
SIAM J. IMAGING SCIENCES c© 2014 Society for Industrial and Applied Mathematics
Vol. 7, No. 1, pp. 98–127

A Two-Stage Image Segmentation Method for Blurry Images with Poisson or
Multiplicative Gamma Noise∗

Raymond Chan†, Hongfei Yang†, and Tieyong Zeng‡

Abstract. In this paper, a two-stage method for segmenting blurry images in the presence of Poisson or
multiplicative Gamma noise is proposed. The method is inspired by a previous work on two-stage
segmentation and the usage of an I-divergence term to handle the noise. The first stage of our method
is to find a smooth solution u to a convex variant of the Mumford–Shah model where the �2 data-
fidelity term is replaced by an I-divergence term. A primal-dual algorithm is adopted to efficiently
solve the minimization problem. We prove the convergence of the algorithm and the uniqueness of
the solution u. Once u is obtained, in the second stage, the segmentation is done by thresholding
u into different phases. The thresholds can be given by the users or can be obtained automatically
by using any clustering method. In our method, we can obtain any K-phase segmentation (K ≥ 2)
by choosing (K − 1) thresholds after u is found. Changing K or the thresholds does not require
u to be recomputed. Experimental results show that our two-stage method performs better than
many standard two-phase or multiphase segmentation methods for very general images, including
antimass, tubular, magnetic resonance imaging, and low-light images.

Key words. convexity, image segmentation, Gamma noise, multiplicative noise, primal-dual algorithm, total
variation

AMS subject classifications. 52A41, 65K10, 65K15, 90C30, 90C47

DOI. 10.1137/130920241

1. Introduction. Image segmentation is an important task in image analysis and computer
vision. It aims at separating objects of interest from each other or from the background, or
at finding boundaries of such objects. In [50, 51], Mumford and Shah introduced an energy
minimization model that allows one to compute an optimal piecewise continuous or piecewise
constant approximation u of a given image f . Since then, their model has been studied in
depth in various aspects, e.g., the properties of minimizers [22] and the approximations and
simplifications of their functional and its applications to the problem of image segmentation
[2, 1, 14, 13, 16, 20, 31, 49].

Denote Ω ⊂ R
2 as the image domain, and assume that Ω is bounded, open, and connected,

with Lipschitz boundary. Let f : Ω → R be the given gray scale image to be segmented. In
[50, 51], Mumford and Shah proposed segmenting f by calculating an optimal approximation

∗Received by the editors May 8, 2013; accepted for publication (in revised form) September 9, 2013; published
electronically January 7, 2014.

http://www.siam.org/journals/siims/7-1/92024.html
†Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (rchan@math.cuhk.

edu.hk, yanghongfei@cuhk.edu.hk). The first author’s research was supported in part by HKRGC GRF grant
CUHK400412, HKRGC CRF grant CUHK2/CRF/11G, CUHK DAG 4053007, and CUHK FIS grant 1902036.

‡Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (zeng@hkbu.edu.hk).
This author’s research was supported in part by the National Science Foundation of China (11271049), HKRGC
211710, 211911, and RFGs of HKBU.

98

http://www.siam.org/journals/siims/7-1/92024.html
mailto:rchan@math.cuhk.edu.hk
mailto:rchan@math.cuhk.edu.hk
mailto:yanghongfei@cuhk.edu.hk
mailto:zeng@hkbu.edu.hk

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 99

u of f and a decomposition of the image domain

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωn ∪ Γ

such that the following requirements are satisfied: Ωi’s are disjointly connected open subsets
in Ω with Lipschitz boundaries, Γ is the collection of the boundaries of Ωi’s, and u varies
smoothly in Ωi. Then the functional E to be minimized for image segmentation is given by

(1.1) E(u,Γ) = H1(Γ) +
μ

2

∫
Ω\Γ

|∇u|2dx+
λ

2

∫
Ω
(f − u)2dx,

where H1 denotes the one-dimensional Hausdorff measure in R
2; see [50, 51].

Because (1.1) is nonconvex, it is very difficult to find or approximate its minimizer. His-
torically, there are two approaches to studying the minimizer of (1.1). One is to approximate
the functional by other functionals. In [2, 1], the authors approximated the functional (1.1)
by elliptic functionals defined on Sobolev spaces. In [14, 13, 16, 31, 49], the authors ap-
proximated (1.1) by discrete functionals. Recently, a primal-dual algorithm based on convex
relaxation for solving (1.1) was proposed in [53]. This algorithm produces results independent
of initializations.

Another approach is to simplify the functional (1.1). For example, if we restrict ∇u ≡ 0
on Ω \ Γ, then it results in a piecewise constant Mumford–Shah model. In [20], the method
of active contours without edges (the Chan–Vese model) for two-phase segmentation was
introduced. It solves the piecewise constant Mumford–Shah model but restricts the solution
to being a piecewise constant solution with only two constants. For the works on the general
piecewise constant Mumford–Shah model, see [38, 62, 63] and the references therein. The main
drawback of these methods is that they can easily get stuck in local minima. To overcome
the problem, convex relaxation approaches [9, 18, 52], the graph cut method [33], and fuzzy
membership functions [41] were proposed.

In [11], the authors proposed a novel two-stage segmentation method that can be con-
sidered as a convex variant of the Mumford–Shah model (1.1). In the first stage, a smooth
solution u is extracted from the given image f by minimizing the functional

(1.2) E(u) =

∫
Ω
|∇u|dx+

μ

2

∫
Ω
|∇u|2dx+

λ

2

∫
Ω
(Au− f)2dx.

Here A is a blurring operator if the given image f is blurred, or it is the identity operator
if there is no blur. In the second stage, a thresholding technique is adopted to segment the
smooth solution u. This model has several advantages. The first is the convexity of the
functional (1.2), which guarantees a unique solution that is independent of initializations.
The second is that their model can handle multiphase segmentation efficiently. The third
advantage is that the thresholding is independent of the process of finding u. Users therefore
can employ an automated clustering method to find the thresholds, or they can try different
phases and thresholds to get a satisfactory segmentation—all without recalculating u. One
interesting aspect of the model (1.2) is that it closely links three major components of image
processing: denoising, deblurring, and segmentation. In fact, model (1.2) has been employed
in [35] as an image restoration model.

100 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

Bearing in mind the maximum a posteriori (MAP) approach, the data fitting terms in
the Mumford–Shah model in (1.1) and in the model of [11] (i.e., (1.2)) are suitable only for
images degraded by additive Gaussian noise. There are in fact many competing methods
for segmenting images corrupted by Gaussian noise; see, for instance, [5, 11, 20, 23, 37, 41,
52, 57, 65, 66]. However, as far as we know, there are only a few works on segmenting
images corrupted by Poisson or multiplicative Gamma noise. In [21, 48, 54], the authors
proposed snake-based segmentation methods adapted to physical noise of the exponential
family (Gaussian, Gamma, Rayleigh, Poisson, etc). In [30], a minimum description length
(MDL) criterion was proposed for image segmentation with speckle, Poisson, or Bernoulli
noise. In [58], the authors proposed a general segmentation framework for handling additive
Gaussian noise, Poisson noise, and multiplicative speckle noise. To the best of our knowledge,
there are no papers on the segmentation of blurry images corrupted by Poisson or multiplicative
Gamma noise.

Intuitively, for the Mumford–Shah model (1.1) to handle more general noise, one would
solve

(1.3) E(u,Γ) = H1(Γ) +
μ

2

∫
Ω\Γ

|∇u|2dx+ λD(f,Au),

whereD(f,Au) measures the discrepancy between f andAu according to the noise model. For
example, for Poisson noise, D(f,Au) =

∫
Ω(Au− f logAu)dx; see [4], for instance. However,

like the original Mumford–Shah model (1.1), it is clear that (1.3) will also be extremely difficult
to solve.

Here in this paper, inspired by the work in [11] and [61], we propose a two-stage convex
segmentation method to segment blurry images degraded by Poisson or multiplicative Gamma
noise. As in [11], in the first stage of our method, we extract a smooth image u from the given
image f by minimizing a functional which is a convex variant of (1.3) (just as (1.2) is a convex
variant of (1.1)). In the second stage we threshold u to reveal different segmentation features.
The functional to minimize in the first stage is

(1.4)

∫
Ω
|∇u|dx+

μ

2

∫
Ω
|∇u|2dx+ λ

∫
Ω
(Au− f logAu)dx.

As observed in [4], the data fitting term h(u) :=
∫
Ω(Au − f logAu)dx is deduced by MAP

probability density p(Au|f) when the image f is blurred by A and corrupted by Poisson noise
(here p(·|·) denotes the conditional probability). In [61], the authors used h(u) as the data
fitting term and proposed a new model for denoising multiplicative Gamma noise. They gave
both theoretical explanations and numerical experiments to justify why h(u) is also suitable
for handling multiplicative Gamma noise. Therefore, it is natural for us to introduce the data
fitting term h(u) to our two-stage segmentation model when the image is blurry and corrupted
by either Poisson or multiplicative Gamma noise.

We will prove that the minimization of the functional (1.4) has a unique solution u
which can be solved efficiently by popular algorithms such as the split-Bregman [32] or the
Chambolle–Pock algorithm [17, 53]. When A is the identity operator, we also show that the
unique minimizer of (1.4) will satisfy the maximum principle. One advantage of our method

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 101

is that one does not need to recompute u in the first stage if the threshold in the second stage
has to be changed to reveal different features in the image. Another advantage of our approach
is that there is no need to specify the number of phases before u is found. We can obtain any
K-phase segmentation (K ≥ 2) by choosing (K − 1) thresholds after u is computed in the
first stage. In contrast, multiphase methods proposed in [5, 10, 26, 40, 41, 42, 43, 52, 59, 66]
require the number of phases to be given first, and if the number of phases changes, one has
to solve the minimization problem again.

