.1)
once g1 and g2 are fixed and smoothly extended to the whole Ω.

Theorem 2.2. For any given fixed functions g1 and g2 ∈ W 1,2(Ω), a global minimizer for
Ẽ(Σ, g1, g2) in (2.1) can be found by carrying out the following convex minimization,

(2.4) min
0≤u≤1

{∫
Ω
|∇u|+ 1

2

∫
Ω

{
λ(f − g1)

2 + μ|∇g1|2 − λ(f − g2)
2 − μ|∇g2|2

}
u(x)

}
,

and setting Σ = {x : u(x) ≥ ρ} for almost every ρ ∈ [0, 1].
Proof. See Appendix A.
From Theorem 2.2, we see that the term Per(Σ) of (2.1) is replaced by a convex integral

term
∫
Ω |∇u|. In other words, the boundary information of Γ in (1.1) can be extracted

from the TV (total variation) term
∫
Ω |∇u|. This motivates us to use

∫
Ω |∇g| to extract the

boundary information Length(Γ) in (1.1). Evidently, this approximation is also related to the
fuzzy membership approach [7, 14, 33] to handle the Chan–Vese model. In the following, we
therefore use

∫
Ω |∇g| to approximate the boundary term (the last term) in the Mumford–Shah

energy (1.1).
Next we consider simplifying the middle term in model (1.1). In (1.1), the solution is

restricted to be a smooth function in Ω \Σ and in Σ \Γ. However, from the example given in
Figure 2, we see that these smooth parts can be recovered quite well from a smooth function
g in Ω by a proper thresholding. Therefore in the following, we look for solution g ∈ W 1,2(Ω).
Then we have the next result.

Lemma 2.3. If g ∈ W 1,2(Ω) and Γ is a closed curve with m(Γ) = 0, where m(·) is the
Lebesgue measure, then

∫
Γ |∇g|2dx = 0.

Proof. Since g ∈ W 1,2(Ω), we have ∇g ∈ L2(Ω). Because ofm(Γ) = 0, we get
∫
Γ |∇g|2dx =

0 immediately.
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Thus the middle term of model (1.1) becomes

(2.5)

∫
Ω\Γ

|∇g|2dx =

∫
Ω
|∇g|2dx−

∫
Γ
|∇g|2dx =

∫
Ω
|∇g|2dx ∀g ∈ W 1,2(Ω).

In view of Theorem 2.2 and (2.5), we propose our segmentation model as

inf
g∈W 1,2(Ω)

{
λ

2

∫
Ω
(f − g)2dx+

μ

2

∫
Ω
|∇g|2dx+

∫
Ω
|∇g|dx

}
,

where λ and μ are positive parameters. Since sometimes the given image is degraded by noise
and blur, we extend this model to general cases by introducing a problem-related operator A
in its fidelity term. Then, finally, our model is

(2.6) inf
g∈W 1,2(Ω)

E(g) := inf
g∈W 1,2(Ω)

{
λ

2

∫
Ω
(f −Ag)2dx+

μ

2

∫
Ω
|∇g|2dx+

∫
Ω
|∇g|dx

}
,

where A may stand for the identity operator or a blurring operator. Obviously, if μ 	= 0 in
(2.6), g will be smooth. The following theorem shows the existence and uniqueness of g.

Theorem 2.4. Let Ω be a bounded connected open subset of R2 with a Lipschitz boundary.
Let f ∈ L2(Ω) and Ker(A)

⋂
Ker(∇) = {0}, where A is a bounded linear operator from L2(Ω)

to itself and Ker(A) is the kernel of A. Then (2.6) has a unique minimizer g ∈ W 1,2(Ω).
Proof. See Appendix B.
We remark that the condition Ker(A)

⋂
Ker(∇) = {0} actually restricts A1 	= 0. It means

that Af 	= 0 if f is a nonzero constant image. The condition holds for all blurring operators,
as they are convolution operators with positive kernels.

We emphasize that model (2.6) can be minimized quickly by using currently available
efficient algorithms such as the split-Bregman algorithm [26] or the Chambolle–Pock method
[13, 44]. Once g is obtained, we enter into the second stage of our method, where we use
thresholding to segment g into different phases. The thresholds can be determined by any
clustering methods or be chosen by the users. We leave the implementation to section 3.

3. Numerical aspects. In this section, we first introduce the split-Bregman algorithm
for solving our model (2.6). After that we give a strategy based on the K-means method to
determine the thresholds automatically.

