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Summary: Markovian queueing networks having overflow capacity are discussed.
The Kolmogorov balance equations result in a linear homogeneous system,
where the right null-vector is the steady-state probability distribution for the
network. Preconditioned conjugate gradient methods are employed to find the
null-vector. The preconditioner is a singular matrix which can be handled by
separation of variables. The resulting preconditioned system is nonsingular.
Numerical results show that the number of iterations required for convergence
is roughly constant independent of the queue sizes. Analytic results are given
to explain this fast convergence.

Subject Classifications: AMS : 65N20, 65F10, 60K25

1 Introduction

In Markovian queueing networks, most of the quantities of interest, for example
the blocking probability and the waiting time for customers in various queues,
can be expressed in terms of the steady-state probability distributions, which
are the solutions of the Kolmogorov balance equations. The resulting matrix
system has dimension N, where NN is the total number of states in the network.
This matrix is non-symmetric and known to have a one dimensional null-space.
The steady-state probability distribution is the normalized right null-vector of
this matrix.

For the models discussed in this paper, the graph of such a matrix derived
from a g-queue model is the same as that of a ¢-dimensional discrete Laplacian.
We note that even for systems with relatively small numbers of queues, say 4,
and a small number of waiting spaces per queue, say 20, the order N of the
matrix can be huge, in this case 16,000. Hence the matrix equations are rarely
solved by direct methods such as Gaussian elimination. Kaufman [11] has con-
sidered a special direct method which handles one or serveral large submatrices



by separation of variables, while the remaining variables are handled by a con-
ventional Gaussian elimination method. Different classical iterative methods,
for example, the point and the block SOR methods, are also discussed there. In
this paper, preconditioned conjugate gradient methods are empolyed. The pre-
conditioner is a singular matrix of order IV which can be handled by separation
of variables. Although the orginal matrix is singular, we can reduce the problem
to solving a non-singular system by computing the component of the eigenvector
which is orthogonal to the null-space of this chosen separable problem. Since the
states remaining are precisely those at which interactions between the queues
take place, the effective dimension of the problem can usually be reduced by an
order n, where n is the individual queue size.

For simplicity, we discuss only one overflow model here. The generalization
of the method to other models will be discussed in part II of this paper. In § 2,
we first generate the balance equations for the queueing models. We then discuss
how to change the problems of finding the null-vectors of these matrices, which
are of order N = n9, into linear inhomogeneous systems of order n?~!. Finally
we explain how to implement preconditioned conjugate gradient methods to
solve the resulting linear systems.

In § 3, we analyze the convergence rate of the method for systems with
very large queue size. The convergence rate depends on the spectrum of the
iteration matrices. We prove that the eigenvalues of these matrices are clus-
tered with only a few outlying eigenvalues. From these results, we derive the
fast convergence of our methods. As a corollary, we also establish the fast con-
vergence of the preconditioned conjugate gradient method when applied to the
oblique boundary value problems with the corresponding Neumann problem as
preconditioner, see § 3.9.1.

The numerical results are reported in § 4. A comparison is made between
this method and the point SOR method. We see that our method has a much
better performance. In fact, the number of iterations required to attain a given
accuracy is almost constant independent of the queue size.

2 The Equations and The Methods

A Markovian analysis of a queueing network based on solving the Kolmogorov
equations (see Neuts [14]) for the steady-state probability distribution involves
finding the null-vector of a large, sparse structured matrix. In this section, we
will derive these Kolmogorov equations, construct such matrices and describe
the iterative methods for finding the null-vectors for such matrices.

Let us first introduce the notations that we will be using. Assume that the
network has ¢ queues receiving customers from ¢ independent Poisson sources,
see Kleinrock [12]. In the i-th queue there are s; parallel servers, and n; —s; — 1
waiting spaces. Customers enter the queue with mean arrival rate \; > 0. The
departure distribution is independent and exponential with mean rate p; > 0.



Let p;, .,...,i, denote the steady-state probability distribution which gives the
probability of state (i1, ...,iq), i.e., the probability that i; customers are in the
J-th queue, j =1,..,q. Since 0 < i; < nj, 1 < j < g, the total number of states
in the system is N = [[%_, n;.

It is important to note that, in general, there is no need to obtain the
probabilities of all the states in the system. They may be used however to
compute such quantities as the blocking probability, the probability of overflow
from one queue to another, or the average waiting time of customers in various
queues.

We begin with a simple problem, which gives the idea of how the balance
equations and the corresponding matrix are generated. This problem is sepa-
rable and can be solved easily. It will be used as the preconditioner for more
complicated models.

2.1 The Free Model

For the problems which we will discuss in this paper, the balance equations
are generated by considering the rate at which a state is left and the rate and
state from which that state is entered. For example, let us consider a two-queue
network with no interaction between the queues. In particular, customers going
into a full queue are lost. If §;; is the Kronecker delta, then the balance equations
are

{A (1 = diny—1) + A2l = bjny—1) + pa min(i, s1) + p2 min(j, s2)}pi;
= M1 =0i0)pi-1,j + pa(1 = din, 1) min(i + 1, s1)pig1,;  (2.1.1)

A2 (1 = 6jo)pij—1 + p2(l = jny—1) min(j + 1, $2)pi 11,
for 0 < i < n1,0 < j < n2. The left hand side of (2.1.1) indicates the rate at
which state (i, 7) is left and the right hand side indicates from which states and

the rate at which state (4, 7) is entered. If we write the steady-state probability
distribution as

— *
Po = (pO,O)pO,l)'")pO,nzflvpl,Ov'"7p1,n2717'"7pn171,n271) )

where * denotes the transposition, then (2.1.1) can be written as Dpy = Cpo
where D is diagonal and C has zero diagonal entries but non-positive off-diagonal
entries. Let Ag = D — C. Then the steady-state probability distribution is just
the right null-vector of Ay, i.e.,

Aopo = 0, (2.1.2)

where Ag is of order N, N = nins. Since pg is a probability distribution, we

require
ne—1n;—1

SN =1, (2.1.3)

j=0 i=0



pij > 0. (2.1.4)

We will see that these constraints will uniquely determine pg.
From (2.1.1), we see that Ag is separable, in fact

Ao =G ® I, + I, ® Gy, (2.1.5)
where
Ai T |
“Ai Xt pi 2 0
—Ai At 2p —3p
o : : :
' —Xi Xitsipi =S
0 —Ai At s —Si
i —Ai Sifhi |
(2.1.6)

are matrices of order n;, and Iy is an identity matrix of order k. Unless ambiguity
arises, we will drop the subscript for I. Notice that the graph of Ag is the same
as the graph of the discrete Laplacian on a rectangle with mesh sizes (n; —1)~*.
We claim that the G; and Ay have one dimensional null-spaces. In fact we have
(see Berman and Plemmons [3] )

Lemma 2.1.1 An irreducible matrix A with zero column sums, strictly positive
diagonal and non-positive off-diagonal entries, has a one dimensional null-space.
The corresponding null-vector can be chosen to have positive entries. O

Thus G; has a one dimensional null-space with a positive null-vector and,
by (2.1.5), so does Ag. Hence the solution py to (2.1.2) - (2.1.4) exists and is
unique. In particular, the positivity constraints (2.1.4) can always be satisfied.
We remark that by the Gerschgorin theorem (see Varga [19]), except for the
zero eigenvalue, all the other eigenvalues of the G; and hence those of Ay are
positive. In view of (2.1.5), the null-vector pg of Ag can be expressed in terms
of the null-vector g; of G; as pg = g1 ® g». To find g;, we first notice that G;
can be symmetrized by a diagonal matrix. More precisely, if we define

S; = diag(‘dy, ..., dy,), i = 1,2, (2.1.7)
with
j—1
i H(#)% I1<j<ny
dj =a; - P min(k;’si)ui - ’ (218)
1 J=1

then S; 1G;S; is symmetric. Here a; is the normalization constant such that

N4

1,571, =) (fd)® =1, (2.1.9)

Jj=1



where 1; denotes the n;-vector of all ones. Since G; has zero column sums, i.e.,
1;G; = 0, we have,
G;S?1; = S?G31;, = 0. (2.1.10)

Thus S?1; is the null-vector for G;. Hence,
Po = S%1 = (Sl ® 52)2(11 ® 12). (2111)

By (2.1.9), po also satisfies the summation constraint (2.1.3).

We remark that the operator Ay has an analogue in the continuous case.
It resembles the finite difference approximation to an elliptic operator with a
transport term acting on a rectangular region with Neumann boundary condi-
tions on every side. A simple way to see this is to expand p; ; in (2.1.1) formally
in a Taylor series in the mesh sizes (n; — 1)™! and (n; — 1)~1. We also note
that if A; = g; = s; = 1 in (2.1.6), then the resulting Ag is just the usual
5-point difference operator for the Laplacian equation with Neumann boundary
conditions on every side.