To the best of our knowledge, our approach is the first for segmenting blurry images
corrupted by Poisson or multiplicative Gamma noise, and our numerical results will show
that it performs better than many standard two-phase or multiphase segmentation methods
for very general images. Furthermore, the numerical scheme we develop here could be regarded
as an elegant extension of the standard primal-dual approach in [17], where the underlying
problem is a special case of our general setting here (see (4.23) below).

The rest of the paper is organized as follows. In section 2, we briefly review the model in
[11] and its properties. In section 3, we introduce our method and show that the minimization
model has a unique solution. In section 4, we give the detailed implementation of our method
and show that the resulting algorithm converges. In section 5, we provide numerical results
to verify the effectiveness of our method. In section 6, we conclude our discussion and point
out possible improvements.

2. Review of the model in [11]. Since the model in [11] shares a similar structure with
our method, we briefly review it here. The model has two stages. In the first stage, one solves
the minimization problem

(2.1) inf
u∈W 1,2(Ω)

E(u) =

{∫
Ω
|∇u|dx+

μ

2

∫
Ω
|∇u|2dx+

λ

2

∫
Ω
(f −Au)2dx

}
,

where μ and λ are positive parameters, A is a given blurring operator, and f is the given
image. After obtaining u, which is a smoothed version of f , one segments u by a proper
thresholding method in the second stage.

This two-stage model is inspired by the Mumford–Shah model and is based on the following
observation: one can obtain a good restoration of a binary image by thresholding its smoothed
version with a proper threshold; see [11]. Assume that Γ is a Jordan curve with measure 0.
Let Σ = Inside(Γ); then Γ = ∂Σ. The objective functional in the Mumford–Shah model (1.1)
can be written as

Ẽ(Σ, g1, g2) =
λ

2

∫
Σ\Γ

(f − g1)
2dx+

μ

2

∫
Σ\Γ

|∇g1|2dx+
λ

2

∫
Ω\Σ

(f − g2)
2dx

+
μ

2

∫
Ω\Σ

|∇g2|2dx+ Length(Γ),

(2.2)

where g1 and g2 are defined on Σ \Γ and Ω \Σ, respectively, but are extended smoothly to Ω.
Inspired by the proof of Theorem 2 in [18] (see also [9, Theorem 4]), the authors in [11] then
proved that a global minimizer of (2.2) with fixed g1 and g2 can be found by carrying out the
minimization

(2.3) min
0≤u≤1

{∫
Ω
|∇u|dx+

1

2

∫
Ω

{
λ(f − g1)

2 + μ|∇g1|2 − λ(f − g2)
2 − μ|∇g2|2

}
u(x)dx

}

102 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

and setting Σ = {x : u(x) ≥ ρ} for ρ ∈ (0, 1] a.e. In this way, the authors in [11] replaced
the Length(Γ) term by a convex integral term

∫
Ω|∇u|dx and proposed the first stage as (2.1).

Indeed, for some images, one can show theoretically that (2.1) can yield the same solutions
as the Mumford–Shah model; see Appendix A.

After u is obtained, the authors in [11] proposed several ways to determine proper thresh-
old(s) ρ. For two-phase segmentations, one can set ρ to be the mean of u, or a user can try
different values of ρ to get the best result. For multiphase segmentation, one can use clus-
tering techniques to determine values of ρ automatically. One such technique is the K-means
method [34, 36, 45], and the authors in [11] used it in their numerical experiments for both
two-phase and multiphase segmentation. In order to segment the solution u in (2.1) into
K ≥ 2 phases, they first linearly stretched it to û such that the intensities of û lie in [0, 1].
Denote ρ̂1 ≤ ρ̂2 ≤ · · · ≤ ρ̂K to be the centers of the K clusters of the pixel intensities of û
obtained by the K-means clustering method. Then one defines the K − 1 thresholds to be

ρi =
ρ̂i + ρ̂i+1

2
, i = 1, 2, . . . ,K − 1.

Denote ρ0 = 0 and ρK = 1; then the ith phase of û, 1 ≤ i ≤ K, is given by {x : ρi−1 ≤ û(x) <
ρi}. If the K-means method does not produce a satisfactory segmentation, users can choose
the thresholds ρ manually to achieve the best result. Note that changing ρ does not require
u to be recomputed.

We remark that another two-stage segmentation method of thresholding smoothed images
is proposed in [28]. However, there are major differences between the methods in [11] and
[28]. First, the objective functional in the first stage of [11] is convex, while that in the first
stage of [28] is not. Second, in the second stage, the threshold used in [11] is determined after
the solution u is calculated in the first stage, while the threshold in [28] is calculated in the
first stage. As a result, for the method in [11], users can alter the thresholds easily without
recalculating the first stage, while for [28], users have to recalculate the first stage if they want
to change the thresholds.

3. A two-stage segmentation method for Poisson or multiplicative Gamma noise. Let
us first introduce the Poisson noise and the multiplicative Gamma noise. For the Poisson
noise, for each pixel x ∈ Ω we assume that the intensity f(x) is a random variable following
the Poisson distribution with mean u(x); i.e., its probability mass function is

pf(x)(n;u(x)) =
(u(x))ne−u(x)

n!
,

where n is the intensity of f at the pixel x. In this case, we say that f is corrupted by Poisson
noise.

For the Gamma noise, suppose that for each pixel x ∈ Ω the random variable η(x) follows
the Gamma distribution; i.e., its probability density function is

(3.1) pη(x)(y; θ,K) =
1

θKΓ(K)
yK−1e−

y
θ for y ≥ 0,

where Γ is the usual Gamma function, and θ and K denote the scale and shape parameters in
the Gamma distribution, respectively. Notice that the mean of η(x) is Kθ, and the variance

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 103

of η(x) is Kθ2. For multiplicative noise, we assume in general that the mean of η(x) equals
1; see [4, 24]. Then we have Kθ = 1, and its variance is 1/K. We assume the degraded image
is f(x) = u(x) · η(x) and say that f is corrupted by multiplicative Gamma noise.

The data-fidelity term in our method is inspired by the following observations. Suppose
that f is the given image with noise following a certain statistical distribution, and let p(u|f)
be the conditional probability of u when we have observed f . Then, based on a MAP approach,
restoring the image u is equivalent to maximizing the probability p(u|f). Assume that the
prior distribution of u is given by

p(u) ∝ exp

(
−β

∫
Ω
|∇u|dx

)
,

where β is a parameter. If the noise follows the Poisson distribution, then maximizing p(u|f)
corresponds to minimizing the functional

(3.2)

∫
Ω
(u− f log u)dx+ β

∫
Ω
|∇u|dx;

see [39]. If the noise is multiplicative following the Gamma distribution, then maximizing
p(u|f) corresponds to minimizing the functional

(3.3)

∫
Ω

(
f

u
+ log u

)
dx+ β

∫
Ω
|∇u|dx;

see [4]. However, it is observed in the numerical examples in [4, 60] that for the denoising
model (3.3) the noise survives much longer at low image values if we increase the regularization
parameter. Therefore, in [60] the authors suggested taking w = log u and changing the
objective functional (3.3) to

(3.4)

∫
Ω
(fe−w + w)dx+ β

∫
Ω
|∇w|dx.

In [61], the authors employed the objective functional (3.2) to restore images corrupted by
multiplicative Gamma noise, and they justified their selection as follows. First, the gradients
of the data fitting term in (3.2) and (3.4) are the same if we use again the relation w = log u.
Second, both (3.2) and (3.4) have the same minimizer. Numerical results from [61] also suggest
that the functional (3.2) is effective in dealing with multiplicative Gamma noise. Therefore,
if we want to segment images corrupted by Poisson noise or multiplicative Gamma noise, it is
natural to change the data fitting term

∫
Ω(f −Au)2dx in model (2.1) to

∫
Ω(Au−f logAu)dx.

Then we have the following minimization problem:

(3.5) inf
u∈W 1,2(Ω)

E(u) = inf
u∈W 1,2(Ω)

{∫
Ω
|∇u|dx+

μ

2

∫
Ω
|∇u|2dx+ λ

∫
Ω
(Au− f logAu)dx

}
.

After obtaining u from the minimization problem (3.5), we adopt the same approach as
in [11] to get a segmentation of u in the second stage. More precisely, we can try different
thresholds to get the best segmentation result, or we can use the K-means clustering method

104 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

to get an automatic algorithm. Here we stress again that there is no need to recompute u if
we change the number of phases K or the thresholds ρ.

In the following, we study the existence and uniqueness of the solution of (3.5). Since
most digital images have predefined ranges, it is natural to assume f ∈ L∞(Ω), and we
further assume inf f > 0. We first study the case when the continuous linear operator A is
the identity operator, i.e.,

(3.6) inf
u∈W 1,2(Ω)

E(u) = inf
u∈W 1,2(Ω)

{∫
Ω
|∇u|dx+

μ

2

∫
Ω
|∇u|2dx+ λ

∫
Ω
(u− f log u)dx

}
.

Theorem 3.1. Let Ω be a bounded connected open subset of R2 with a Lipschitz boundary.
Let f ∈ L∞(Ω) with inf f > 0. Then (3.6) has a unique minimizer u ∈ W 1,2(Ω) satisfying
0 < inf f ≤ u ≤ sup f .