3.1. Solution of model (2.6) in the first stage. The discrete setting of our model (2.6)
is

(3.1) min
g

{
λ

2
‖f −Ag‖22 +

μ

2
‖∇g‖22 + ‖∇g‖1

}
,

where ‖∇g‖1 :=
∑

i∈Ω
√
(∇xg)

2
i + (∇yg)

2
i is the classical discrete TV seminorm. Here we

adopt the backward difference with periodic boundary condition to approximate the discrete
gradient operator ∇; i.e., for the first row of g, we define

(∇xg)i =

{
g(1, 1) − g(1, n), i = 1,

g(1, i) − g(1, i − 1), i = 2, . . . , n,



374 XIAOHAO CAI, RAYMOND CHAN, AND TIEYONG ZENG

where n is the number of pixels of the first row of g and g(1, i) represents the ith pixel of
the first row of g. Similarly, we can define ∇y. As (3.1) is convex, it can be solved by many
methods such as the alternating direction method of multipliers, which is convergent and is
well suited to distributed convex optimization; see [5, 23] and references therein. Specifically,
its variant, the split-Bregman algorithm [26], is used widely to solve a very broad class of
L1 regularization problems. We can also use the Chambolle–Pock method [13, 44, 29] which
provides a convergence rate. In the following, we derive the split-Bregman algorithm for
solving (3.1). Clearly the algorithm converges, since our model (3.1) is a convex regularization
problem; see [5, 23, 26] for more details of the convergence analysis.

Set dx = ∇xg and dy = ∇yg in (3.1), and this yields the constrained problem

min
g

{
λ

2
‖f −Ag‖22 +

μ

2
‖∇g‖22 + ‖(dx, dy)‖1

}
s.t. dx = ∇xg and dy = ∇yg.

Using the 2-norm to weakly enforce the above constraints, it becomes

min
g,dx,dy

{
λ

2
‖f −Ag‖22 +

μ

2
‖∇g‖22 + ‖(dx, dy)‖1 + σ

2
‖dx −∇xg‖22 +

σ

2
‖dy −∇yg‖22

}
.

Applying the split-Bregman iteration to strictly enforce the constraints, we have at step (k+1)

(gk+1, dk+1
x , dk+1

y ) = arg min
g,dx,dy

{
λ

2
‖f −Ag‖22 +

μ

2
‖∇g‖22 + ‖(dx, dy)‖1

+
σ

2
‖dx −∇xg − bkx‖22 +

σ

2
‖dy −∇yg − bky‖22

}
,(3.2)

(3.3) bk+1
x = bkx + (∇xg

k+1 − dk+1
x ), bk+1

y = bky + (∇yg
k+1 − dk+1

y ).

The minimization (3.2) can be solved effectively by minimizing with respect to g and (dx, dy)
alternatively. Hence we need to solve the following two minimization subproblems:

gk+1 = argmin
g

{
λ

2
‖f −Ag‖22 +

μ

2
‖∇g‖22 +

σ

2
‖dkx −∇xg − bkx‖22

+
σ

2
‖dky −∇yg − bky‖22

}
,(3.4)

(dk+1
x , dk+1

y ) = arg min
dx,dy

{
‖(dx, dy)‖1 + σ

2
‖dx −∇xg

k+1 − bkx‖22

+
σ

2
‖dy −∇yg

k+1 − bky‖22
}
.(3.5)

Since the right-hand side of (3.4) is differentiable, gk+1 satisfies the following optimality
condition:

(3.6) (λA∗A− (μ + σ)Δ)g = λA∗f + σ∇T
x (d

k
x − bkx) + σ∇T

y (d
k
y − bky),

whereA∗ is the conjugate transpose ofA and Δ = −(∇T
x∇x+∇T

y∇y). Since Ker(A)
⋂

Ker(Δ) =
{0}, the matrix [λA∗A−(μ+σ)Δ] is positive definite and hence is invertible. Using the Gauss–
Seidel method in [26] or the fast Fourier transforms to diagonalize the circulant matrices A
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and Δ (see [17]), (3.6) can be solved efficiently. For problem (3.5), it can be solved explicitly
using a generalized shrinkage formula [26] as follows:

(3.7) dk+1
x = max

(
sk − 1

σ
, 0

)
skx
sk

, dk+1
y = max

(
sk − 1

σ
, 0

)
sky
sk

,

where skx = ∇xg
k+1+ bkx, s

k
y = ∇yg

k+1+ bky and sk =
√

(skx)
2 + (sky)

2. The following algorithm

summarizes the procedure of solving our minimization problem (3.1).

Algorithm 1. Solving (3.1) by the split-Bregman algorithm.

1. Initialize: g0 = f, d0x = d0y = b0x = b0y = 0.

2. Do k = 0, 1, . . . , until ‖gk−gk+1‖F
‖gk+1‖F < ε.

(a) Compute gk+1 by solving (3.6).
(b) Compute dk+1

x and dk+1
y by the shrinkage formula (3.7).