The matrix Ag, though singular, will be used as the preconditioner for more
complicated models. It is thus necessary to define an appropriate generalized
inverse of Ag. We proceed by first obtaining a spectral decomposition of Ay.
Since S; 'G;8; is symmetric, there exist orthogonal matrices Q; and diagonal
matrices I';, ¢ = 1,2, such that

QrS;71GiSiQi =Ty, i =1,2. (2.1.12)

Here T'; = diag(vi,1,%i2, - -, Vi,n:) contains the eigenvalues {Wi,j}?;1 of G;. By
lemma 2.1.1, each G; has only one zero eigenvalue. Let us set 7;,,, = 0. By
(2.1.5), Ag can then be diagonalized by S1Q1 ® S2Q2. More precisely,

Q1S ®@ Q35S NA(S1Q1 ® $2Q2) = (M1 @[ +T®Ty) =%,  (2.1.13)

where
¥ = diag(X1, Za, Oy ),

with
Y =diag(y; + 72,0570 FY2me) =T+ L, 1< <mp. (2.1.14)

Since only vi,n, = 72,0, = 0, only the last block ¥,, = I'; is singular.
Because it is diagonal, it is easy to define its generalized inverse, or the {1}-
inverse, ¥ ; see Ben-Israel and Greville [2]. In fact,

S =T = diag(v 1, > Yoms—17)s (2.1.15)

with ~ defined arbitrarily. Since Ej’l is well-defined for 1 < j < no, the gener-
alized inverse X1 of ¥ is given by

>t = diag(T;, -, 20 L 8.

»“ni1—17"“n;



By (2.1.13), the generalized inverse A7 of Ag is thus given by
AT = (51Q1 © $2Q2)EH(Q1ST ® Q35,1). (2.1.16)
From the spectral decomposition of Ay, we see that
RN =span < py > @ Im(Ap), (2.1.17)

where Im(Ap) is the range of Ay. Moreover, A7 is invertible on I'm(Ap). In
fact we have

This follows easily if we write y = Z;VZI yje; where {e; }jvzl are the eigenvectors
of Ag with ey = po. In this representation, y € I'm(Ap) if and only if ynx = 0.
Combining (2.1.17) and (2.1.18), we see that for any p € RV, there exist unique
scalar a and £ € Im(Ayp), such that

p=apo+ AJE. (2.1.19)

2.2 Overflow In One Direction

Let us consider an overflow queueing model which is known to have no closed-
form solution as in (2.1.11). Assume that there are two queues in the network.
Overflow is permitted only from the first queue into the second. More precisely,
customers entering the first queue will be served by the second queue if all the
spaces in the first queue are occupied. On the other hand, customers entering
the second queue are lost if the second queue is full. This model is discussed in
Kaufman [11]. The balance equations for this model are given by:

{A (L = diny —10jns—1) + A2 (1 = Gjny—1) + pa min(é, s1) + p2 min(j, s2)}pi;
= )\ (1 — 5,‘0)])1'_1,3' =+ ﬂl(l — (Sinl—l) mln(z +1, Sl)pi—i-l,j (221)
+ (A0, -1 + A2)(1 = Gjo)pij—1 + p2(1 = Gjny—1) min(j + 1, 82)pi j41,
for 0 <i < ny, 0 <j < ny. This differs from (2.1.1) only in the coefficients of
pi; and p; j_1. The coefficient of p; ;_; indicates that customers are gained in
the second queue at a rate Ao, but if the first queue is full, additional customers
will also arrive at the second queue at the rate A;. Let p be the steady-state

probability distribution vector for this problem. Using the notations in § 2.1,
we are solving a homogeneous system of order N = njns, namely,

Ap = (Ao + Ro)p = 0, (2.2.2)

ni—1no—1

SN =1, (2.2.3)

i=1 j=0



pij > 0. (2.2.4)

Here
Ro = (‘en,'ep,) @ Ry, (2.2.5)
with
1
-1 1 0
Ri=\- o ) (2.2.6)
0 -1 1
-1 0

a square matrix of order ns. iej denotes the j-th unit vector in R™:.

By (2.2.5) and the fact that Ao satisfies the assumptions of lemma 2.1.1,
A also satisfies these assumptions. Thus A has a one dimensional null-space
with a positive null-vector. Hence the solution p to (2.2.2) - (2.2.4) exists and
is unique. Moreover, we have

Im(A) = Im(Ap) = {z € RV |1*z = 0}, (2.2.7)

where 1 = (1,1,---,1)* € RN. Since Ry = A — Ay, Im(Ry) C Im(Ap). By
(2.2.5), we see that

Im(Ry) = {z € RN| z = 'e,, ®y where y € R™ with Z y; =0}.  (2.2.8)

By (2.1.19), there exist unique a and & € Im(Ap) such that p = apy + Ag &.-
Since Al & € Im(Ap), we have, by (2.2.7), 1*p = 1*apy + 1*Af & = al*py.
By constraints (2.1.3) and (2.2.3), 1*py = 1*p = 1. Thus a =1 and

p=po+ A . (2.2.9)
Substituting (2.2.9) into (2.2.2) and using (2.1.18), we have
(I + RoA{)& = —Ropo. (2.2.10)

Using (2.2.5) and (2.1.11), it is easily checked that Ropo # 0. Thus the problem
of finding a null-vector to (2.2.2) has been transformed into the problem of
solving a linear inhomogeneous system (2.2.10).

We remark that (I + RoAg)é = AASE for all € € Im(Ap). Thus we are
preconditioning the equation (2.2.2) by Ay from the right. Although AA{ is
singular, we have,

Lemma 2.2.1 The matrix (I + RyA7) is nonsingular.

Proof: Since Im(Ry) C Im(Ap), hence (I + RoAg]) maps Im(Ap) into itself.
Moreover, the existence and uniqueness of p implies the existence and uniqueness
of a §y € Im(Ap) that satisfies (2.2.10). Thus the matrix is invertible in I (Ayp).



Suppose y € R" is in the kernel of this matrix. By (2.1.19), there exist unique
B and x € Im(Ap) such that y = Bpy + z. Hence (I + RoAl)y = 0 implies
that —Bpy = (I + RoAd)x + BRoA{po. Since Im(Ro) C Im(Ay), the right
hand side is in Im(Ap). Thus by (2.1.17), 8 = 0 and hence (I + RoAf)y =
(I + RoA$)x = 0. Since x € Im(Ap), this implies z = 0. Hence y = 0. O

By this lemma, it is legitimate to solve the inhomogeneous system (2.2.10).
By (2.2.10), & = Ro(—po — AZ &) € Im(Ry). By (2.2.8), & = len, ® yo where
Yo € R™ and there are only n, degrees of freedom in £. This suggests that
the system (2.2.10), which is of order N = nins, can be reduced to a system of
order ny. To achieve this, we first denote the projection from I'm(Rg) onto R™2
by E*. More precisely, we let

E="e, ®1I,,. (2.2.11)

We note that E*§ = yo and EE*¢y = Eyg = &. Premultiplying (2.2.10) by
E*, and after some simplification, it becomes an ns by ns system of the form
Byg = b, where

B=FE*(I+RyA{)E=1,,+ RRE*AJE, (2.2.12)

b= E*Ropo = R1E*po = (*dp,)* - R1S51,. (2.2.13)

Here 'd,, is given by (2.1.8). By (2.2.9) and (2.1.11), the probability distribu-
tion vector p of this model is given by

p=po+ Af Eyo = (S1 ® S2)?1 + A Eyo. (2.2.14)

We note that the second term in (2.2.12) can be simplified. In fact, using
(2.1.16) and some straightforward computations, we have

E*ATE = S2Q2E*(S1Q1 @ X Q1S @ NEQ3S, 't = S2Q29Q555 1,

(2.2.15)
where @ is diagonal and is given by
ny—1
2= ("gn ) 7"+ (gnm) - (2.2.16)

J=1

Here !¢, ; denotes the (nq,j) entry of the orthogonal matrix Q. ¥; and X}
are given by (2.1.14) and (2.1.15). Putting (2.2.15) into (2.2.12), we have

B =1+ R;5Q:2Q35;". (2.2.17)

When ns is of moderate size, this suggests we can compute and store B, and
then solve Byg = b by a direct method such as Gaussian elimination. However,
the numerical results given in § 4 are computed by using conjugate gradient



methods because we are also interested in the case when ns is very large. For
references on conjugate gradient methods, see for instance, Hestenes [9] and
Luenberger [13]. Since B is non-symmetric, we find yo by solving the normal
equation B*Byo = B*b. Thus, before the iteration, we generate {Q;,T;}7_,,
the eigenpairs of the symmetric matrices S; 'G;S;. This may be done by calling
a standard eigenvector subroutine, see the EISPACK manual [17]. Since the G;
are tridiagonal and the S; are diagonal, this requires O(n3) operations. Since
E;l, 1 <j < mng, and Ej{l are diagonal, ® can be generated in O(n3) opera-
tions by (2.2.16). In (2.2.17), as R; is a bidiagonal matrix, the matrix-vector
multiplication By thus requires approximately 2n2 + O(n») operations. Hence
solving the normal equations requires 4n3 + O(n») operations per iteration. The
storage requirement is n? +nZ + O(n;), since we need to store the @;’s. In Chan
[4], we mention two alternates that require the storage of only one of the @;’s.
We note that there is no need to compute the last entry of ®. In fact,