Proof. For any function g ∈ W 1,2(Ω), define g+ = max(g, 0) and g− = −min(g, 0). Then
we have g = g+−g−. It is clear that {u−f log u} takes its minimum at u = f , and it tends to
positive infinite when u → ∞, so E(u) is bounded from below. By taking u ≡ 1 ∈ W 1,2(Ω),
we see E(u) < ∞, so E(u) is proper. Let {un} be a minimizing sequence. Then there exists
an M > 0 such that E(un) ≤ M for all n ∈ N. Therefore we have

M ≥
∫
Ω
(un − f log un)dx ≥ −

∫
Ω
(un − f log un)

−dx

for all n ∈ N. Since (un − f log un)
− is uniformly bounded from above by |f − f log f | < ∞,

we conclude that
∫
Ω(un − f log un)dx is uniformly bounded from below. From this and the

uniform boundedness of E(un), it is clear that both ‖∇un‖1 =
∫
Ω|∇un|dx and ‖∇un‖2 =

(
∫
Ω|∇un|2dx) 1

2 are uniformly bounded.
Since f ∈ L∞(Ω), f is bounded from above. Thus for all y ∈ Ω, there exists a u0 > 0 such

that 2(x− f(y) log x) ≥ x for x ≥ u0. Therefore we conclude that∫
Ω
|un|dx ≤

∫
Ω
max {2(un − f log un), u0}dx ≤ 2

∫
Ω
(un − f log un)

+dx+

∫
Ω
u0dx

≤ 2

∫
Ω
(un − f log un)dx+ 2

∫
Ω
(un − f log un)

−dx+

∫
Ω
u0dx < ∞

for all n ∈ N. Thus we have proved that ‖un‖1 is uniformly bounded.
From the Poincaré inequality [27], we have

‖un −mΩ(un)‖2 ≤ C‖∇un‖2,
where mΩ(un) =

1
|Ω|

∫
Ω undx, |Ω| is the Lebesgue measure of Ω, and C is a constant related

to Ω. Thus ‖un −mΩ(un)‖2 is uniformly bounded. Notice that we have already proved that
‖un‖1 is uniformly bounded. From this we conclude that

‖un‖2 ≤ ‖un −mΩ(un)‖2 + ‖mΩ(un)‖2
≤ ‖un −mΩ(un)‖2 + ‖un‖1

is uniformly bounded.

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 105

Therefore, up to a subsequence, un converges strongly in W 1,2(Ω) to some u∗, and ∇un
converges weakly as a measure to ∇u∗. By the lower semicontinuity of E(u), we have
E(lim infn→∞ un) ≤ lim infn→∞E(un), and therefore u∗ is a solution to (3.6).

Let α = inf f and β = sup f . By Proposition 15 in [22], both min(u∗, β) and max(u∗, α)
are members of W 1,2(Ω), and

|∇(min(u∗, β))| ≤ |∇u∗|, |∇(max(u∗, α))| ≤ |∇u∗|.

Then following the same arguments as in Theorem 4.1 in [4], we have α ≤ u∗ ≤ β.
The uniqueness of the minimizer follows from the strict convexity of the objective func-

tional in (3.6).
Next we study the case when A is a blurring operator. We show that our main model

(3.5) has a unique solution if Ker(A) ∩ Ker(∇) = {0}, where Ker(·) represents the kernel.
This condition says that A1 �= 0. In real applications, the blurring operator is a convolution
with positive kernel, so the condition Ker(A) ∩Ker(∇) = {0} is satisfied.

Theorem 3.2. Let Ω be a bounded connected open subset of R2 with a Lipschitz boundary.
Let f ∈ L∞(Ω) with inf f > 0, and let A be a continuous linear operator from W 1,2(Ω) to
itself. Assume Ker(A) ∩Ker(∇) = {0}; then (3.5) has a unique minimizer u ∈ W 1,2(Ω).

Proof. Let {un} be a minimizing sequence. Then, as argued in the proof of Theorem 3.1,
it is clear that ‖∇un‖1, ‖∇un‖2, and ‖Aun‖1 are all uniformly bounded. By the Poincaré
inequality, we have

‖un −mΩ(un)‖1 ≤ C1‖∇un‖1
for some constant C1. Thus ‖un −mΩ(un)‖1 is uniformly bounded. We also have

|mΩ(un)|‖A1‖1 = ‖A(mΩ(un)1)‖1
= ‖A(mΩ(un)− un) +Aun‖1
≤ ‖A(mΩ(un)− un)‖1 + ‖Aun‖1.

Since ‖un−mΩ(un)‖1 is uniformly bounded, A is continuous, and A1 �= 0, we see that mΩ(un)
is uniformly bounded. By the Poincaré inequality again, we see that

‖un −mΩ(un)‖2 ≤ C2‖∇un‖2
for some constant C2. Thus ‖un‖2 ≤ ‖un − mΩ(un)‖2 + ‖mΩ(un)‖2 is uniformly bounded.
Therefore, up to a subsequence, un converges strongly in W 1,2(Ω) to some u∗, and ∇un
converges weakly as a measure to ∇u∗. Then from the lower semicontinuity of E(u), we
conclude that u∗ is a minimizer of (3.5).

Notice that Au− f logAu is strictly convex in Au. Thus the uniqueness of the minimizer
follows from the same argument as in [11, Theorem 2.4].

4. The primal-dual algorithm for solving (3.5). Because of the convexity of the mini-
mization problem (3.5), many methods can be used to solve it. For example, we have the
primal-dual algorithm [15, 17, 19, 68], which can be easily adapted to a number of non-
smooth convex optimization problems and is easy to implement, and the alternating direction
method with multipliers (ADMM) [8, 29], which is convergent and well suited to large-scale

106 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

convex problems. Recently, several specific algorithms for solving TV regularized problems
have been proposed, for example, (i) the split-Bregman algorithm [32], which is closely con-
nected to the ADMM method and has fast convergence for TV regularized problems, and (ii)
the Chambolle–Pock algorithm [17], which solves a general saddle-point problem based on the
primal-dual approach and is fast and flexible and has a known convergent rate. In this paper,
we employ the Chambolle–Pock algorithm to solve the minimization problem (3.5).

We now derive the discrete version of (3.5). For the sake of simplicity we keep the same
notation from the continuous context. Suppose that the original image f ∈ R

mn×1 is obtained
from a two-dimensional (2D) pixel-array (size m×n) by concatenation in the usual columnwise
fashion, and that f ∈ [1, 255] (we set f = max(f, 1)). Define the function G : Rmn×1 → R as

G(v) =
∑
i

(vi − fi log vi), v > 0.

The discrete gradient operator is the map ∇ : Rmn×1 → R
2mn×1 defined as

∇u =

(∇xu
∇yu

)
,

with ∇x and ∇y corresponding to the discrete derivative operators in the x-direction and
y-direction, respectively. In our numerical experiments, ∇x and ∇y are obtained by applying
finite-difference approximations to the derivatives with symmetric boundary conditions in the
respective coordinate directions. For example, we define

(4.1) (∇xu)i,j =

{
ui+1,j − ui,j, i = 1, 2, . . . , n− 1,

0, i = n.

In addition, ‖∇u‖1 denotes the discrete total variation of u, i.e.,

‖∇u‖1 =
∑
i

√
(∇xu)2i + (∇yu)2i .

Then the discrete version of the minimization problem (3.5) is

(4.2) min
u

E(u) = min
u

{
‖∇u‖1 + μ

2
‖∇u‖22 + λG(Au)

}
,

where A ∈ R
mn×mn is the blurring matrix from the discretization of A. In the numerical

tests, we impose symmetric boundary conditions on A too.
Next, we introduce new variables v ∈ R

2mn×1 and w ∈ R
mn×1 and reformulate the mini-

mization problem (4.2) as the following constrained optimization problem:

(4.3) min
u,v,w

{
‖v‖1 + μ

2
‖v‖22 + λG(w)

}
subject to v = (vx, vy)

T = ∇u, w = Au.

To employ the Chambolle–Pock algorithm, we consider the following primal-dual optimization
problem:

(4.4) min
u,v,w

max
p,q

{
‖v‖1 + μ

2
‖v‖22 + λG(w) + 〈v −∇u, p〉+ 〈w −Au, q〉

}
.

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 107

Then the Chambolle–Pock algorithm is defined through the following iterations:

(4.5) p(k+1) = argmax
p

{
〈v̄(k) −∇ū(k), p〉 − 1

2σ
‖p − p(k)‖22

}
,

(4.6) q(k+1) = argmin
q

{
〈w̄(k) −Aū(k), q〉 − 1

2σ
‖q − q(k)‖22

}
,

(4.7) u(k+1) = argmin
u

{
−〈∇u, p(k+1)〉 − 〈Au, q(k+1)〉+ 1

2τ
‖u− u(k)‖22

}
,

(4.8) v(k+1) = argmin
v

{
‖v‖1 + μ

2
‖v‖22 + 〈v, p(k+1)〉+ 1

2τ
‖v − v(k)‖22

}
,

(4.9) w(k+1) = argmin
w

{
λG(w) + 〈w, q(k+1)〉+ 1

2τ
‖w − w(k)‖22

}
,

(4.10) ū(k+1) = 2u(k+1) − u(k),

(4.11) v̄(k+1) = 2v(k+1) − v(k),

(4.12) w̄(k+1) = 2w(k+1) − w(k).