(c) Update bk+1
x and bk+1

y by the formula (3.3).

3. Output: g.

3.2. Determining the thresholds in the second stage. As mentioned before, our seg-
mentation result is obtained by thresholding the solution g of (3.1) with proper threshold(s)
ρ. For example, for two-phase segmentation, one may choose ρ to be the mean value of g, and
then use this ρ to threshold g into two phases. Or the user can try different values of ρ to get
the best result. Note that there is no need to recompute the image g when we change ρ. We
just threshold the image g with the new ρ to get a new binary image.

In case one wants to choose the thresholds automatically, here we discuss how to choose
them using clustering methods. There are many clustering methods, including the K-means
methods [28, 30, 38] and the convex K-means method named SON clustering [36]. To stan-
dardize the discussions, we begin by normalizing the pixel values of g to [0,1]. We do this by
using the linear-stretch formula:

(3.8) ḡ =
g − gmin

gmax − gmin
,

where gmax and gmin represent maximum and minimum of g, respectively.
In the following, we use the Matlab K-means command kmeans as an example to in-

troduce our strategy of choosing the thresholds automatically. The K-means method is a
very efficient method for classifying a given set into K clusters, with K specified in advance.
Suppose we want to segment ḡ into K segments, K ≥ 2. We use the K-means method to
classify the set of pixel values of ḡ into K clusters. Let the mean value of each cluster be
ρ̂1, ρ̂2, . . . , ρ̂K , and without loss of generality, let ρ̂1 ≤ ρ̂2 ≤ · · · ≤ ρ̂K . Then we define the
(K − 1) thresholds as

(3.9) ρi =
ρ̂i + ρ̂i+1

2
, i = 1, 2, . . . ,K − 1.

The ith phase of ḡ, 1 ≤ i ≤ K, is then given by {x ∈ Ω : ρi−1 < ḡ(x) ≤ ρi}. To obtain the
boundary of the ith phase, we set pixels in the ith phase to 1 and all the other pixels to zero;
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then we invoke the command contour in Matlab. Again we emphasize that if we change
the value of K or the thresholds, there is no need to recompute g and ḡ.

4. Experimental results. In this section, we compare our segmentation model (3.1) with
three two-phase segmentation methods proposed in [16, 19, 53] and five multiphase segmen-
tation methods proposed in [33, 47, 54, 3, 45]. Methods [16] and [19] use TV and framelet
regularization terms, respectively; therefore, we can compare the performance of these two
different regularization approaches with ours. Methods [19, 53, 33, 47, 54, 3, 45] are effective
segmentation methods all published in or after 2009. The codes we used are provided by
the authors. Apart from some default settings, like the maximum number of iterations, the
parameters in the codes are chosen by trial and error to give the best results of the respective
methods.

For two-phase segmentation, we use ρM , ρ1, and ρU to denote the thresholds we used in
the tests. They represent respectively the mean of the normalized image ḡ given in (3.8), the
threshold obtained by K-means given in (3.9), and a threshold chosen by us, the user. For
multiphase segmentation, we tried the thresholds ρi, obtained by K-means in (3.9), and ρUi ,
chosen by us. The tolerance ε and the step size σ used in the split-Bregman algorithm in (3.2)
were fixed to be 10−4 and 2, respectively. The parameters λ, μ are chosen empirically. All the
results were tested on a MacBook with 2.4 GHz processor and 4GB RAM. The boundaries of
all the results are shown with color and superimposed on the given images.

4.1. Two-phase segmentation.
Example 1: Antimass image. Figure 3(a) is the given image. Figures 3(b)–(d) are the re-

sults of methods [16, 19, 53], respectively. Figure 3(e) is our smooth solution g from Algorithm
1 using parameters λ = 3 and μ = 1; see (3.1). Figures 3(f)–(i) are the segmentation results
on the normalized ḡ (see (3.8)) with thresholds ρM = 0.1898, ρ1 = 0.2669, and ρU = 0.1, 0.2,
respectively. Note that ρM and ρ1 are computed automatically. From the results, we see that
our method can reveal different meaningful features in the image by choosing different ρ’s;
this can be done without recomputing g. In contrast, for the methods of [16, 19, 53], one will
need to solve the minimization models again if one wants to reveal different features in the
image.