Lemma 2.2.2 ¢, the last diagonal entry of ®, can be defined arbitrarily.
Proof: Since 73, = 0, it follows from (2.2.16), (2.1.14) and (2.1.15) that

ni —1

¢, = Z (lqnl,j)2(71,j)_1 + (lqn17n1)277 (2218)
j=1

where 7 is arbitrary. The lemma is therefore true if 'gn, », # 0. Since 'q.,,
is the eigenvector corresponding to the zero eigenvalue of S;'G1S;, thus by
(2.1.10), 'q. n, = S11;. In particular, by (2.1.8), 1gn, n, = 'dn, #0. 0

Combining this result and the fact that Im(Ryp) is an (ns —1)-dimensional vector
space, we can further reduce the dimension of the system (2.2.10) to (ny — 1).
We will exploit this fact in § 3.

After obtaining the solution to Byg = b, we can generate the original null-
vector p by (2.2.14). We note that this step may require N (nj + no) operations
since A(J{ Eyg is not sparse and N storage spaces are required for holding p. How-
ever, in some particular but interesting cases, we can reduce both the operation
count and storage. For example, if only the blocking probability pn,—1,n,—1 is
required, then we only need to calculate an expression of the form e} Al Eyo,
where ex is the N-th unit vector in RY. By (2.2.11), ey = ey, E*. Hence by
(2.2.15), the form can be evaluated in O(n3) operations and requires only O(ns)
storage. As another example, suppose we want the probability of overflow from
queue 1 to queue 2, which is given by 27282 Pna—1,5, OF more generally, suppose
only a linear functional of p is required. In these cases, there is no need to gen-
erate and store p explicitly. The idea is to generate the solution one block at a
time, and then accumulate its contribution to the functional before we generate
another block. More precisely, suppose we want to calculate {*p, where [ is a
vector in RN. By (2.2.14) and the fact that the entries of S; are given by (2.1.8),



we only need to evaluate an expression of the form

s=1"(AF Eyo) = 1"(51Q1 ® S2Q2)ET(Q1S @ Q355 1) Eys.

Let us first partition [ into ny block, fl, -+, 1y, , each with ny entries, and define
R 1qn1,j(1dn1)71 ° S2Q22;1(Q352_1y0)7 ]‘ S j < nl) 2 2 19
Wi =191 g V-1.8,0.,5+ (0*S-1 . (2.2.19)
Unyng (Fdny)7H - S2Q2X (@355 yo),  J=na,
then it is easy to check that
s = Z Z(ldqukvj)l;’;wj.
j=1k=1

Thus it is clear that we can generate w; one at a time and accumulate its
contribution to [*p before we generate another w;. Hence no extra storage is
required for p. Notice that this way of accumulating the result blockwise does
not increase the work. Similar techniques are discussed in Banegas [1].
Let us consider an important special case, the single server case, where
s; = 1. In this case, we can derive explicit formulas for @;, I'; and ®. We will
show that @Q;x can be computed by using the Fast Fourier Transform. Hence the
operations count and storage required for each iteration can be further reduced
by almost a factor of n;. For references on Fast Fourier Transform, see Cooley
and Tukey [5].
We first give the formula for @Q; and I';, I = 1,2. By (2.1.6), with s; = 1, we
have
P -1
-1 g+, —1 0

S GiS = - ' o . (2.2.20)
0 -1 p+ % -1
-1 1

14

for I = 1,2, where p; = (%)% Let 0, ; = %, and define v ; by

. 1 .
sin(¢r,j — 01,5) = o sin ey j, (2.2.21)

for 1 < j < ny, or equivalently,

sin? 01,5

1 2
1 B . 2.2.22
> sin” 1y ; 1—2p;cosby; + p} ( |

It is easy to check that
. (%)%Q(Sin%/fl,jﬁiﬂ(@l,j +u5), s sin((m — Dby +4r))" 1<j <m,
j = —p? \1 —1vx .
YT GEED L j=mn
(2.2.23)

10



are the normalized eigenvectors of SI_IGI S; with eigenvalues

V L_2 ) o1<j
= { N (pr + " cos by ;) ;] an (2.2.94)
=mn

Thus Q; = (‘q1,'q2,-++,'qn,) can be generated without calling any EISPACK
subroutine.

Next we claim that, for any real vector z, Q;z, [ = 1,2 can be computed
by using the Fast Fourier Transform. In fact, by (2.2.23), the k-th entry of this
vector is given by

2 = 1—pF 1 4o
(Qu)y = (n_z)2 ZSlﬂ((k—l)el,j+¢l,j)$j+(71 pzfu)QPf Lo,
i=1 i
2.1 nl_l'k 1)0; i1 i 1_Pl2 L ok—1
= (HIMAG S 37 e (i) b+ () el
j=1 {

where IMAG means taking the imaginary part. The numbers z; = e™¥tiz;, j =
1,---,n; can be computed by using n; complex multiplications. The expression
Z;”:1 etk=1)01; zj can be evaluated by the Fast Fourier Transform. This requires
only O(n;logn;) operations for arbitrary n;, see Chan [4]. From (2.2.17), we
see that the work and storage required for computing the matrix-vector multi-
plication By are thus reduced to O(ns logns) and O(ns) respectively. The work
of generating the whole null-vector p can also be reduced to O(n3logns). We
remark that when using the Fast Fourier Transform, there is no need to store
Q. Thus the storage requirement is reduced from O(n?) to O(n;). If only one
of the s; = 1, we can still reduce the work and storage by the same amount, see
Chan [4].

Finally we give a formula for ®. First we recall from lemma 2.2.2 that ®,,,
can be set arbitrarily. For 1 < j < ns, by (2.2.16), and using the formulas for
Q1, vi; and @, ; in (2.2.22) - (2.2.24), the j-th diagonal entry of ® is given by

2 N~ sl = D ) | o pi

B, = — /
’ n = (ke +72.4) L—pi™ 2
ni—1 . ¢ < 2mq —
i Z sin® (Y —b1e) | 1-pf  pi™m7?
= (e +72,5) 1—p{™ 2,
_ 2 ol SiIl2 917k
ny = (1= 2pycosbyi + pi) (i (Ll — 2p1 cosbr + p7) +72.5)
1—pt pim°
+ ong -
1 —p V2,5

11



21 mal sin® 01k
ny vz, =t (1= 2p1cost i + pi)
_2m mzl sin” 01,k R S
n1 Ya,j Pt ,ul(l — 2p1 cos 917]6 + pf) + 2,5 1-— an V2,5
2n 2
By the Poisson summation formula, see [16], the first term is equal to (@ (‘il ;2n1))
V2,5
which combines with the third term and gives
—1 -2
1 2 1 's sin” 61 j,
oj=— - —— = . 2.2.25
Ty maiy ; p1(1 = 2py cosby i + pi) + 72,5 ( )

The second term in (2.2.25) can also be computed by using the Poisson sum-
mation formula. To apply the formula, we notice that

(1 —2p1cosb i +p%) + ’yj—lj = % {1 - 2ajcos2017k +a§},
j

where a; is the smallest root of

1 V2,5
ai—(p+—+ —=2=)a; + 1 =0. 2.2.26
(p1 o >\1M1) ( )
Thus,
2 n1z—:1 sin elk _ 3 Z Sin 01k
m = (1—2picosfyy +p7) + 22 Com = 1-2a;cosb x + a

aj
1
2n1 -2
Putting this into (2.2.25) we have,

Lemma 2.2.3 In the single server case,

1 a; [1-— a?m—?
— 1- 2 2 1<y <n )
®j =14 7y { P ( 1— a2 =St (2.2.27)

arbitrary Jj =na,
where a; are given by (2.2.26). O

Thus ® can be generated in O(ny) operations.

Let us remark that the matrix A also has an analogy in the continuous case.
Notice that Ry in (2.2.6) is the forward difference operator on a line. Thus Ry
in (2.2.5) resembles an operator which is zero in a rectangular region, but with

12



a tangential derivative along one of the sides. This particular side corresponds
to those states where the first queue is full. Recall that Ag resembles a finite
difference approximation of an elliptic operator with a transport term on the
same region and with Neumann boundary conditions on every sides. Thus the
continuous analogy of A = Ag + Ry is the finite difference approximation of
the same operator as Ag, but with an oblique derivative on the particular side.
Thus an intuitive explanation for the fast convergence of the method is that the
preconditioner Ag is a good approximation to the operator A, in the sense that
it changes its oblique boundary condition into a Neumann boundary condition.