Since the objective functions (4.5)–(4.7) are quadratic, the update of p, q, and u can be
computed efficiently:

p(k+1) = σ(v̄(k) −∇ū(k)) + p(k),(4.13)

q(k+1) = σ(w̄(k) −Aū(k)) + q(k),(4.14)

u(k+1) = u(k) + τ(AT q(k+1) − divp(k+1)).(4.15)

The solution of (4.8) can be easily obtained by applying the soft thresholding operator. De-
noting t(k) = τ

μτ+1 (
1
τ v

(k) − p(k+1)), we have

(4.16) v(k+1)
x = max

{
|t(k)| − τ

μτ + 1
, 0

}
· t

(k)
x

|t(k)| ,

(4.17) v(k+1)
y = max

{
|t(k)| − τ

μτ + 1
, 0

}
· t

(k)
y

|t(k)| ,

108 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

where |t(k)| =
√

(t
(k)
x)2 + (t

(k)
y)2. The optimality condition for (4.9) gives the quadratic equa-

tion
w2 + (τ(λ+ q(k+1))− w(k))w − λτf = 0.

Its solution is given by

(4.18) w =
w(k) − τ(q(k+1) + λ) + [(τ(λ+ q(k+1))− w(k))2 + 4τλf]1/2

2
.

The following algorithm summarizes the procedures used to solve the optimization prob-
lem (4.2).

Algorithm 1. Solving (4.2) by the Chambolle–Pock algorithm.

1. Initialize: p(0) = 0, u(0) = ū(0) = f, v(0) = v̄(0) = ∇f, w(0) = w̄(0) = Au(0).

2. Do k = 0, 1, . . . , until ‖u(k)−u(k+1)‖
‖u(k+1)‖ < ε.

(a) Compute p(k+1) by (4.13).

(b) Compute q(k+1) by (4.14).

(c) Compute u(k+1) by (4.15).

(d) Compute v(k+1) by (4.16) and (4.17).

(e) Compute w(k+1) by (4.18).

(f) Update ū(k+1), v̄(k+1), and w̄(k+1) by (4.10), (4.11), and (4.12).
3. Output: u.

We emphasize that if A is the identity operator, there is no need to introduce w and q,
and the algorithm can be simplified accordingly.

In the following, we discuss the existence of solution to (4.4) and the convergence of
Algorithm 1. Define

K =

(−∇ I 0
−A 0 I

)
, x =

⎛
⎝ u

v
w

⎞
⎠ , x̄ =

⎛
⎝ ū

v̄
w̄

⎞
⎠ , y =

(
p
q

)
.

Then (4.4) is equivalent to

(4.19) min
x

max
y

{H(x) + 〈Kx, y〉},

where H(x) = ‖v‖1 + μ
2‖v‖22 + λG(w). First we note the following.

Proposition 4.1. The saddle-point set of (4.19) is nonempty.
The proof follows the same arguments as in [44, Proposition 2].
Next we show that Algorithm 1 converges.
Proposition 4.2. Let ‖K‖2 be the operator 2-norm of K, and let (x(n), x̄(n), y(n)) be defined

by Algorithm 1. If we choose τ and σ such that τσ < 1/‖K‖22, then (x(n), y(n)) converges to
a saddle point (x∗, y∗) of (4.19).

The proposition is a special case of Theorem 1 in [17]. We remark that for the limiting
point (x∗, y∗) = (u∗, v∗, w∗, p∗, q∗), the u∗ will be the unique solution of (4.2) that we seek.
To see that, we first observe that (4.19) is the primal-dual formulation of

(4.20) min
x

{ι(Kx) +H(x)},

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 109

where ι is the indicator function of the set {0}; see [17]. Clearly, by the definition of K and H,
(4.20) is exactly the same as (4.3). Since (4.2) has a unique solution (under the assumption
that Ker(A) ∩Ker(∇) = {0}) and v := ∇u and w := Au (see (4.3)), we see that (4.20) has a
unique solution too. By [25, Proposition 3.1], if (x∗, y∗) is a saddle point of (4.19), then x∗ is
a solution of (4.20), and x∗ is therefore unique.

Finally we give an estimate of ‖K‖2.
Proposition 4.3. Denote α =

√
‖∇‖22 + ‖A‖22. Then ‖K‖2 <

√
α2 + 1.

Proof. To get a bound for the operator K, we have

‖Kx‖2 =
∥∥∥∥
(−∇u+ v

−Au+ w

)∥∥∥∥
2

≤
∥∥∥∥
(−∇u

−Au

)∥∥∥∥
2

+

∥∥∥∥
(

v
w

)∥∥∥∥
2

=
√

‖∇u‖22 + ‖Au‖22 +
∥∥∥∥
(

v
w

)∥∥∥∥
2

≤
√

‖∇‖22 + ‖A‖22‖u‖2 +
∥∥∥∥
(

v
w

)∥∥∥∥
2

.(4.21)

When ‖x‖2 = 1, that is, ‖u‖22 + ‖(v
w

)‖22 = 1, we have

‖Kx‖2 ≤ α‖u‖2 +
∥∥∥∥
(

v
w

)∥∥∥∥
2

≤
√

α2 + 1 ·
√

‖u‖22 +
∥∥∥∥
(

v
w

)∥∥∥∥
2

2

(4.22)

=
√

α2 + 1.

Thus ‖K‖2 ≤ √
α2 + 1. However, we claim that the equality cannot be achieved. To see

this, (4.22) is an equality if and only if ‖u‖2 = α√
α2+1

and ‖(v
w

)‖2 = 1√
α2+1

. In this case,

‖u‖2 < 1, and (4.21) becomes a strict inequality.

Since ‖∇‖22 ≤ 8 (see [15]) and ‖A‖2 ≤ 1 (see [44]), we conclude that if τσ ≤ 0.1, then
Algorithm 1 converges.

Let us remark that the above numerical scheme can be applied to the more general problem

(4.23) min
x

n∑
i=1

fi(Kix),

where for any i, Ki is a bounded linear operator from R
p to some R

mi and fi is a proper
convex function. Indeed, we can rewrite the above problem as the following equivalent min-
max problem:

max
y1,...,yn

min
x,w1,...,wn

{
n∑

i=1

fi(wi) +
n∑

i=1

〈wi −Kix, yi〉
}
,

110 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

or

(4.24) max
Y

min
X

{f(X) + 〈KX,Y 〉},

where X = (x,w1, . . . , wn)
T , Y = (y1, . . . , yn)

T , f(X) :=
∑n

i=1 fi(wi), and

K :=

⎛
⎜⎜⎝

−K1 I 0 · · · 0
−K2 0 I · · · 0

· · ·
−Kn · · · 0 0 I

⎞
⎟⎟⎠ .

We can readily prove that ‖K‖2 ≤
√
1 +

∑n
i=1 ‖Ki‖22. Now, we can apply the Chambolle–Pock

algorithm to (4.24).

5. Numerical experiments. In this section, we compare our method with other segmen-
tation methods. To standardize the experiments, all test images have the range [1, 255] (we
set f = max(f, 1)), and we always set the mean Kθ of the Gamma distribution to 1; see (3.1).

As far as we know, there are no papers on segmenting blurry images with either Poisson or
multiplicative Gamma noise. The most recent paper [58] considered two-phase segmentation
with additive Gaussian noise, Poisson noise, or multiplicative speckle noise, but with no blur.
We will compare this method with the Poisson noise data-fidelity term with our method. In
addition, to be more comprehensive, we will compare with methods in [23, 41, 65, 66] which
are effective segmentation methods proposed after 2010 for Gaussian noise with
2 data-fidelity
terms. For fair comparisons, we apply the Anscombe transformation to the test images before
the implementation of the methods [23, 41, 65, 66]. Recall that the Anscombe transformation

is defined by f → 2
√
f + 3

8 ; see [3]. Anscombe transformation can stabilize variance, and it
has been used in the removal of Poisson noise; see [46].

We note that the method in [58] belongs to the region-based variational segmentation
framework. It is not convex, and the segmentation results depend on initializations. The
method in [65] uses the continuous max-flow algorithm in [65] and a mimetic finite-difference
discretization method [67] to solve the 2D continuous min-cut problem. The method in [66]
uses the same algorithm and method to solve the 2D continuous min-cut problem with multiple
labels. The method in [23] is based on tight frames, and the method in [41] is based on fuzzy
region competitions. Notice that we could not obtain the code from the authors of [58] before
our paper was submitted for publication, so we coded the algorithm on our own. For the
methods in [23, 41, 65, 66], the codes are from the authors.

In our method, we put τ = 4 and σ = 0.025 for a fast and convergent implementation of
Algorithm 1; see the discussion after Proposition 4.3. For images with no blur, we terminate

the iteration in Algorithm 1 when ‖u(k)−u(k+1)‖
‖u(k+1)‖ < 10−3 or the maximum iteration number

600 is reached, while for images with blur, we terminate the iteration in Algorithm 1 when
‖u(k)−u(k+1)‖

‖u(k+1)‖ < 10−4 or the maximum iteration number 600 is reached. After we get u in

(3.5), we choose threshold(s) to segment u. The thresholds are chosen by two methods.
The first is to use the MATLAB K-means function “kmeans”. This provides an automatic
segmentation process. The second method is to choose the threshold manually to produce

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 111

good segmentation results. We use ρK to denote the thresholds obtained from the “kmeans”
command and ρU for the thresholds chosen by us. Since u is calculated prior to choosing the
number of phases and the thresholds, users can try different numbers of phases and thresholds
without recomputing u.

For all the segmentation methods used in this section, we tuned the parameters in the
experiments to achieve the best visual results. The values of the parameters are given in Ap-
pendix B. The boundaries of the results are superimposed on the given images for comparison.
All numerical experiments were run on a PC with 2.4GHz CPU, 4GB RAM, and MATLAB

7.13 (R2011b).