Example 2: Tubular image. Figure 4(a) is a given magnetic resonance angiography kidney
image [24]. The boundaries of the vessels are blurry and vague, so that they are hard to
detect. Figure 4(e) is the solution g from Algorithm 1 using λ = 20 and μ = 1. Figures 4(f)–
(h) are our segmentation results with thresholds ρM = 0.1760, ρ1 = 0.4019, and ρU = 0.2,
respectively. By comparing our results with the results from methods [16, 19, 53] in Figures
4(b)–(d), we see that our method can better detect and connect the blood vessels. Recently,
we proposed a tight-frame method specifically for segmenting vessels [9]. Here we give the
result of that method in Figure 4(i), and we see that it is comparable to our method.

Example 3: Image with high noise. In Figures 5(a) and (b), we give the clean and the noisy
images, respectively. The noise we added is high: Gaussian noise with mean 0.6 and variance
0.25. Figures 5(c)–(e) give the results of methods [16, 19, 53], respectively, on the noisy image.
We see that method [19], which uses tight-frame regularization, recovers these objects better
than method [16], which uses TV regularization, and that method [53] fails completely. Figure
5(f) is our solution g when λ = 4 and μ = 1. Figures 5(g)–(i) are the segmentation results
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(a) Given image. (b) Chan–Vese [16]. (c) Dong, Chien, and Shen [19].

(d) Yuan et al. [53]. (e) Our solution g. (f) ρM = 0.1898.

(g) ρ1 = 0.2669. (h) ρU = 0.1. (i) ρU = 0.2.

Figure 3. Antimass image segmentation. (a) Given 384× 480 image; (b)–(d) results of methods [16], [19],
and [53], respectively; (e) our smooth solution g; (f)–(i) our segmentation results using thresholds ρM = 0.1898,
ρ1 = 0.2669, ρU = 0.1, and 0.2, respectively.

Table 1
Iteration numbers and CPU time in seconds for two-phase segmentation.

Chan–Vese [16] Dong [19] Yuan [53] Our method

Example Iter. Time Iter. Time Iter. Time Iter. Time

Figure 3 1000 263.73 300 83.82 64 6.01 172 18.38
Figure 4 1000 76.62 300 32.17 18 0.37 115 3.03
Figure 5 1000 23.42 300 10.18 108 0.42 63 0.49
Figure 6 1300 28.19 300 10.18 20 0.09 52 1.13
Figure 7 1500 31.78 300 10.18 24 0.10 65 1.21

with thresholds ρM = 0.8308, ρ1 = 0.6371, and ρU = 0.7 respectively. Clearly, our results
are all good and comparable to the method in [19], i.e., Figure 5(d). However, our method is
much faster (see Table 1). Notice that the differences between our results (g)–(i) are small,
indicating that our method is robust with respect to the threshold.

Example 4: Blurry and noisy image. To illustrate the robustness of our method with
respect to the threshold, we tested our method on two blurry images: Figure 6 with motion
blur and Figure 7 with Gaussian blur. For the motion blur, the motion is vertical and the
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(a) Given image. (b) Chan–Vese [16]. (c) Dong, Chien, and Shen [19].

(d) Yuan et al. [53]. (e) Our solution g. (f) ρM = 0.1760.

(g) ρ1 = 0.4019. (h) ρU = 0.2. (i) Cai et al. [9].

Figure 4. Kidney vascular system segmentation. (a) Given 256×256 image; (b)–(d) results of methods [16],
[19], and [53], respectively; (e) our solution g; (f)–(h) our segmentation of results using thresholds ρM = 0.1760,
ρ1 = 0.4019, and ρU = 0.2, respectively; (i) result of method [9].

filter size is 15. For the Gaussian blur, the filter used is of size [15, 15] with standard deviation
15. For both images, we added a Gaussian noise with mean 10−3 and variance 2 × 10−3.
Figures 6(f) and 7(f) are our solutions g obtained by using λ = 100 and μ = 1. From Figures
6(c)–(e) and 7(c)–(e), we see that all of the results of methods [16, 19, 53] are not good. More
precisely, methods [16, 19] give incorrect boundaries (linking the ring and the horseshoe object
together), while method [53] misses a large portion of the objects. In contrast, our boundary
recovers the shapes of the objects very well; see Figures 6(g)–(i) and 7(g)–(i).

Table 1 gives the CPU time comparison of the methods. We see that our method is second
only to the two-phase continuous max-flow method in [53]. But from Examples 1–4, we see
that our method gives much better segmentation results than the method in [53]. We remark
that for the examples we tested, the framelet method in [19] did not converge within the
maximum number of iterations (300) using the given tolerance 10−3 specified in the code.
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(a) Clean image. (b) Given noisy image. (c) Chan–Vese [16].

(d) Dong, Chien, and Shen [19]. (e) Yuan et al. [53]. (f) Our solution g.