In the single server case, the underlying elliptic operator has constant coef-
ficients and is given by

M+ p1)pee + Ao+ p2)pyy + 2(n1 — 1) (1 — A1)pe

Thus for n; large, one reasonable limit to consider is p; — A\; = O((n; — 1)%) for
a certain «. In § 3, we will analyse the method under this limit.

3 Analysis of a Model Problem

In this section, we establish the fast convergence for the model we discussed in
§ 2.2 in the single-server case, i.e. s; = so = 1. We will show that the number of
iterations required to attain a given accuracy increases no faster than O(log® n,)
when n; increase. For simplicity, we consider only the case where \; < p; here.
The case where \; > p; can be proved similarly and is given in Chan [4]. First,
let us define clearly the limit we are taking.

3.1 Defining the Parameters

Recall that when we expand p; ; in (2.2.1) with s; =1 and
h”i = (nl - 1)_17 i = 1727 (311)

then the underlying continuous equation is of the form (2.2.28). Thus to obtain
a reasonable limit when the queue sizes n;, ¢ = 1,2, are large, we assume that
the traffic density and the queue size satisfy the relation
s
“=1-8hY, i=1,2, (3.1.2)
i
where p;, 8;,% = 1,2 and « are constants independent of h;. We remark that
Lemma 3.1.1 Given arbitrary {\;, pi, hi}?_,, such that 0 < \; < p; and 0 <
h; <1,i=1,2,if we define a by

log(1 — 2¢)
— H Hi
a=I0 { log h; ’ (3:1.3)
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and 8 by (3.1.2), thena>0and 0< 3; <1,fori=1,2. O
The proof is easy. In view of this lemma, we assume in the following that
a>0and0< B; <1,i=1,2. (3.1.4)

Moreover, in order to avoid taking two limits simultaneously, we assume that
when h;, 1=1,2, tend to zero, the compatibility condition

22— G (3.1.5)

holds, where Cy is a constant independent of h;. We remark that by choosing
a suitable time scale, we can assume that u; = 1. This implies A; < 1. In the
following, we use C' to denote any generic positive constant that depends only
on «, u; and B, ¢ = 1,2, and is independent of h;. We note that by (3.1.2) and
(3.1.5)

A1, Ae
—)/(—=) =1x£0(hy). 3.1.6
ul)/(uz) (hi) (3.1.6)
Thus, there exists a C such that
1 X\
— o4 . 1.
c < " <C (3.1.7)

To begin the analysis, we first note that with s; = 1, (2.1.7) becomes

S; = a; - diag(1, pj, ..., p ), i=1,2, (3.1.8)
where
i1 ayl
pi=(—)2=(1-ph2 <1, (3.1.9)
i
and
1—p? 3
az‘ = (W) . (3.1.10)

Notice that for a > 0 and h; sufficiently small,

p?(m—l) =(1- ﬂzh?)% — e%log(lfﬁihf‘) — efﬁih;.’_lfO(h?"_l)'

2

Thus we have,

Lemma 3.1.2 For all a > 0, there exists H; = H;(«, 3;), i = 1,2, such that for
all h; < H;, we have

pmil) < =BT <05, i 0<a <1, (3.1.11)

and ‘ o
pi > p2TH > o2k S (250 if o > 1, (3.1.12)

14



where »
ci =ci(a, B;) = e Bl O (3.1.13)

From this lemma, we see that there are two different cases to be considered,
namely, the cases where a < 1 and o > 1.

3.2 The Case when o < 1

For a < 1, the problem of solving p in Ap = 0 approaches the separable problem
Aopo = 0. More precisely, we have

Theorem 3.2.1If0<a < 1and 0< h; < H;, for i = 1,2, then
||Ap0||2 S 86_61”1171.
Proof: By (2.2.2), (2.1.2), (2.1.11) and (3.1.8), we have
Apo = (Ao + Ro)po = Ropo = (“en, '€}, ® R1)(S711 ® S31,)
= (al)pr(m*l)(lemle:‘l1 ® R1S31,).

Thus by (2.2.6), (3.1.10) and (3.1.11),

IApoll2 = (a1)?pi" V|| RS2 1)
1
_ oy ey (L= 1—p3 2,1+p3”2*6 :
- 1P 2n1 2no 1 2
1= p 1—p3 (14 p3)
1 1 2(n1—1)
S P T g

< 8 MM g

This lemma shows that when o < 1 and n; is sufficiently large, po is already
a good approximation to p. In fact, when a < 1, (po)i; is exponentially small
for i close to ny — 1. Hence the direction of the derivative along the boundary
1 = n1 — 1, oblique or Neumann, does not have much effect on the solution.
As an example, we note that when o = 0 and p? = 3; = 3, i = 1,2, then
[|[Apoll2 < 10710 when n; > 32.

3.3 An Equivalent Problem

In the next few sections, we will analyse the spectrum of the iteration matrix
B*B when a > 1. Here B is given by (2.2.17). However, we find that it is easier
to work with the following similar transformation of B. We define

Bs = Q355 ' BS2Q2 = I + Q355 ' R1S2Q. (3.3.1)
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We note that the transformation matrix is bounded in the l» norm. More
precisely,

Lemma 3.3.1 For a > 1 and hy < Hs,

llas ' S2Qsll2 = a3 ][ Sall2 = 1, (3.3.2)

*a— _ —(ng— 1
o235 lla = a5l = oy 7 < . (333
Here as and co are given by (3.1.10) and (3.1.13) respectively. O

The proof follows immediately from (3.1.8) and (3.1.12). Using this lemma, we
claim that the spectrum of B*B and B} B, are equivalent.

Lemma 3.3.2 Let the singular values of B and B; be 0 < o1 < -+ < gy, and
0<6y <--- <y, respectively. If « > 1 and he < Hj then

1
0205 <6 < pcl 1<j<ns. (3.3.4)

Proof: Given an arbitrary subspace R’ of dimension j in R"2, by (3.3.1), we
have, for all u € Q3S; - R7,

* % * 2qQ—2 * % * —2 Q2
w'B;Bsu  2%a3S, 2 y*B*Byx*a, " Syw
- )

u*u 2*z y*y r*r

where z = Q2u, y = Sex and z = By. By the Courant-Fischer theorem, see
Parlett [15], and lemma 3.3.1,

* %

- uw* B Bsu

032- < max 7i s
w€QESy'RI UTU

z*a3Sy %z y*B*By z*ay > S3x
——=— -max >¥——— - max ————

< max _
zER™2 2*z yeERI  Y*y zER™2 T*x
1 y*B* By

< — - -max ———-.

3 yeR  Y*y

Hence using the Courant-Fischer theorem again, we have 367 < o7 . The
other inequality in (3.3.4) can be established similarly by using the maximin

characterization of the j-th singular value. O
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3.4 Matrix Identities and the Norm

of ¢

In this section, we will prove three lemmas that are the tools for deriving the
bounds for 61 and G,, in the next subsection. Let us begin by defining

P2
-1 P2 0
Ro=25'R 8, = ' :
A1 .
0 -1 po
-1 0
P2 -1 .
-1 p2+ s -1 0
Gy = (Aapin) 285 1G Sy = .
1
0 -1 P2 + p_z
-1
1
P2
-1 0 1 0
7. = L.
0 -1 0 1
-1 —po
and )
Ly = (Qopo) ™7 - Ty = diag(n, o, i)
where by (2.2.24),
v = Y2, 1 :{ p2+p1—2—2(:050j 1§j<n2
(A2p2)2 0 J = na,
with )
9, =25, 1<j<n..
UP)
By (2.1.12), we have
Q‘;GSQZ =T%s.

It is straightforward to verify

Lemma 3.4.1 The following matrix identities hold for all p» > 0.