5.1. Two-phase segmentation. In this subsection, we compare our method with the two-
phase segmentation methods proposed in [23, 58, 65].

Example 5.1 (Poisson noise). Figure 1(a) is the original image “Boat” from the Berkeley
Segmentation Dataset and Benchmark (see [47]). This image is difficult to segment because
of the inhomogeneity of light: the brightness of the water varies, with the top corners being
darker, and the boat has both dark and light parts. We corrupted it with Poisson noise to
make the segmentation more challenging; see Figure 1(b). Figure 1(f) is the solution u of
(3.5) using λ = 1 and μ = 0.05, and Figure 1(g) is our segmentation result with threshold
ρK = 142.13. It can be seen that our method successfully segmented the body and the
reflection of the boat. Figure 1(c) created from the method in [65] included the water of the
top corners as part of the segmented object. Figure 1(d) from the method in [23] failed to
segment the body and the reflection of the boat as a whole. Figure 1(e) from the method in
[58] produced a segmentation similar to our result.

To show the importance of the smoothing term ‖∇u‖22 in (3.5) in our model, we give the
result of our method with λ = 1 and μ = 0 in Figure 1(h). The thresholds used in both
Figures 1(g) and 1(h) are from the K-means clustering method. Notice that in Figure 1(h),
the bright part of the boat is excluded from the boat in the segmentation, while in Figure 1(g),
the boat and the reflection are included as a whole.

Example 5.2 (multiplicative Gamma noise). Figure 2(a) is the original “Antimass” image.
We corrupt it by multiplicative Gamma noise with K = 10 to obtain Figure 2(b). The bright
object in the image (the continental U.S.) does not have a clear cut boundary, and there are
many tiny holes in the object, which make it challenging to produce a good segmentation
result. Figure 2(f) is the solution u from (3.5) using λ = 1 and μ = 0.5. Notice that there
is no visible noise left in u, and the bright object in the original image is smoothed out.
Figures 2(g) and 2(h) are our segmentation results with thresholds ρK = 92.05 and ρU = 20,
respectively. By comparing our results with the results from the methods in [65], [23], and
[58] in Figures 2(c), 2(d), and 2(e), respectively, we see that our method can segment the
noisy image successfully with both ρK and ρU , and different meaningful details are revealed.
The methods in [58, 65] produced results similar to our segmentation with threshold ρK ; the
method in [23] produced an unnatural boundary.

Example 5.3 (blocky blurry image with Poisson noise). Figure 3(a) is the synthetic image
“Shape,” which has three clearly separated objects. We first blur it by a vertical motion
kernel with length 31 and then corrupt it by Poisson noise; see Figure 3(b). The boundaries
of the objects are now blurry and vague so that they are hard to detect. Figure 3(f) is the

112 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

(a) Original image (b) Noisy image (c) Yuan et al. [65] (d) Dong et al. [23]

(e) Sawatzky et al.
[58]

(f) Solution u (g) With μ = 0.05
and ρK = 142.13

(h) With μ = 0 and
ρK = 104.53

Figure 1. (a) Original “Boat” image (450 × 321 pixels) from the Berkeley Segmentation Dataset and
Benchmark (see [47]), (b) image corrupted by Poisson noise, (c) result created from Yuan, Bae, and Tai [65],
(d) result from Dong, Chien, and Shen [23], (e) result from Sawatzky et al. [58], (f) solution u from (3.5) with
λ = 1 and μ = 0.05, (g) u threshold by ρK = 142.13, (h) our method with λ = 1, μ = 0, and ρK = 104.53.

solution u from (3.5) using λ = 15 and μ = 0.001. Figure 3(g) is our segmentation result with
threshold ρK = 129.94. It is clear that both the blur and the noise are reduced in u, and this
facilitated the detection of the separate objects. The method in [65] produced the result in
Figure 3(c) with oversmoothed boundaries. Because of the blur, Figures 3(d) in [23] and 3(e)
in [58] present distortion (see the annulus).

Example 5.4 (tubular blurry image with Gamma noise). Figure 4(a) is the synthetic tubular
image “Tree,” which resembles a fractal with lots of fine structures. We first blur it by a
Gaussian kernel (size 15×15 and standard deviation 3) and then degrade it with multiplicative
Gamma noise with K = 10; see Figure 4(b). Figure 4(f) is the solution u from (3.5) using
λ = 10 and μ = 0.001. Figures 4(g) and 4(h) are our segmentation results with thresholds
ρK = 48.94 and ρU = 14, respectively. Compared to the methods in [65], [23], and [58]
in Figures 4(c), 4(d), and 4(e), respectively, it is clear that our segmentation method with
ρU = 14 produced a very good result. The methods in [23, 58] and our method with ρK failed
to detect fine details of the tree. Because of the blur, the method in [65] produced a very
coarse boundary. See Figures 4(i)–4(l) for a detailed comparison.

Since we have the ground truth of Figures 3(a) and 4(a), in Table 1 we compare the
percentage of correct pixels of the segmented binary images. Let the image size be m × n,
and let the number of correct pixels segmented be N . Then the percentage of correct pixels
of the segmented image is computed as N

mn . We see that our method gives the most accurate
segmentation.

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 113

(a) Original image (b) Noisy image (c) Yuan et al. [65]

(d) Dong et al. [23] (e) Sawatzky et al. [58] (f) Solution u

(g) With threshold
ρK = 92.05

(h) With threshold
ρU = 20

Figure 2. (a) Original “Antimass” image (384×480 pixels), (b) image corrupted by multiplicative Gamma
noise with K = 10, (c) Yuan, Bae, and Tai [65], (d) Dong, Chien, and Shen [23], (e) Sawatzky et al. [58],
(f) solution u from (3.5) with λ = 1 and μ = 0.5, (g) u with threshold ρK = 92.05, (h) u with threshold ρU = 20.

114 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

(a) Original
image

(b) Blurred and
noisy image

(c) Yuan et al.
[65]

(d) Dong et al.
[23]

(e) Sawatzky et
al. [58]

(f) Solution u (g) With
threshold

ρK = 129.94

Figure 3. (a) Original “Shape” image (258 × 256 pixels), (b) blurred image (vertical motion kernel with
length 31) with Poisson noise, (c) Yuan, Bae, and Tai [65], (d) Dong, Chien, and Shen [23], (e) Sawatzky et
al. [58], (f) solution u from (3.5) with λ = 15 and μ = 0.001, (g) u threshold with ρK = 129.94.

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 115

(a) Original
image

(b) Blurred and
noisy image

(c) Yuan et al.
[65]

(d) Dong et al.
[23]

(e) Sawatzky et
al. [58]

(f) Solution u (g) With
threshold
ρK = 48.94

(h) With
threshold
ρU = 14

(i) Detail of
method in [65]

(j) Detail of
method in [23]

(k) Detail of
method in [58]

(l) Detail of our
method with ρU

Figure 4. (a) Original “Tree” image (512 × 512 pixels), (b) blurred image (Gaussian kernel, standard
deviation 3, size 15×15) and multiplicative Gamma noise with K = 10, (c) Yuan, Bae, and Tai [65], (d) Dong,
Chien, and Shen [23], (e) Sawatzky et al. [58], (f) solution u from (3.5) with λ = 10 and μ = 0.001, (g) u
threshold by ρK = 48.94, (h) u threshold by ρU = 14, (i) detail of method in [65], (j) detail of method in [23],
(k) detail of method in [58], (l) detail of our method with ρU .

116 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

Table 1
Percentage of correct pixels segmented for two-phase segmentation.

Yuan et al. [65] Dong et al. [23] Sawatzky et al. [58] Our method

Figure 3 97.87% 94.47% 94.15% ρK 99.72%

ρK 96.40%
Figure 4 95.82% 96.90% 96.71% ρU 97.08%

Example 5.5 (real cell image). The noisy image “Cells” in Figure 5(a) is a real image from
an automated cell tracking system [6], where the authors developed a system to track cell
lineage during Caenorhabditis elegans embryogenesis under low exposure to light. In their
experiments, noise in the images led to false positives in nuclear identification. Here, we aim
to segment all the cells in the noisy image Figure 5(a). The segmentation result will be useful
for further processing, e.g., in locating the cells by circular Hough transform. Figure 5(e) is
the u from (3.5) using λ = 10 and μ = 5. Figure 5(f) is our segmentation result with threshold
ρK = 55.09. Figures 5(g)–5(i) are our segmentation results with ρU = 75, 85, 95, respectively,
with the same u. We stress that by changing the threshold, we do not need to recompute u. It
is clear that our threshold with ρK can segment almost all the cells in the noisy image, while
our segmentation with ρU can get more separated cells with increasing thresholds, all with
smooth boundaries. For the method in [65], the cells are not separated well. The method in
[23] in Figure 5(c) produces a result similar to that of the method of [65] in Figure 5(b). For
the method in [58], many cells are left outside the segmented region.

Example 5.6 (real bacteria image). The real “Bacteria” image has intensity only in [0, 48];
for better visualization we linearly stretched the image to the range [1, 255]. The resulting
image is depicted in Figure 6(a), where one can see that the object in the image has a high level
of noise and the boundary is vague. All the methods we tested are implemented on this linearly
stretched image. Figure 6(e) is the solution u from (3.5) using λ = 1 and μ = 1. Figures 6(f)
and 6(g) are our segmentation results with thresholds ρK = 88.34 and ρU = 50, respectively.
By comparing our results with the results from the methods in [65, 23, 58] in Figures 6(b)–6(d),
we see that our segmentation with ρU = 50 produced a boundary that successfully separates
the cell from the background. The method in [65] in Figure 6(b) produced a segmentation
similar to our result with ρU . The methods in [23, 58] did not segment the left end of the
object properly.