(g) ρM = 0.8308. (h) ρ1 = 0.6371. (i) ρU = 0.7.

Figure 5. Noisy image segmentation. (a) Clean 128× 128 image; (b) given noisy image; (c)–(e) results of
methods [16], [19], and [53], respectively; (f) our solution g; (g)–(i) our segmentation results using thresholds
ρM = 0.8308, ρ1 = 0.6371, and ρU = 0.7, respectively.

4.2. Multiphase segmentation.
Example 5: Three-phase image. Figure 8(a) is the given image, and Figures 8(b)–(f) are

the three-phase segmentation results by methods of [33, 47, 54, 3, 45]. Figure 8(g) is our
solution g obtained with λ = 30 and μ = 0.1. Figures 8(i)–(k) are the boundaries of the
three phases obtained from ḡ (defined in (3.8)) using thresholds ρ1 = 0.1929 and ρ2 = 0.6009,
which are computed automatically by the K-means method (3.9). Figure 8(h) is a trinary
representation of the three phases by using the mean value of each phase to represent that
phase. We see that all results are good except the results of method [54] (Figure 8(d)), which
separates the cloud in the lower right corner into two parts, and of method [3] (Figure 8(e)),
which misses a large part of the cloud. We emphasize that for our method, we do not need to
determine the number of phases K at the beginning. We can modify K after obtaining g, and
compute the thresholds {ρi}K−1

i=1 by any clustering methods to segment g into K segments.
This is not the case for methods [3, 33, 54, 45], where one has to specify K before minimizing
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(a) Clean image. (b) Given blurred image. (c) Chan–Vese [16].

(d) Dong, Chien, and Shen [19]. (e) Yuan et al. [53]. (f) Our solution g.

(g) ρM = 0.7661. (h) ρ1 = 0.5048. (i) ρU = 0.6.

Figure 6. Segmentation of motion blurred image. (a) Clean 128 × 128 image; (b) given blurred and noisy
image; (c)–(e) results of methods [16], [19], and [53], respectively; (f) our solution g; (g)–(i) our results using
thresholds ρM = 0.7661, ρ1 = 0.5048 and ρU = 0.6, respectively.

their problems. Moreover, we found in our tests that method [33] is sensitive to initialization,
where different initializations may give quite different results.

Example 6: Four-phase noisy image. Figures 9(a) and (b) give the clean and the noisy
images (Gaussian noise with zero mean and variance 0.03). Figure 9(h) is our solution g
obtained by using λ = 4 and μ = 0.1. The thresholds computed automatically by K-means
method (3.9) are ρ1 = 0.1652, ρ2 = 0.4978, ρ3 = 0.8319. The corresponding four-phase
segmentation is given in Figure 9(i), where the four phases of g are shown by using the mean
values of each phase to represent the phase. Figures 9(j)–(m) give the boundaries of the
phases. We see that the four phases are recovered almost exactly by methods [3, 45] and
our method; see Figure 9(f), (g), and (i). In contrast, method [33] (Figure 9(c)) segments
one phase incorrectly, method [47] (Figure 9(d)) fails, and method [54] (Figure 9(e)) gives
oscillatory boundaries.

Example 7: Four-phase blurry and noisy image. The blurry and noisy image used is given
in Figure 10(b). The blur is a motion blur where the motion is vertical and the filter size is
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(a) Clean image. (b) Given blurred image. (c) Chan–Vese [16].

(d) Dong, Chien, and Shen [19]. (e) Yuan et al. [53]. (f) Our solution g.

(g) ρM = 0.7324. (h) ρ1 = 0.5033. (i) ρU = 0.6.

Figure 7. Segmentation of Gaussian blurred image. (a) Clean 128×128 image; (b) given blurred and noisy
image; (c)–(e) results of methods [16], [19], and [53], respectively; (f) our solution g; (g)–(i) our results using
thresholds ρM = 0.7324, ρ1 = 0.5033, and ρU = 0.6, respectively.

15. The noise is Gaussian noise with mean 10−3 and variance 2 × 10−3. Figure 10(h) is our
solution g obtained by using λ = 40 and μ = 1. The thresholds from the K-means method
(3.9) are ρ1 = 0.1704, ρ2 = 0.4971, ρ3 = 0.8248. Figure 10(i) gives the corresponding four
phases, and Figures 10(j)–(m) give the boundaries of the phases. We see that the four phases
of the image are recovered almost exactly by our method; see Figure 10(i). But from Figures
10(c)–(g), we see that the results from all the other multiphase methods [33, 47, 54, 3, 45] are
not good.