(1) RS‘R: = p2G8>
2)  Z,G, +GsZ* =0,

17
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(3) Q3Z:Q:Ts +T5Q5Z;Q2 =0, (3.4.10)
1
(4) 2R, =G+ (p2 — p—)In2 +Zs. O (3.4.11)
2
We remark that the variables A; and p; have dimension (1 / time). In contrast,

the variables ps and 7;, 1 < j < ng, are all dimensionless. Thus the matrices
Rs,Gg, Zs and T's are dimensionless. Accordingly, we define the dimensionless

®, = (Aap2)? - @, (3.4.12)
where ® is given by (2.2.27). We note that by (3.3.1), (3.4.1) and (3.4.12),

A
By=1+ A—lQ;‘RsQQCI)s. (3.4.13)
2

Moreover, the diagonal entries ¢; of ®, are given by

1 a;j1—a3™™?
i=—|1-—2—2_— | 1<j<ny, 3.4.14
& %‘( P1 1—a§”1 =7 2 ( )

where a; are given by (2.2.26). In view of (3.4.5), a; is the smallest root of

1
ai — (p1 +p—+mj)aj+1:0, 1<j < no, (3.4.15)
1
where ,
Azﬂz) 2
=(Z=) >o. 3.4.16
c= (2 (3.4.16)

We note that by (3.1.7), there exists a C' > 0 such that,
cl<¢<o. (3.4.17)

Since the constant term in (3.4.15) is 1, thus

wj — (w2 —4)2 2
aj = Wy =2 _ : — 1< <ny, (3.4.18)
2 wj + (wj —4)2
where 1 .
wj=p1+ o + (v, 1< <no. (3.4.19)
1
Since
1
T+=->2 V>0, (3.4.20)
T

v; > 0 by (3.4.5). Hence w; > 2 by (3.4.19) and a; < 1 by (3.4.18).

Lemma 3.4.2 ¢; is a decreasing function of j for 1 < j < na.
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Proof: By (3.4.14),

1 —a; 1 (1—a; _ 1+a; .
%:——Gl—i>+——< ﬂ' aj" T ), 1<) <na.
P1 i P1 Vi 1_%’

(3.4.21)
We claim that the terms in the right hand side are decreasing functions of j.
By (3.4.5), we see that «y; is an increasing function of j for 1 < j < ny. Thus
by (3.4.19), w; increases w.r.t. j. Hence by (3.4.18), a; decreases w.r.t. j and

_1 1+4a;

201 —1 j

2m T Next we observe that by (3.4.15),
j

sois a

1
(aj — p1)(a; — —) = (vjay.
P1

Thus the first term in (3.4.21) can be rewritten as

1p—a _ _ Ca
P 1= pia;

(3.4.22)

Since a;,p1 < 1, the right hand side is a decreasing function of j. Finally,
— aj 1- P1 pP1 — Gy

since = + , is a sum of two decreasing functions of j,
Vi Vi Vi

1 1- as \ . . . .

— is also a decreasing fuction of 5. O

P1 Vi

We note that the right hand side in (3.4.22) is positive, thus

1>p1>a; >0. (3.4.23)

Lemma 3.4.3 For « > 1 and h; < H;, i = 1,2, we have,

(1) ¢;>C>0, 1<j <y, (3.4.24)
n2 .
(2) ¢;<C- PR TANC (3.4.25)
Proof: To prove (1), we first note that by (3.4.5),
1 1 ,
’Yj:P2+p__2COS‘9j<P2+p_+2v 1<j < ns. (3.4.26)
2 2

Hence by (3.4.18) and (3.4.19)

1 1 1
—<wj<pr+—+Cp2+—+2) 1<j<na. (3.4.27)
a; P1 P2
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Hence,

1-— P1G; 1 1 1 .
———=——-p < —+((p2+—+2), 1 <5< na.

a; o " (2 P2 ) S
Since a;, p1 < 1, the first term is positive, hence

aj 1 1 1
—_— > |—+ +—+2 > 0. 3.4.28
> o la+ -+ 2) (3.4.29
Notice that the second term in (3.4.21) is nonnegative. Thus by (3.4.22),
pr—aj _ _ Cay

P17j 1 —pia;

By (3.1.12) and (3.4.17), (3.4.24) follows.
Next we prove (2). By (3.4.14),

2(77.171)
1 a: 1—a; .
Y5 pP1 l—aj

1 1 .
bj > >C=4Cpr+—+2)]7" 1<) < no.
P1 P2

_ . 2(n1—1)

We note that - 1aj T 2 ";;1 This is because a; < 1 and f(t) = +(1—a') is

a decreasing function of ¢ when 0 <a<1landt>0. Thus

1 ‘ng—1 S ) . 1
0 < — (1 - ) SO W S L (g y0)
vj p1m vipr vipne l—aj o ym

where the last inequality follows from (3.4.22) and (3.4.23). Notice that by
(3.4.15) and (3.4.20), we have

1 .
(a; — 1% = (p1 + p_1 — 24 (y)a; > (a5, 1<j<ns.

Since a; < 1, this implies

Caj Caj 1 .
—— < (= 1< . 3.4.30
l_aj_(%)za <Jj<ng ( )

Hence (3.4.29) becomes

¢; < C LI (3.4.31)
i im

Notice that by (3.4.20) and the inequality sin % > ;L we have

n:

1 6, 5 0;
yj:p2+——2+4sin2§ﬂz4sin25]2 , 1<j < no. (3.4.32)

4;?
p2 5
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Thus (3.4.31) becomes

A 2 c
¢j§\/@_”+ e <3 \/_+—0@<C—1<]<n2 O (3.4.33)
2j 452m J

Recall that by lemmas 2.2.2, ¢, can be defined arbitarily. Thus for simplicity,
we assume in the following that
Pny = 0. (3.4.34)
With this, lemmas 3.4.2 and 3.4.3 give
[|@5]]2 < Cnoa. (3.4.35)

3.5 Condition Number of B

We are now able to derive an upper bound on the condition number of B, and
B. We first obtain an upper bound for the largest singular value of By.

Lemma 3.5.1 Fora > 1and h; < H;, i =1, 2,
[|Bsll2 < C - na.
Proof: By (3.4.13), (3.4.35) and the fact that @2 is orthogonal,

A1 A1
[Bslla <1+ )\—2|le||2||‘1%||2 <1 +C)\—2n2||Rs||2.

y (3.4.8), (3.4.7) and (3.4.26),
1Rs|[3 = [|Rs Byll2 = pol|Gill2 = p2|ITsll2 < (p2 +1)* < 4.
Thus ||Bs|la < 1+ C’i—;ng. By (3.1.7), the lemma follows. O
To derive a lower bound for the smallest singular value of B} B, we need

Lemma 3.5.2 Let By, = B,W. If Apin(Byw+B),) > § > 0 and W is nonsingular,
then

_ 2
1Bl < S
Proof: For arbitrary z, using the Cauchy-Schwartz inequality

Sllzl3 < Amin(Buw + By)l|zl3 < 2™(Bw + B,

w

)z = 22" Byx < 2||z||2||Bw||2-

Since B,z is arbitrary, this implies || B || < 2/d and

_ . _ 2
1B 2 = [[WW B | < ([WL1BL 2 < SIIWl>. B
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An appropriate W is given by
W = diag(v1¢7 ", s Vo181, 1), (3.5.1)
where v; and q&;l are diagonal entries of ®; and I's respectively. We note that
e W =T,. (3.5.2)
We establish

Lemma 3.5.3 For all a > 1, there exists an 0 < H3 < min{H;, H»}, such that
for all hy, ho < Hs3, we have

Amin(Bw + BY) > C - h3. (3.5.3)
Proof: By (3.4.13), (3.5.2), (3.4.11) and (3.4.7),

1A 1
By =BW =W + L[y + (po — —) - I + Q5 Z,Q5]T.
2 Xa P2

Thus by (3.4.10),
* A1 ]-
B! 4+ By =2W + —[[s + (p2 — —)I|Ts,
A2 P2

which is a diagonal matrix. Hence by (3.4.5)

. . 1, N
)‘min(Bw +By) =2 1g;l<nn2{7j ’ [¢J + /\_2(/)2 B COSQJ-)L 1}.

By lemma 3.4.2, qﬁj_l is an increasing function of j for 1 < j < ns, and by (3.4.5)
and (3.4.6), so are v; and — cosf;. Thus

A
Amin (B + By) > 2- min{yi[¢;" + A—l(pz — cos6y)],1}. (3.5.4)
2

Notice that by lemma 3.4.3, ¢;' > C - hy, while by (3.1.2) and (3.4.6),
1
po — cosby = m2h3 — 552}7,3 + higher order terms. (3.5.5)

Thus when « > 1 and hs sufficiently small, qﬁl_l + i—;(pg —cos#y) > C-hs. Hence
by (3.5.4), Amin (B}, + Byw) > C - y1ha. By (3.4.32), (3.5.3) follows. O

w

For @ = 1, by comparing (3.4.33) and (3.5.5), we see that for all sufficiently
small ho, the right hand side in (3.5.4) is positive if

A
2(v/C + %)*1 > %/32/\—;. (3.5.6)
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Thus we have

Corollary 3.5.4 If & = 1 and (3.5.6) holds, then there exists an Hz > 0, such
that for all hy, ho < Hs, (3.5.3) holds. O

We remark that in the case where A\; = A2, 1 = po and ny = no, then (3.5.6)
is always satisfied.