In Table 2, we give the iteration numbers and CPU time in seconds for our method and
the methods in [23, 58, 65]. The codes for all methods, including ours, are written in .mat
files. It can be seen that, except for the deblurring cases (Figures 3 and 4), our algorithm uses
the least time. The extra time in deblurring cases is justified by the good visual results and
higher percentage of correctly segmented pixels; see Table 1.

5.2. Multiphase segmentation. In this section, we compare our method with the multi-
phase segmentation methods in [66] and [41].

Example 5.7 (multiplicative Gamma noise). Figure 7(a) is the original “Aircraft” image,
and we corrupt it by multiplicative Gamma noise with K = 10 to get Figure 7(b). Fig-
ure 7(e) is the solution u from (3.5) using λ = 2 and μ = 0.001. It is clear that in our solution
u, the noise is greatly reduced, and the cloud is smoothed out. Figure 7(f) is our segmentation

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 117

(a) Original noisy
image

(b) Yuan et al. [65] (c) Dong et al. [23]

(d) Sawatzky et al. [58] (e) Solution u (f) With threshold
ρK = 55.09

(g) With threshold
ρU = 75

(h) With threshold
ρU = 85

(i) With threshold
ρU = 95

Figure 5. (a) Original “Cells” image (512 × 712 pixels), (b) Yuan, Bae, and Tai [65], (c) Dong, Chien,
and Shen [23], (d) Sawatzky et al. [58], (e) solution u from (3.5) with λ = 10 and μ = 5, (f) u threshold with
ρK = 55.09, (g)–(i) u threshold with ρU = 75, 85, 95, respectively.

result with thresholds ρK = (32.46, 99.34), where the numbers annotate the three different
phases. We see that the outline of the airplane is clearly segmented. One can argue that
a part of the cloud region marked by the circle in the figure is mislabeled. However, one
can preserve that part by choosing ρU = (30, 80); see Figure 7(g). Again we emphasize that
the user can choose different thresholds to review different features in the image, all without
reminimizing the functional in stage one. One just needs to threshold the solution u in Figure
7(e) by the new thresholds. Figure 7(c) from the method in [66] is a good segmentation, with
the three phases well separated. In Figure 7(d) from the method in [41], although we used
the Anscombe transformation, noise is still visible in the segmented image.

Example 5.8 (blocky blurry image with Gamma noise). Figure 8(b) is the blurred and noisy
image degraded from the original image in Figure 8(a), first by Gaussian kernel with standard
deviation 3 and size 11 and then by multiplicative Gamma noise with K = 20. Figure 8(e)
is the solution u from (3.5) using λ = 5 and μ = 10−5. It is clear that our solution u is
free of noise, and the blurring is significantly reduced. Figure 8(f) is our segmentation result

118 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

(a) The linearly
stretched image

(b) Yuan et al. [65] (c) Dong et al. [23] (d) Sawatzky et al.
[58]

(e) Solution u (f) With threshold
ρK = 88.34

(g) With threshold
ρU = 50

Figure 6. (a) Original “Bacteria” image after linear stretching (512 × 512 pixels), (b) Yuan, Bae, and
Tai [65], (c) Dong, Chien, and Shen [23], (d) Sawatzky et al. [58], (e) solution u from (3.5) with λ = 1 and
μ = 1, (f) u threshold with ρK = 88.34, (g) u threshold with ρU = 50.

Table 2
Iteration numbers and CPU time in seconds for two-phase segmentation.

Yuan et al. [65] Dong et al. [23] Sawatzky et al. [58] Our method

Example Iter. Time Iter. Time Iter. Time Iter. Time

Figure 1 54 2.11 500 189.64 13 324.52 61 1.52

Figure 2 51 5.12 500 138.01 9 137.77 80 3.19

Figure 3 22 0.17 500 40.66 13 37.22 325 4.12

Figure 4 39 4.05 500 190.62 14 660.13 263 18.88

Figure 5 46 6.43 500 255.50 17 1546.20 101 6.26

Figure 6 51 5.12 500 189.64 12 548.69 74 3.88

with thresholds ρK = (42.65, 125.87, 208.61), and Figure 8(g) shows the four different phases.
Figure 8(c) from the method in [66] does not segment the brightest part well (see the arrow in
the figure), and Figure 8(d) from the method in [41] has visible noise and blurry boundaries.

Example 5.9 (real MRI image). Next we test the four-phase segmentation of a real MRI
image; see Figure 9(a). Figure 9(d) is our solution u from (3.5) using λ = 10 and μ = 0.01.
Figure 9(e) is the segmentation of u using the thresholds ρU = (110, 128, 150). Figures 9(f)–
9(i) are the four phases that we segmented. From the images, it is clear that our method
produces the best segmentation, while for the methods in [66] and [41], there are holes in the
central bright region (marked by a yellow number 4 in Figure 9(e)).

Example 5.10 (image with close varying intensities). Figure 10(a) is the original image, and
we corrupt it by Poisson noise to get Figure 10(b). We choose this four-phase image because it

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 119

(a) Original image (b) Noisy image (c) Yuan et al. [66]

(d) Li et al. [41] (e) Solution u

1

2

3

(f) With threshold
ρK = (32.46, 99.34)

1
2

3

(g) With threshold
ρU = (30, 80)

Figure 7. (a) Original “Aircraft” image (125 × 150 pixels), (b) image corrupted by multiplicative Gamma
noise with K = 10, (c) Yuan et al. [66], (d) Li et al. [41], (e) solution u from (3.5) with λ = 2 and μ = 0.001,
(f) u threshold by ρK = (32.46, 99.34), (g) u threshold by ρU = (30, 80).

is difficult to segment. First, the intensities in the four phases are not constant, and phases 1
and 2 have pixels with very close or even the same intensities. Second, unlike in Figure 8, the
phases in Figure 10 are not ordered linearly according to their average intensities. In fact, the
intensity of phase 2 lies between the intensities of phases 1 and 3, while the intensity of phase 3
lies between the intensities of phases 2 and 4. Therefore the boundary between phases 1 and 3,
as well as the boundary between phases 2 and 4, is difficult to detect accurately. To get a good
segmentation using our method, we have decreased the stopping tolerance ε for Algorithm 1 to
10−5. Figure 10(e) is the solution u from (3.5) using λ = 1 and μ = 10−5. It is clear that our u
is free of noise, with boundaries well preserved and intensities of different phases well separated.
Figure 10(f) is our segmentation result with thresholds ρU = (73, 173, 243). Because of the
close and varying intensities, Figure 10(c) from the method in [66] and Figure 10(d) from [41]
fail to separate the two upper regions into two different phases. We remark that we have tried
finer convergence criteria for the methods in [66] and [41], but they cannot get better results.

120 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

(a) Original
image

(b) Blurred and
noisy image

(c) Yuan et al.
[66]

(d) Li et al. [41]

(e) Solution u (f) With
threshold ρK =

(42.65, 125.87, 208.61)

1

1

1

1

2

2

2

3

3

33

4

(g) The four
phases

Figure 8. (a) Original image, (b) blurred and noisy image: Gaussian kernel with standard deviation 3, size
11, and multiplicative Gamma noise with K = 20, (c) Yuan et al. [66], (d) Li et al. [41], (e) solution u from
(3.5) with λ = 5 and μ = 10−5, (f) u threshold by ρK = (42.65, 125.87, 208.61), (g) the four phases.

Since we have the ground truth of Figures 8 and 10, in Table 3 we compare the percentage
of correct pixels of these two four-phase images. Again, it can be seen that our method
produces the best results.

In Table 4, we give the iteration numbers and CPU time in seconds for the multiphase
segmentation we tested. The codes for all methods, including ours, are written in .mat files.
Except for the deblurring case (Figure 8), our algorithm always uses the least time. Again,
the extra time in deblurring is justified by the good visual results and higher percentage of
correctly segmented pixels; see Table 3.

6. Conclusion and possible improvements. In this paper, we have proposed a two-stage
method for the segmentation of blurry images with Poisson or multiplicative Gamma noise. In
the first stage of our method, we solve the unique smooth minimizer of a convex model (3.5)
that is related to the Mumford–Shah model. Then, in the second stage, we segment the image
by thresholding the smooth solution of the first stage. Our method has the advantage of
solving the two-phase and multiphase segmentations by one single algorithm, and users can
decide the number of phases and the thresholds after the solution in (3.5) is obtained. Our
numerical experiments show that our method is very effective and robust for many kinds of
images, such as antimass, tubular, low-light, noisy, or blurry images.

As pointed out in (1.3), the Mumford–Shah model can be extended to different noise mod-
els. However, the resulting functionals will be difficult to minimize. Our approach provides
an easy way to construct a convex approximation to these functionals. Judging from the

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 121

(a) Given image (b) Yuan et al. [66] (c) Li et al. [41]

(d) Solution u

4

32

1

(e) With threshold
ρU = (110, 128, 150)

(f) First phase

(g) Second phase (h) Third phase (i) Fourth phase

Figure 9. (a) Original MRI image (512 × 512 pixels), (b) Yuan et al. [66], (c) Li et al. [41], (d) solution
u from (3.5) with λ = 10 and μ = 0.01, (e) u threshold by ρU = (110, 128, 150), (f)–(i) the four phases.

numerical results in this paper and those in [11], we believe that the resulting segmentation
algorithm will be an efficient and accurate one.