Example 8: Four-phase brain MRI image. Finally, we test the four-phase brain MRI
image used in [45]; see Figure 11(a). The gray and white matter segmentation for this kind
of image is very important in medical imaging. Figure 11(g) is our solution g obtained by
using λ = 40 and μ = 1. The thresholds from the K-means method (3.9) are ρ1 = 0.1627,
ρ2 = 0.4947, ρ3 = 0.7757, and Figure 11(h) gives the corresponding four phases. Figure 11(i)
is the corresponding four phases using user-given thresholds ρU1 = 0.1, ρU2 = 0.4, ρU3 = 0.7,
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(a) Given image. (b) Li et al. [33]. (c) Sandberg et al. [47].

(d) Yuan et al. [54]. (e) Bae et al. [3]. (f) Pock et al. [45]. (g) Our solution g.

(h) Three phases from g. (i) First phase. (j) Second phase. (k) Third phase.

Figure 8. Three-phase segmentation. (a) Given 125× 150 image; (b)–(f) results of methods [33], [47], [54],
[3], and [45], respectively; (g) our solution g; (h) three phases using thresholds ρ1 = 0.1929, ρ2 = 0.6009; (i)–(k)
boundary of each phase of g.

Table 2
Iteration numbers and CPU time in seconds for multiphase segmentation.

Figure 8 Figure 9 Figure 10 Figure 11

Method Iter. Time Iter. Time Iter. Time Iter. Time

Li [33] 100 1.56 100 7.64 100 7.26 100 9.39
Sandberg [47] 2 3.15 12 90.59 13 93.79 6 56.21
Yuan [54] 32 0.58 134 14.51 57 5.82 80 12.23
Bae [3] 50 2.04 50 8.96 50 8.72 50 13.12
Pock [45] 50 1.08 70 10.85 70 11.51 50 8.71

Our method 62 0.57 112 3.04 78 2.90 46 2.75

and Figures 11(j)–(m) give the boundaries of the phases. We see that our method and the
methods of [33, 47, 3, 45] all give very good results, while method [54] can not separate the
third and the fourth phases. We note, however, that the methods of [33, 47, 3, 45] all have to
solve the minimization problem again if K is changed, while ours does not. Moreover, from
the timing in Table 2, our method is the fastest.

Table 2 gives the CPU time comparison of the methods. We see that our method is the
fastest. Note that method [54] is comparable to ours in time, but from Examples 5–8, we see
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(a) Clean image. (b) Given noisy image.

(c) Li et al. [33]. (d) Sandberg et al. [47]. (e) Yuan et al. [54].

(f) Bae et al. [3]. (g) Pock et al. [45]. (h) Our solution g. (i) Four phases of g.
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(j) First phase. (k) Second phase. (l) Third phase. (m) Fourth phase.

Figure 9. Four-phase segmentation for noisy image. (a) Clean 256 × 256 image; (b) given noisy image;
(c)–(g) results of methods [33], [47], [54], [3], and [45], respectively; (h) our solution g; (i) four phases using
thresholds ρ1 = 0.1652, ρ2 = 0.4978, ρ3 = 0.8319; (j)–(m) boundary of each phase of g.

that our method gives better segmentation. In fact, our model is based on the Mumford–Shah
model (1.1), which admits more high-order information. But methods [53, 54] are basically
using constants to approximate regions. This may explain why they fail in Figures 5(e), 8(d),
and 11(d) and give poor results in other examples.

5. Relationship with image restoration. It is interesting to note that our model (2.6)
itself can be regarded as an image restoration model to capture the cartoon part in the image
and is closely related to the classical Rudin–Osher–Fatemi (ROF) image restoration model:

(5.1) inf
g

∫
Ω

(
λ

2
(f −Ag)2dx+ |∇g|

)
;
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(a) Clean image. (b) Given blur and noisy image.

(c) Li et al. [33]. (d) Sandberg et al. [47]. (e) Yuan et al. [54].

(f) Bae et al. [3]. (g) Pock et al. [45]. (h) Our solution g. (i) Four phases of g.
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(j) First phase. (k) Second phase. (l) Third phase. (m) Fourth phase.

Figure 10. Four-phase segmentation for noisy and blurry image. (a) Clean 256 × 256 image; (b) given
blurred and noisy image; (c)–(g) results of methods [33], [47], [54], [3], and [45], respectively; (h) our solution
g; (i) four phases using thresholds ρ1 = 0.1704, ρ2 = 0.4971, ρ3 = 0.8248; (j)–(m) boundary of each phase of g.

see [46]. The only difference is that we have an extra term
∫
Ω |∇g|2. One of the important

properties of the ROF model is that it can preserve important edge information, but the
staircase effect may be introduced. In order to avoid this, many works have been proposed;
see [15, 37, 51, 6] for examples. In [15], Chan, Marquina, and Mulet proposed to solve the
following minimization problem:

(5.2) inf
g

∫
Ω

(
λ

2
(f − g)2 + |∇g|ε1 + μ

(Δg)2

|∇g|3ε2

)
,

where |∇g|εi =
√|∇g|2 + εi, i = 1, 2, with εi being small positive parameters. The additional

higher-order derivative term can remove the staircase effect. In [37, 51], the authors used



SEGMENTATION BY CONVEX MUMFORD–SHAH MODEL 385

(a) Given image.