Since gzﬁj_l and +; are increasing functions of j, ||W||2 < max{yn,—1 QS;;I, 1}.
By (3.4.26) and (3.4.24), we thus have

W]l < C.
Hence by lemmas 3.5.2 and 3.5.3, we get

Lemma 3.5.5 Assume that either & = 1 and (3.5.6) holds or a > 1, then for
hi,hs < Hz, we have
1B l2 < C-n3.0

Combining this result with lemmas 3.5.1 and 3.3.2, we obtain

Theorem 3.5.6 Let x(B) be the condition number of B. Assume that either
a =1 and (3.5.6) holds or a > 1, then for hy, hy < H3, k(B) < Cnj. O

This theorem suggests that the convergence rate of the ordinary conjugate
gradient method, when applied to the normal equations corresponding to B or
B, may be extremely slow. However, in § 3.8, we will show that the method
converges quickly as a consequence of a clustering of the singular values. To do
so, we need more information about the matrix ®; and Z,. For simplicity, we
will also reduce the dimension of the problem further to no — 1.

3.6 More Matrix Identities and the Approximation of ¢
Define the projection @), of Q2 as the ny by ny — 1 matrix

@ =la1, s tna—1l; (3.6.1)

where ¢; are the i-th column of Q5. Define also the ny — 1 by ns — 1 matrices

‘I>p = diag(gzﬁl, ceny anz,l), (362)

FP = diag(’71> ~»’7n2—1), (363)
1 .

L = p—2Q2(261)(26T)Qp, (3.6.4)

Ly = paQy(en,)(en,)Qp (3.6.5)

LO = L1 — LQ, (366)
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1 0
0 0 O 0
Ly = - , (3.6.7)
0 0 0 po
p2 —1
L4 = (I)pLO + LO(I)p. (368)

We remark that L; and L. are matrices of rank 1, while Lo, L3z and L4 are
matrices of rank 2, 3 and 4 respectively. Moreover, these matrices are symmetric.
We note that by (2.2.23) and (2.2.21), the (k, j)-entry of the L; satisfy

1 2 . ; .
(Ll)k:,j = ——SIn ’(ﬁng SlnlﬂQ’j = (—l)k-H (Lg)k%j, 1 S k,] < ns. (369)
P2 N2

Lemma 3.6.1 The following identities hold for all p, > 0.

(1) RyRs = p2Gs + Ls, (3.6.10)
(2) Lo= %Q;(Zs* + Z5)Qyp, (3.6.11)
3)  RiQz-(Pen,) = On,, (3.6.12)
4) @Q3Z:;Q2%5 = [ Q;Zprq)p 0"6‘1 ] : (3.6.13)
na—1
(5)  Q5Z,QoTs = [ Q;Z*SQ”F” Onz—1 ] : (3.6.14)
0%, 4 0
1
6)  {@pZsQp®p + Q2 Qp}
1
= Ly — 5{®,Q}2:Qp + Q3 2;Qp®, ). (3.6.15)

Proof: (1) and (2) can be proved by straightforward computations. (3) follows
directly from (2.2.23) and (3.4.1). To prove (4), observe that by (3.4.34),

Q;ZSQQq)sQeng = Q;ZSQQO‘H,Q = Op,
On the other hand, by (3.4.11), (3.4.7), (3.6.12) and (3.4.34),

Zen Q3 Z;Q2®s = {2- %€l Q3RsQ2 — el (po — p—z)I — 2% T, }®, = 0,,.
The proof of (5) is similar to that of (4). (6) follows from (2) and (3.6.8). O
For i = 1,2, we also define the (ny — 1) by (ns — 1) matrices

ni—1

Wi= > (e ) Cp+ 3 D7 LTy + 5 - 1) 7Y (3.6.16)
=1
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where (1qn, 1), given by (2.2.23), is the (n1,1) entry of @ and

1 1 I
3 - — —2cos—) 1<1 ,
’Yl = —717[ = C(pl + pl cos 'I’Ll) - < nl (3617)

(Aapio)? 0 l=n.
Here 71, and ¢ given by (2.2.24) and (3.4.16) respectively. We have,
Lemma 3.6.2 W, and W, are positive semi-definite matrices and satisfy
(1) W)y = (=D W)y, 1<k,j<no, (3.6.18)
(@) Wi W= (2,070, + QZIQ%)  (36.19)

Proof: To prove that the W; are positive semi-definite, we first note that, the
L; are symmetric, and the (I'y, +4; - I), 1 <1 < nq, are diagonal. Thus the W;
are symmetric. Next we observe that by (3.6.17) and (3.4.20),

1 Ir 4 S lr
51> =(2—2cos —) = —sin? — >0, 1<I<mn. 3.6.20
Y2 C( n1) C . > 1 ( )
Hence for all £ € R™~1, by the definition of W; and Lj;,
nlfl
O Wiz = 3 A e T 5 D) 20, (3621
=1
ny—1
P War = pr 3 AuCan 2l (T 450 D' Q5Cen)P 20, (36.22)
=1

To prove (1), we observe that by (3.6.16),

nlfl

(M qny 1)? . .
Wik = Liey Inl) < ki<ny, i=1,2. (3.6.23
(Widrj = (Lidis — (yr+3) (v + ) =5 2 ( )

Thus by (3.6.9), (1) follows.
Next we prove (2). By (3.6.13), (3.4.10) and (3.6.11), we have, for 1 <1 < ny,

QrZsQp(Tp +3 - D)+ (Tp+3-1)Q,Z;Qp = 3{Qy(Zs +Z7)Qp}
= 29y Lo. (3.6.24)

Since 7; > 0 for 1 < j < ny and 4, > 0 for 1 <1 < ny, hence (I', + 4, - I),
1 <1 < ny, are positive definite and thus invertible. By (3.6.24),

(Tp+ 3 D)7 QpZsQp + Q3 Z;Qp(Typ + 71 - )™
= 29(Cp+%-I)'Lo(Tp+5-1)7".  (3.6.25)
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Recall that by (2.2.16), (2.1.14) and (2.1.15),

ni —1

o= ("gn ) o470 D7+ (nyns) TS
=1

Restricting to the (ns — 1)-dimensional space and noting that 4,, = 0, it is easy
to check that

Z Gni)? - (Cp+ 5 - )7 (3.6.26)

Thus multiplying (3.6.25) by (*gn,;)? and taking the sum from [ = 1 to n;, we
get

n171
,Q52:Qp + Q3 Z:Qp®; = 2> Hi('qn,)? Cp+ 7 D) Lo(Tp + 4 - 1)
= 2{W; — Wy},

where the last equality follows from (3.6.6) and (3.6.16). O
Finally we give an approximation <i>p of ®,. According to (3.4.21), we define
¢, = diag(¢1, ..., fna—1), (3.6.27)
where ¢; is the first term of (3.4.21), i.e

G ==Y 1<j<n,. (3.6.28)
P17j

Define C to be a constant such that

Co n2 <)\1M1>‘11
Ci>—=— . 3.6.29
VS A2 12 ( )

It exists by (3.4.17). We claim that &, is an approximation of ®,.

Lemma 3.6.3 For all a > 1, there exists an 0 < Hy < H3 and C > 0 such that
for hy and hy < Hy and Cy logns < 7 < ns, we have

(1) o™ <C/nd, (3.6.30)
- C
(2) 0<¢j—9;< T (3.6.31)

Proof: We prove (1) first. Observe that by (3.4.19), (3.4.20) and (3.4.32),

-2
@) =0 2 [@+ 0 — 4 2 [ +4¢5)" -4} 2 4V/Cifny, 1< <na.

2
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Thus (3.4.18) gives

2

a; < 22 +4¢L +4/C
2

’ Iyt <+ \/Zni)”, 1<j<ns.  (3.6.32)
2

)

If 5 > ny/+/C, this and (3.1.5) give

ow

a?nl S (1 + 1)74n1 — 674n1 log 2 S 6727“ S i3 S (3633)
n

If j < ny/+/C, then (3.6.32) and (3.6.29) give
@< (1 Tl = VB OOt < 930,
2

for hy and hs sufficiently small. Hence if Cy logns < j < na/v/C,

1
a?rn S 67310gn2 S —
3

Combining this with (3.6.33), we get (1

)- N
To prove (2), we observe that by (3.4.21) and the definition of ¢;, we have
- 1—a? a?™
bi— i = i 1< <ne. (3.6.34)
T g (1—ad™) v

Since a; < 1, this implies ¢; — ¢; > 0. By (3.4.27) and (3.6.30), we see that for
h; < Hy and C; lOg’IlQ S] < Mns,

1-a? 1+ Ch3

J < + 2 <0, VCilogns <j < ng.

praj(l—ai™) = pig;

Hence by (3.6.30) and (3.4.32), (3.6.34) becomes

- Ca’™ C C
$j—¢; < —— < —= < ——, VCilogny <j <m0
Vi Yiny T2

3.7 Clustering of Singular Values of B

Using the lemmas in the previous section, we are able to prove that the singular

values of B are clustered. More precisely, we will show that B*B = (1 + i—;) .