Our method may be further improved in several ways. One is to employ automatic clus-
tering algorithms other than the K-means method to find the thresholds. Another way of
improving the method is to include local information in the clustering process in the second
stage to better distinguish different objects of interest. Third, we may try to employ auto-
matic methods, e.g., [64], to determine the parameters μ and λ in the objective functional
(3.5).

122 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

1 2

3 4

(a) Original
image

(b) Noisy image (c) Yuan et al.
[66]

(d) Li et al. [41] (e) Solution u

1 2

3 4

(f) with
threshold ρU =
(73, 173, 243)

Figure 10. (a) Original image (256 × 256 pixels), (b) image corrupted by Poisson noise, (c) Yuan et al.
[66], (d) Li et al. [41], (e) solution u from (3.5) with λ = 1 and μ = 10−5, (f) u threshold by ρU = (73, 173, 243).

Table 3
Percentage of correct pixels segmented in four-phase segmentation.

Yuan et al. [66] Li et al. [41] Our method

Figure 8 97.00% 93.87% ρK 99.47%

Figure 10 91.70% 86.60% ρU 99.99%

Table 4
Iteration numbers and CPU time in seconds for multiphase segmentation.

Yuan et al. [66] Li et al. [41] Our method

Example Iter. Time Iter. Time Iter. Time

Figure 7 127 0.97 95 1.00 86 0.22

Figure 8 57 2.19 49 1.61 184 2.29

Figure 9 76 25.67 114 26.42 19 0.62

Figure 10 114 4.37 332 9.85 444 2.97

Appendix A. Mumford–Shah model and model in [11]. In this appendix, we show by
an example that with suitably chosen parameters, the model in [11] (i.e., (2.1)) can generate
the same solutions as the Mumford–Shah model (1.1). For simplicity, we let A = I.

We consider the segmentation of the image f = aχB(0,1) defined on the domain Ω = R
2,

where a is a positive constant and B(0, 1) represents the open ball centered at 0 with radius
1. We choose this image because the corresponding Mumford–Shah model (1.1) has explicit
solutions. Indeed, according to [22], there are two minimizer pairs (u,Γ) of the Mumford–Shah

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 123

model: (i) Γ = ∂B(0, 1) and u = aχB(0,1), and (ii) Γ = ∅ and u ∈ W 1,2(Ω) is the minimizer of

(A.1) min
u

{
λ

2

∫
Ω
|u− aχB(0,1)|2 +

μ

2

∫
Ω
|∇u|2

}
.

For the first pair, a segmentation is produced with Γ = ∂B(0, 1). For the second pair, we have
u = Ψ ∗ (aχB(0,1)), where ∗ stands for convolution and the Fourier transform of Ψ is known:

FΨ(ξ) = λ
λ+4π2μξ2

. This u can be regarded as a smooth version of aχB(0,1).

We now show that for both minimizer pairs, the two-stage segmentation (2.1) can yield
essentially identical results with proper selection of parameters. According to [12], for an
input image of the form f = aχB(0,1), solving the model (2.1) with μ = 0 gives the solution

u = max{a − 2
λ , 0}χB(0,1). Thus if λ > 2

a , this would produce exact segmentation of the disk
with boundary ∂B(0, 1), just like that of the first minimizer pair. On the other hand, if both
λ and μ tend to infinity, then the

∫
Ω|∇u|dx term will be negligible, and (2.1) will reduce to

(A.1), and hence its solution will coincide with that of the second minimizer pair.

In Figure 11, we show numerically that the minimization pairs for the Mumford–Shah
(MS) model (1.1) with λ = 5 and μ = 5 can be well approximated by solutions of (2.1).
Figure 11(a) is the original image, with the intensity of the middle horizontal line plotted
in Figure 11(f). Figure 11(b) is the u of the first minimizer pair of the MS model with
Γ = ∂B(0, 1), and Figure 11(c) is the solution of (2.1) with λ = 5 and μ = 0. It can be
seen that these two images are almost the same, and the intensity plots in (g) and (h) both
preserve the boundaries. Figure 11(d) is the u of the second minimizer pair of the MS model
with Γ = ∅, and Figure 11(e) is the solution of (2.1) with λ = 5 and μ = 5. From the intensity
plots in Figures 11(i) and 11(j), it can be seen that these images are very similar and that only
points close to the boundaries are smoothed. We stress that both Figures 11(b) and 11(d)
correspond to exact minimizer pairs of the MS model.

(a) Original
image

(b) MS model,
Γ = ∂B(0, 1)

(c) Solution with
μ = 0

(d) MS model,
Γ = ∅

(e) Solution with
μ = 5

0 50 100 150 200 250 300
0

50

100

150

200

250

300

(f) intensity of (a)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

(g) intensity of (b)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

(h) intensity of (c)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

(i) intensity of (d)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

(j) intensity of (e)

Figure 11. (a) Original image (257 × 257 pixels), (b) u of MS model, Γ = ∂B(0, 1), (c) u of (2.1) with
λ = 5, μ = 0, (d) u of MS model, Γ = ∅, (e) u of (2.1) with λ = 5, μ = 5, (f)–(j) intensity plots for (a)–(e).

124 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

Appendix B. Parameters used in the tests. In Tables 5 and 6 we list the parameters used
in the tests for the methods we compared with our method, i.e., those in [23, 41, 58, 65, 66].
Notice that we could not obtain the code for [58] from the authors before our paper was
submitted for publication, so we coded the method on our own. For parameters not listed
here, we used the default values in the codes given by the authors.

Table 5
Parameters of Yuan, Bae, and Tai [65], Dong, Chien, and Shen [23], and Sawatzky et al. [58] for two-phase

segmentation.

Yuan et al. [65] Dong et al. [23] Sawatzky et al. [58]

Figure 1 ulab = (0.5, 0.8), α = 0.5 μ = 20 α1 = 0.8, α2 = 0.4, β = 120

Figure 2 ulab = (0.1, 0.4), α = 0.5 μ = 35 α1 = 10, α2 = 10, β = 110

Figure 3 ulab = (0.35, 0.8), α = 0.1 μ = 20 α1 = 10, α2 = 50, β = 50

Figure 4 ulab = (0, 0.35), α = 0.1 μ = 100 α1 = 10, α2 = 50, β = 40

Figure 5 ulab = (0, 0.45), α = 0.4 μ = 20 α1 = 10, α2 = 50, β = 50

Figure 6 ulab = (0, 0.3), α = 1 μ = 5 α1 = 10, α2 = 50, β = 200

Table 6
Parameters of Yuan et al. [66] and Li et al. [41] for multiphase segmentation.

Yuan et al. [66] Li et al. [41]

Figure 7 ulab = (0, 0.3, 0.6), α = 0.1 λ = 0.01

Figure 8 ulab = (0, 0.37, 0.5, 0.74), α = 0.1 λ = 0.02

Figure 9 ulab = (0.2, 0.56, 0.8, 0.84), α = 0.1 λ = 0.001

Figure 10 ulab = (0, 0.6, 0.67, 0.74), α = 0.05 λ = 0.015

REFERENCES

[1] L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic
functionals via Γ-convergence, Comm. Pure Appl. Math., 43 (1990), pp. 999–1036.

[2] L. Ambrosio and V. M. Tortorelli, On the approximation of free discontinuity problems, Boll. Un.
Mat. Ital. B (7), 6 (1992), pp. 105–123.

[3] F. J. Anscombe, The transformation of Poisson, binomial and negative-binomial data, Biometrika, 35
(1948), pp. 246–254.

[4] G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl.
Math., 68 (2008), pp. 925–946.

[5] E. Bae, J. Yuan, and X.-C. Tai, Simultaneous convex optimization of regions and region parameters in
image segmentation models, in Innovations for Shape Analysis, Math. Vis., Springer-Verlag, Berlin,
Heidelberg, 2013, pp. 421–438.

[6] Z. Bao, J. I. Murray, T. Boyle, S. L. Ooi, M. J. Sandel, and R. H. Waterston, Automated cell
lineage tracing in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 2707–2712.

[7] L. Bar, T. Chan, G. Chung, M. Jung, N. Kiryati, R. Mohieddine, N. Sochen, and L. Vese, Mum-
ford and Shah model and its applications to image segmentation and image restoration, in Handbook
of Mathematical Methods in Imaging, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 1095–1157.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011),
pp. 1–122.

[9] X. Bresson, S. Esedoḡlu, P. Vandergheynst, J. Thiran, and S. Osher, Fast global minimization
of the active contour/snake model, J. Math. Imaging Vision, 28 (2007), pp. 151–167.

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 125

[10] E. S. Brown, T. F. Chan, and X. Bresson, A Convex Relaxation Method for a Class of Vector-Valued
Minimization Problems with Applications to Mumford-Shah Segmentation, UCLA CAM Report (10–
43), UCLA, Los Angeles, CA, 2010.

[11] X. Cai, R. Chan, and T. Zeng, A two-stage image segmentation method using a convex variant of the
Mumford–Shah model and thresholding, SIAM J. Imaging Sci., 6 (2013), pp. 368–390.

[12] V. Caselles, A. Chambolle, and M. Novaga, The discontinuity set of solutions of the TV denoising
problem and some extensions, Multiscale Model. Simul., 6 (2007), pp. 879–894.

[13] A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional and the
discrete approximations, SIAM J. Appl. Math., 55 (1995), pp. 827–863.

[14] A. Chambolle, Finite-differences discretization of the Mumford-Shah functional, M2AN Math. Model.
Numer. Anal., 33 (1999), pp. 261–288.