(b) Li et al. [33]. (c) Sandberg et al. [47]. (d) Yuan et al. [54]. (e) Bae et al. [3].

(f) Pock et al. [45]. (g) Our solution g. (h) Four phases of g. (i) Four phases of g.
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(j) First phase. (k) Second phase. (l) Third phase. (m) Fourth phase.

Figure 11. Four-phase gray and white matter segmentation for a brain MRI image. (a) Given 319 × 256
brain MRI image; (b)–(f) results of methods [33], [47], [54], [3], and [45], respectively; (g) our solution g;
(h)–(i) four phases using thresholds ρ1 = 0.1627, ρ2 = 0.4947, ρ3 = 0.7757 and ρU1 = 0.1, ρU2 = 0.4, ρU3 = 0.7,
respectively; (j)–(m) boundary of each phase in panel (i).

second-order derivatives to replace the TV regularization term of model (5.1). Recently a
novel regularization model, the total generalized variation, was proposed in [6], which also
involves higher-order derivatives. Obviously, the cost and difficulty of solving the given models
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grow as the functionals became more and more complex.
In contrast, in our model (2.6), the staircase effect is reduced because of the middle term

which contains the square of the first-order derivative and no other higher-order derivatives.
Once the smooth solution g is found, a suitable thresholding then gives the image segmentation
result. From the analysis of section 2 and the numerical results in section 4, we see that
the smoothness in g does not affect the segmentation significantly. Nonetheless, it will be
interesting to replace our model (2.6) used in the first stage of our method by improved TV
models such as (5.2) in [15]. We leave this project to the future.

6. Conclusions. In this paper, we have proposed a two-stage method for segmentation
that makes use of a convex model (2.6) based on the Mumford–Shah model. In the first stage,
our method finds the unique smooth minimizer by the split-Bregman algorithm [26]. Then
in the second stage, it uses a thresholding strategy to segment the image. Since our model
(2.6) can be regarded as an image restoration model, our method unifies the image processing
works of image segmentation and image restoration. Furthermore, our method combines the
two-phase and multiphase segmentation into one single algorithm. In fact, one does not have
to specify the number of phases before finding the solution to the model. One can segment the
solution into different phases by choosing proper thresholds after the solution is obtained in
the first stage. We have introduced a K-means method to choose the thresholds automatically.
The experimental results show that our method is very effective and robust for many kinds
of images, such as antimass, tubular, MRI, noisy, or blurry images.

Appendix A. Proof of Theorem 2.2. This proof basically follows the proof of Theorem 2
in [14]. Using the co-area formula and noting that 0 ≤ u ≤ 1, we have

∫
Ω |∇u| = ∫ 1

0 Per({x :
u(x) > ρ})dρ. For the second term in (2.4), we proceed as follows:

∫
Ω

{
λ(f − g1)

2 + μ|∇g1|2 − λ(f − g2)
2 − μ|∇g2|2

}
u(x)

=

∫
Ω

{
λ(f − g1)

2 + μ|∇g1|2 − λ(f − g2)
2 − μ|∇g2|2

}∫ 1

0
1[0,u(x)](ρ)dρdx

=

∫ 1

0

∫
Ω

{
λ(f − g1)

2 + μ|∇g1|2 − λ(f − g2)
2 − μ|∇g2|2

}
1[0,u(x)](ρ)dxdρ

=

∫ 1

0

∫
Ω∩{x:u(x)>ρ}

{
λ(f − g1)

2 + μ|∇g1|2 − λ(f − g2)
2 − μ|∇g2|2

}
dxdρ

=

∫ 1

0

∫
Ω∩{x:u(x)>ρ}

{
λ(f − g1)

2 + μ|∇g1|2
}
dxdρ− C

+

∫ 1

0

∫
Ω∩{x:u(x)>ρ}c

{
λ(f − g2)

2 + μ|∇g2|2
}
dxdρ,

where C =
∫
Ω

{
λ(f − g2)

2 + μ|∇g2|2
}
dx is independent of u. Setting Σ(ρ) = {x : u(x) > ρ}

and Γ(ρ) = ∂Σ(ρ), we have
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∫
Ω
|∇u|+ 1