I+ L+ U, where L is a matrix of low rank and U is a matrix of small /> norm.
Recalling (3.4.13) and using (3.6.10), we have

A
BB, = I+ A—l{Q;RSQzés + Q5 R; s}
2

YR Al .
+ p2()\_l)2¢5Q;GSQ2¢S + ()\_;)Z‘I)sQ;L:gQQ‘I)s. (3.7.1)
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For simplicity, we will use E‘,- to denote matrices of rank less than or equal to
j. Using (3.4.11) and (3.4.7), (3.7.1) becomes

B!By; =D+ W + Ls, (3.7.2)
where
A 1 A1
D=1+ _{Fs + (P2 - _)I + p?(_)q)s]-—‘s}@s (373)
A2 P2 A2
is a diagonal matrix, and
1 >\ * *
W= 5(}\—:){62;23@2(1)3 +®,Q57:9,). (3.7.4)
By (3.6.13), W = [ pr Onz—1 ] where
05, 1 0
_ 1 A1 * * r7%
Wp = i(A_z){QszQp(I)p + (I)prZs (I>P}

is a matrix of order ny — 1. By (3.6.15) and (3.6.19),

A
W, = /\—1{L4 + Wy — W1} (3.7.5)
2
[ D, 0,4 o
By (3.4.34), D = N , where D,, is given by
0,1 1
DP = diag(d17"'7dn2—1)
AL 1 AL
= T4+ —A{Tp+(p2— =)+ p2()2pLp} 2. (3.7.6)
A2 P2 A2
Combining this with (3.7.5), (3.7.2) gives
At
D, + )\—(Wz —Wi) 0py_y B
B:B, = 2 N | T Lg. (3.7.7)
05,1 L+ I

Corresponding to (3.6.28), we define the approximation Dp of D, as

Dp diag(dNI, ---7d~n2—1)

1 Al & ~
p_Q)I+P2(_1)(I)pr}q>p' (3.7.8)

At
I+ 25T, + (ps —
+>\2{ p+(p2 )\2

Lemma 3.7.1 For a > 1, there exists a Cy > 0 such that for h; < Hy, ¢ = 1,2,
Cshs

|d; —dj| < 7o vV Cilogns <j <mna. (3.7.9)
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Here Cy and H, are given by (3.6.29) and lemma 3.6.3 respectively.
Proof: By (3.7.6) and (3.7.8),

i A 1 A ;
Gdi = G0+ (e = T 0 0303} 05 = 60)
A - ;
+(>\—;)2P2%¢j(¢j —¢;), 1<j<no. (3.7.10)

Notice that by (3.4.31), (3.4.23) and (3.4.26), we have
i < () +nt <O 1< <ma.
Hence by (3.6.31),
i <79 < C, Cilogng < j < na. (3.7.11)
Thus by (3.1.7), (3.4.26) and (3.6.31), (3.7.10) gives
Cshs

|dj = dj| < Cl¢; — ;] < —z 0 Gilogn2 <j<m. D

Lemma 3.7.2 For a > 1, there exists a constant C3 > 0 such that when
hi < H47 i = 1727

. A
ldj — (1+ A—1)| < Cshy™'j, V1< j<n,. (3.7.12)
2

Proof: By (3.7.8) and (3.6.28), we have

~ A1 p1 — aj 1 Al pP1 — aj .
dj=1+2% + (p2 — =) + pa( T , 1<j<n,.
i N i {vi + (p2 p2) pa( /\2) b 1<j<ne
By (3.4.16), this can be rewritten as
5 A A (e —ay) o Cag 1
dj=1+=+= - + - =)+ (p1 —a))}.
J )\2 )\2 Pl’)/]C p1L— aj C(p2 p2) (pl ])}

By (3.4.22) and after some simplification, this becomes

A1 ~
1424 _ 4,
( +>\2) J

/\1 Qaj 1 1
=———{(——p1) +¢(— — .
X 1— p1aj{(p1 p1) C(p2 p2)}

Since aj, p1 < 1, we have

)\1 a;

- A 1 1 .
4 = (14 )| < (= =p)+C(——p2), 1<j<ms (37.13)
2 1 P2

X l—a;p
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Notice that by (3.4.30) and (3.4.32),
aj ( aj 1 < N9
L—a; = ¢y V3 T 2VG
On the other hand, by the definition of ¢ and p; in (3.4.16) and (3.1.9),
)\1 )\1
oW (p_ —p1) + C(— —p2)| =

Hence the lemma follows by putting this and (3.7.14) into (3.7.13). O

)E <

1<) < ny. (3.7.14)

|51ha 252hg|gc.hg. (3.7.15)
M1

Combining lemmas 3.7.1 and 3.7.2, we have, for h; < Hy, 1 = 1,2,

A Cahy C3hy™*
d; 1+ —
| ( + )\2)| (Cl logn2)2 Cl lOgHQ
= C’4h‘2"°/logn2, Vv C} logn2 < ] < ns. (3716)
Here
ap = min{a — 1,1}, (3.7.17)
and C} is any constant such that
1 Co
> —(=——— +(C3). 3.7.18
Ca - 01(01 IOgNQ + 3) ( )

Hence we have

Corollary 3.7.3 For a > 1 and h; < Hy, 1 = 1,2,

A -
Dp: (1+)\_1)'I+L0110gn2 +Up7 (3719)
2
where Uy, is a diagonal matrix with

[Up]l2 < C4h3® /logns.O0 (3.7.20)

Next we claim that the eigenvalues of W, ¢ = 1,2, and hence of W,,, are clustered
around zero. From lemma 3.6.2, the W; are positive semi-definite matrices. Thus

no — 1 no — 1
tr(Wy) = > (W) = Z N(Wy) >0,i=1,2, (3.7.21)
j=1

where A;(W;) > 0 are the eigenvalues of W;.

Lemma 3.7.4 For a > 1, there exists a C5 > 0 and 0 < H; < Hy, such that
for all A; and hy < Hs,

tr(W;) < Cslogna, i =1,2. (3.7.22)
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Proof: By (3.6.23) and (3.6.9)

W1 “:(WQ)"_——SIH2'¢2’ — y 1<]<n2
(W) Jj j - (i + ;)2
Using (2.2.21) - (2.2.24) and (3.6.17), this becomes
(W) j; = ————— sin® ¢ "21% 1<j<n (3.7.23)
1)j3 — Cp1p2n1ﬂ2 2,5 i (ﬁ/l +’Yj)2’ S 2. .

By (3.4.32), v; > 4j%/n3. Similarly, %, > 41%/(¢n?). Using these and the fact

l l .
that sin6; ; = sin o < T and sin? Ya,; <1, (3.7.23) becomes
1 1

(S Gy
W;)j; < _m . 1<) <no. 3.7.24
(Wi)jj < 4p1 panina ; [C(L)? +(nL1)2]2 J 2 ( )

Let y7 = (j%/n3. Consider the function f;(z) = 2*/(y3 + 2°)?. The maximum
of fj(z) for z > 0is at = y; where f;(y;) = (2y;) 2. Hence for 1 < j < na,

(Wi)jj

IN

C,ﬂ_2 /1 .732 J N 2 .732
5 X — mMaX ————=
dpipane | Jo (yj +a?)? n1 (0.1) (y; + 22)?

(m? {7T N 1 }_ V(r® Com?

Ap1pans | dy; 2n1y3 [ 16p1paj  8pipaj?’

where Cy is given in (3.1.6). Hence for ¢ = 1,2,

-1 < -1
t[‘(Wi) < \/Zﬂ'ii ni j_l . Co_ﬂzni j_27

—  16p1p2 = 8p1p2 =

NS Com® = ._,
< logna +7v) + )
< Toprp; 082 ) 8p1p2j;]

where v is the Euler constant. Using the Euler formula >72, j=> = 7%/6, we
have

tr(W;) < ’ \/Zlo ng + +—C0 1=1,2 (3.7.25)
r(W; . 7.
2 — ]_6 102 g 2 /-y 3 ) 7

Thus there exists a Cs such that (3.7.22) holds for all sufficiently large n,. O
From this lemma, we see that the number of eigenvalues of W; that are larger
than 1 cannot exceed C5logns,. Since the W; are symmetric, they can be di-

agonalized. By separating those eigenvalues that are greater than 1 from those
that are smaller, we have
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Collorary 3.7.5 If a« > 1 and hy, he < Hs, then
Wi =Vi+ L, 105y i = 1,2, (3.7.26)

Here the V; are positive semi-definite matrices with ||V;||]> < 1 and the 1705 log 12
are positive definite matrices with

Amin (L, 10g ny) > 1.0 (3.7.27)

Define the constant
Ce =2C5 + C4. (3728)

By (3.7.19) and (3.7.27), we get

A A =
Dp + A_l(WQ - Wl) =1 + )\—1(] + V2 - Vl) + LCglognz + Upv (3729)
2 2

where : : : :
LCG logne = L26'5 logna — LlC5 log na + LCI log na - (3730)