[15] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision,
20 (2004), pp. 89–97.

[16] A. Chambolle and G. Dal Maso, Discrete approximation of the Mumford-Shah functional in dimension
two, M2AN Math. Model. Numer. Anal., 33 (1999), pp. 651–672.

[17] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications
to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145.

[18] T. F. Chan, S. Esedoḡlu, and M. Nikolova, Algorithms for finding global minimizers of image
segmentation and denoising models, SIAM J. Appl. Math., 66 (2006), pp. 1632–1648.

[19] T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-based
image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964–1977.

[20] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. Image Process., 10 (2001),
pp. 266–277.

[21] C. Chesnaud, P. Réfrégier, and V. Boulet, Statistical region snake-based segmentation adapted to
different physical noise models, IEEE Trans. Pattern Anal. Mach. Intell., 21 (1999), pp. 1145–1157.

[22] G. David, Singular Sets of Minimizers for the Mumford-Shah Functional, Progr. Math. 233, Birkhäuser
Verlag, Basel, 2005.

[23] B. Dong, A. Chien, and Z. Shen, Frame based segmentation for medical images, Commun. Math. Sci.,
9 (2011), pp. 551–559.

[24] S. Durand, J. Fadili, and M. Nikolova, Multiplicative noise removal using L1 fidelity on frame
coefficients, J. Math. Imaging Vision, 36 (2010), pp. 201–226.

[25] I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Classics Appl. Math. 28, SIAM,
Philadelphia, 1999.

[26] S. Esedoḡlu and Y. Tsai, Threshold dynamics for the piecewise constant Mumford-Shah functional, J.
Comput. Phys., 211 (2006), pp. 367–384.

[27] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.
[28] M. Feigin and N. Sochen, Segmentation and denoising via an adaptive threshold Mumford-Shah-like

functional, in Proceedings of the 17th International Conference on Pattern Recognition, Vol. 2, IEEE
Computer Society, Washington, DC, 2004, pp. 98–101.

[29] M. Figueiredo and J. Bioucas-Dias, Restoration of Poissonian images using alternating direction
optimization, IEEE Trans. Image Process., 19 (2010), pp. 3133–3145.

[30] F. Galland, N. Bertaux, and P. Réfrégier, Multi-component image segmentation in homogeneous
regions based on description length minimization: Application to speckle, Poisson and Bernoulli noise,
Pattern Recogn., 38 (2005), pp. 1926–1936.

[31] M. Gobbino, Finite difference approximation of the Mumford-Shah functional, Comm. Pure Appl. Math.,
51 (1998), pp. 197–228.

[32] T. Goldstein and S. Osher, The split Bregman algorithm for L1-regularized problems, SIAM J. Imaging
Sci., 2 (2009), pp. 323–343.

[33] L. Grady and C. Alvino, Reformulating and optimizing the Mumford-Shah functional on a graph—
A faster, lower energy solution, in Proceedings of the European Conference on Computer Vision
(ECCV), Springer-Verlag, Berlin, Heidelberg, 2008, pp. 248–261.

[34] J. A. Hartigan and M. A. Wong, Algorithm AS 136: A K-means clustering algorithm, J. Roy. Statist.
Soc. Ser. C. Appl. Stat., 28 (1979), pp. 100–108.

[35] M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded variation–
based inf-convolution-type image restoration, SIAM J. Sci. Comput., 28 (2006), pp. 1–23.

126 RAYMOND CHAN, HONGFEI YANG, AND TIEYONG ZENG

[36] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu, An efficient K-
means clustering algorithm: Analysis and implementation, IEEE Trans. Pattern Anal. Mach. Intell.,
24 (2002), pp. 881–892.

[37] Y. Kim, Strictly Convex Realization in Two-Phase Image Segmentation, UCLA CAM Report (13–20),
UCLA, Los Angeles, CA, 2013.

[38] G. Koepfler, C. Lopez, and J. M. Morel, A multiscale algorithm for image segmentation by varia-
tional method, SIAM J. Numer. Anal., 31 (1994), pp. 282–299.

[39] T. Le, R. Chartrand, and T. J. Asaki, A variational approach to reconstructing images corrupted by
Poisson noise, J. Math. Imaging Vision, 27 (2007), pp. 257–263.

[40] J. Lellmann and C. Schnörr, Continuous multiclass labeling approaches and algorithms, SIAM J.
Imaging Sci., 4 (2011), pp. 1049–1096.

[41] F. Li, M. K. Ng, T. Y. Zeng, and C. Shen, A multiphase image segmentation method based on fuzzy
region competition, SIAM J. Imaging Sci., 3 (2010), pp. 277–299.

[42] F. Li, C. Shen, and C. Li, Multiphase soft segmentation with total variation and H1 regularization, J.
Math. Imaging Vision, 37 (2010), pp. 98–111.

[43] J. Lie, M. Lysaker, and X. Tai, A binary level set model and some applications to Mumford-Shah
image segmentation, IEEE Trans. Image Process., 15 (2006), pp. 1171–1181.

[44] L. Ma, M. K. Ng, J. Yu, and T. Zeng, Efficient box-constrained TV-type-l1 algorithms for restoring
images with impulse noise, J. Comput. Math., 31 (2013), pp. 249–270.

[45] J. MacQueen, Some methods for classification and analysis of multivariate observations, in Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California
Press, Berkeley, Los Angeles, 1967, pp. 281–297.

[46] M. Makitalo and A. Foi, Optimal inversion of the Anscombe transformation in low-count Poisson
image denoising, IEEE Trans. Image Process., 20 (2011), pp. 99–109.

[47] D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural images and its
application to evaluating segmentation algorithms and measuring ecological statistics, in Proceedings
of the Eighth IEEE International Conference on Computer Vision, Vol. 2, 2001, pp. 416–423.

[48] P. Martin, P. Réfrégier, F. Goudail, and F. Guérault, Influence of the noise model on level set
active contour segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), pp. 799–803.

[49] M. Morini and M. Negri, Mumford-Shah functional as Γ-limit of discrete Perona-Malik energies, Math.
Models Methods Appl. Sci., 13 (2003), pp. 785–805.

[50] D. Mumford and J. Shah, Boundary detection by minimizing functionals, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 1985, pp. 22–26.

[51] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated vari-
ational problems, Comm. Pure Appl. Math., 42 (1989), pp. 577–685.

[52] T. Pock, A. Chambolle, D. Cremers, and H. Bischof, A convex relaxation approach for computing
minimal partitions, in Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), 2009, pp. 810–817.

[53] T. Pock, D. Cremers, H. Bischof, and A. Chambolle, An algorithm for minimizing the Mumford-
Shah functional, in Proceedings of the 2009 IEEE 12th International Conference on Computer Vision,
2009, pp. 1133–1140.

[54] O. Ruch and P. Réfrégier, Minimal-complexity segmentation with a polygonal snake adapted to dif-
ferent optical noise models, Opt. Lett., 26 (2001), pp. 977–979.

[55] L. Rudin, P.-L. Lions, and S. Osher, Multiplicative denoising and deblurring: Theory and algorithms,
in Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer, New York, 2003, pp. 103–
119.

[56] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys.
D, 60 (1992), pp. 259–268.

[57] B. Sandberg, S. Kang, and T. Chan, Unsupervised multiphase segmentation: A phase balancing model,
IEEE Trans. Image Process., 19 (2010), pp. 119–130.

[58] A. Sawatzky, D. Tenbrinck, X. Jiang, and M. Burger, A variational framework for region-based
segmentation incorporating physical noise models, J. Math. Imaging Vision, 47 (2013), pp. 179–209.

[59] B. Shafei and G. Steidl, Segmentation of images with separating layers by fuzzy c-means and convex
optimization, J. Vis. Commun. Image Rep., 23 (2012), pp. 611–621.

IMAGE SEGMENTATION WITH POISSON OR GAMMA NOISE 127

[60] J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model,
SIAM J. Imaging Sci., 1 (2008), pp. 294–321.

[61] G. Steidl and T. Teuber, Removing multiplicative noise by Douglas-Rachford splitting methods, J.
Math. Imaging Vision, 36 (2010), pp. 168–184.

[62] A. Tsai, A. Yezzi, and A. Willsky, Curve evolution implementation of the Mumford-Shah functional
for image segmentation, denoising, interpolation, and magnification, IEEE Trans. Image Process., 10
(2001), pp. 1169–1186.

[63] L. Vese and T. Chan, A multiphase level set framework for image segmentation using the Mumford and
Shah model, Int. J. Comput. Vis., 50 (2002), pp. 271–293.

[64] Y.-W. Wen and R. H. Chan, Parameter selection for total-variation-based image restoration using
discrepancy principle, IEEE Trans. Image Process., 21 (2012), pp. 1770–1781.

[65] J. Yuan, E. Bae, and X.-C. Tai, A study on continuous max-flow and min-cut approaches, in Proceed-
ings of the Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
San Francisco, CA, 2010, pp. 2217–2224.

[66] J. Yuan, E. Bae, X.-C. Tai, and Y. Boykov, A continuous max-flow approach to Potts model, in
Computer Vision—ECCV 2010, Springer, Berlin, Heidelberg, 2010, pp. 379–392.

[67] J. Yuan, C. Schnörr, and G. Steidl, Simultaneous higher-order optical flow estimation and decom-
position, SIAM J. Sci. Comput., 29 (2007), pp. 2283–2304.

[68] M. Zhu and T. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image
Restoration, UCLA CAM Report (08-34), UCLA, Los Angeles, CA, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