2

∫
Ω

{
λ(f − g1)

2 + μ|∇g1|2 − λ(f − g2)
2 − μ|∇g2|2

}
u(x)(A.1)

=

∫ 1

0
Per(Σ(ρ))dρ +

1

2

∫ 1

0

∫
Σ(ρ)\Γ(ρ)

{
λ(f − g1)

2 + μ|∇g1|2
}
dxdρ

+
1

2

∫ 1

0

∫
Ω\Σ(ρ)

{
λ(f − g2)

2 + μ|∇g2|2
}
dxdρ− C

2

=

∫ 1

0
Ẽ(Σ(ρ), g1, g2)dρ− C

2
,

where Ẽ(Σ(ρ), g1, g2) is given in (2.1). Hence, if u(x) is a minimizer of the convex problem
in (A.1), then the set Σ(ρ) has to be the minimizer of the energy Ẽ(·, g1, g2) for almost every
ρ ∈ [0, 1].

Appendix B. Proof of Theorem 2.4. Recall that E(g) is defined in (2.6). First we prove
that 0 ≤ infg E(g) < ∞. Indeed, the left-hand side is obvious. Moreover, if we choose g0 = 0,
we get

inf
g
E(g) ≤ E(g0) =

λ

2

∫
Ω
f2dx < ∞.

Thus the minimal value of E(g) must exist.
Existence: Note that W 1,2(Ω) is a reflective Banach space, and E(g) is convex and lower

semicontinuous. Using Proposition 1.2 in [20], we just need to prove that E(g) is coercive over

W 1,2(Ω). For any g ∈ W 1,2(Ω), obviously ‖∇g‖L2(Ω) = (
∫
Ω |∇g|2dx) 1

2 is bounded by
√

2
μE(g).

In order to prove that E(g) is coercive over W 1,2(Ω), we just have to prove that ‖g‖L2(Ω) can

also be bounded by
√

E(g). Using the Poincaré inequality on W 1,2(Ω) (see [22]), we have

(B.1) ‖g − gΩ‖L2(Ω) ≤ CΩ‖∇g‖L2(Ω) ≤ CΩ

√
2

μ
E(g),

where CΩ is a positive constant and gΩ = 1
|Ω|
∫
Ω g(x)dx. Moreover,

gΩ · ‖A1‖L2(Ω) ≤ ‖f −Ag‖L2(Ω) + ‖f −A(g − gΩ)‖L2(Ω)

≤
√

2

λ
E(g) + ‖f‖L2(Ω) + ‖A‖ · ‖g − gΩ‖L2(Ω)

≤ ‖f‖L2(Ω) +

(√
2

λ
+ CΩ‖A‖

√
2

μ

)√
E(g).(B.2)

By the assumption Ker(A)
⋂

Ker(∇) = {0}, we know that ‖A1‖L2(Ω) is nonzero. Thus gΩ is

bounded by a constant plus
√

E(g) times a constant. Since

‖g‖L2(Ω) ≤ ‖gΩ‖2 + ‖g − gΩ‖2,

using (B.1) and (B.2), ‖g‖L2(Ω) can also be bounded by a constant plus
√

E(g) times a

constant. Hence ‖g‖W 1,2(Ω) is bounded by a constant plus
√

E(g) times a constant. This
means that E(g) is coercive.
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Uniqueness: We borrow the idea in [55]. Suppose that g∗1 and g∗2 are both minimizers of
E(g). Since E(g) is convex, for any θ ∈ (0, 1) we have

(B.3) θE∗(g∗1) + (1− θ)E(g∗2) = E(θg∗1 + (1− θ)g∗2).

Note that each term of E(g) in (2.6) is convex; especially, the first two terms of E(g) are
strictly convex with respect to Ag and ∇g, respectively. Therefore (B.3) implies that the
following two equalities hold:

θλ

2

∫
Ω
(f −Ag∗1)

2dx+
(1− θ)λ

2

∫
Ω
(f −Ag∗2)

2dx =
λ

2

∫
Ω

(
f −A(θg∗1 + (1− θ)g∗2)

)2
dx,

θμ

2

∫
Ω
|∇g∗1 |2dx+

(1− θ)μ

2

∫
Ω
|∇g∗2 |2dx =

μ

2

∫
Ω
|∇(θg∗1 + (1− θ)g∗2)|2dx.

We thus have Ag∗1 = Ag∗2 and ∇g∗1 = ∇g∗2. By the assumption Ker(A)
⋂

Ker(∇) = {0}, we
conclude that g∗1 − g∗2 = 0.
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