Clearly, the eigenvalues of I + i—;([ + V5 — V1) lie in the interval [1,1 + 2%]
Thus by (3.7.7) and (3.7.20), we have

Corollary 3.7.6 If « > 1 and h; < Hs, 7 = 1,2, then

B:BS = Vs + Us + [N/Ce log no+8- (3731)
Here
T+22(I4+Vo—Vy) Op,_
vo=| 't Pl *+ 2= V1) On " (3.7.32)
05,1 I+ 5
is symmetric with
A
Aj(Va) €[L,1423], 1< <mo, (3.7.33)
2
= Up 0"2*1
Us = [ 0, 0 ] (3.7.34)
is diagonal with
|Usll2 < Cshs®/logns, (3.7.35)
and . ) i
LCG log no+8 = LCG log na + L8- d (3736)

From (3.1.7), (3.7.33) and (3.7.35), we see that there exists d; and dy > 0,
independent of h;, such that for all h; sufficiently small, all the eigenvalues of
Vs + Us lie in the interval [dy,ds]. Notice that the matrices Vi and Uy are
symmetric, hence IN/CG log na+8 18 also symmetric. By writing ice log n24+8 a5 a
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sum of (Cglogns + 8)’s symmetric rank one matrices and using the Cauchy
interlace theorem (see Parlett [15]) repeatedly for (Cg logns + 8) times, we see
that all except (Cslogns + 8) eigenvalues of B} B, lie in the interval [dy,ds].
Using lemma 3.3.2, we immediate get

Corollary 3.7.7 For a > 1, there exists b; and b, > 0, independent of h;, such
that for hy, he < Hg, all except (Cglogns + 8) eigenvalues of B*B lie in the
interval [by,bs]. O

Using this corollary, we are able to derive an upper bound for the number
of iterations required to attain a given accuracy.

3.8 The Rate of Convergence

In this section, we will show that the number of iterations required to attain a
given accuracy grows no faster than O(log® ns). We begin with

Lemma 3.8.1 Let x be the solution to B*Bx = B*b and z; be the j-th iterant
of the ordinary conjugate gradient method applied to this normal equation. If
the eigenvalues {d;} of B*B are such that

0<d <...< (51),1 < 517 =bh <..< 5n27q =by < 6n27q+1 <...< 5n27
then

19 =)l (2=1)"
||B(.’L‘—£C0)||2 - b+1

- IMax
56[()1 ,bz]

—
7N
(=)

S |
&
N~~~
=3
[V
/N
NO«)

k»o" |
(=)

=1

Here

by \ 2
b= = >1.0
<b1> -

The proof can be found in Van der Vorst [18], see also Daniel [6]. Notice that
d; — 46
for ny —q+1<j < nyand § € [by,bs], we have, 0 < ]5 < 1. Thus (3.8.1)

2

can be rewritten as

1B = 2l (b—l)j” (2%
<2 . . 3.8.2
Bl = 2\b+1 s, (5, (382)

j=1

From lemmas 3.5.5, we see that if @ > 1 or if @ = 1 such that (3.5.6) holds,
then §; > C - h§, for 1 < j < ns. Thus for 1 < j < p and § € [by, bs], we have,

0 —9;
0< 1 < Cnf§. Hence (3.8.2) becomes
J
j=p—q
B
T — Zo)l|2
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Since log(1 — z) < —z for 0 < z < 1, we have
||B(Z‘ - 'rj)||2 < P log C+6plog no+(p+q—j) bf_—l .
[[B(z — zo)ll2 ~
Thus given arbitrary e > 0, an upper bound for the number of iterations required

to make 5
1B =zl _
[|B(z — zo)|[2
is given by
. b+1
Jo = T{plogC + 6plogns —loge} +p+ q.
Notice that by corollary 3.7.7, b = by /by is independent of ny. Moreover, we
have
p,qg <p+q< Cglogns + 8.

Thus jo is bounded above by C - log? n,. Hence we have,
Theorem 3.8.2 Assume that either & = 1 and (3.5.6) holds or @ > 1, then the

number of iterations required to reduce ||B(z — z;)||2/||B(x — %o)||2 by a given
accuracy can grow no faster than O(log” ny) as h; tends to zero. O

3.9 Concluding Remarks
3.9.1 The Case when \; > pu; and a > 1

We remark that we can also establish the fast convergence in these cases. The
idea is to expand p; around h; = 0. Let us assume

2_ =1+ Bihe > 1, (3.9.1)

?

where

a>land0<g; <1. (3.9.2)

Here a, p; and B; are assumed to be constant independent of h;. The proof for
the following theorem is given in Chan [4].

Theorem 3.9.1 If (3.9.1) and (3.9.2) hold, then the number of iterations re-
quired to reduce ||B(z — z;)||2/||B(xz — zo)||2 by a given accuracy can grow no
faster than O(log” ny) as h; tends to zero. O

We note that the case where \; = u;,% = 1,2, can be treated as a particular
case of (3.1.2) with a = co. We remark that in this case, we are in fact pre-
conditioning an oblique BVP by a Neumann BVP. To see this, we first observe
that by (2.1.5) and the fact that A\; = p;,

Ag = M(G1 ® In,) + o (I, ® Go), (3.9.3)
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where the G; are of order n; and are given by

G; = tridiag(—1,2,—1) —e1e] —ep,e),., i =1,2. (3.9.4)

*
n;?

Thus Ay is the 5-point formula for the Neumann problem

2 2
Migmﬂgzomwy{
Oz 3p (3.9.5)
9p _ 2
an 0 on0[0,1)%,

with mesh-size h; = (n; —1)~',i = 1,2. Here 1 denotes the unit outward normal
of the square [0,1]?. On the other hand, from (2.2.6) and (3.4.1), we see that

RO = (167’11167*11) & Rl = (167'11167*11) X (Al : Rs)’

where Ry is given by (3.4.1) with po = 1 there. Thus R; is a forward difference
approximation of 9,. Hence it is easy to check that A = Ag + Ry is a 5-point
formula for the oblique BVP

3; (3.9.6)
9P _ 2
PR 0 on0[0,1)%,

Here 7 is a directional vector defined on 9]0, 1]? and is given by

_J if z#1,
T+ if 2=1,

where 7 is the unit tangential vector.

Thus the preconditioning of A by Ay is the discrete version of preconditioning
the oblique problem (3.9.6) by the Neumann problem (3.9.5). By theorem 3.9.1,
the matrix Ag is a very good preconditioner for A. In fact, by the results in
§ 3.7, the singular values of the preconditioned matrix AAT = I + RoA{ are
clustered around (1 + i—;)%

3.9.2 The Multi-Server Case

For s; > 1, then instead of (2.2.28), the underlying continous equation is of the
form

(AL +8101)Pee + (A2 + s2p2)Pyy
—+ 2h1 (31,u1 — )\1)1773 + 2h2(82ﬂ2 — Ag)pu ~ 07 (397)

in the region where s1h; < x = thy < 1 and sshe < y = jhy < 1. In other
part of the square [0,1]2, the equation has variable coefficients. Thus if s; are
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constant independent of h;, then for sufficiently small h;, a reasonable limit to
consider is
Silli = )\z + ﬂih?, 1= ]., 2, (398)

for some constants 7; and . We remark that when s; =1 and n; < p;, 1 = 1,2,
this reduces to the limit we discussed previously.

When s; increases proportionally to n;, (3.9.8) may not be the right limit to
consider. We remark that in this case, the diagonal matrix S; that is used in
the transformation (3.3.1) is no longer well-conditioned. In fact, by (2.1.8), the
last diagonal entry of S; is given by

=1,2.

1
i ﬁ 8i )\i ni_si—1:| 2 i

M
sil Sifbq

idn,‘ :ai'|:

Thus by (3.9.8) and Stirling’s formula, we have, for o > 1,

|

84!

i (Si)Si > i .-1s;
dn, = a; - ~Csfe 2%, 1=1,2.

Thus the condition number of S; increases exponentially for all a > 1.

We remark that the ordinary conjugate gradient method indeed converges
within a few steps when s; = constant, while it diverges when s; = n; — 1, see
§ 4.

This concludes our discussion of the model problems.

4 Numerical Results

In this section, we report on the numerical results for the models discussed in
§ 2.2. The computations were carried out on the Cyber-760 at the Mathemat-
ics and Computing Laboratory of the Courant Institute and Cyber-730 at the
University of Massachusetts at Amherst. Single precision, between fourteen and
fifteen decimal digits, was used throughout. Craig’s method, used in these com-
putations, is a version of the ordinary conjugate gradient method applied to the
normal equations; see Elman [7]. The initial iterant zo is chosen to be identi-
cally zero and the tolerance is set to 10719, We note that a larger tolerance will
be very adequate in most situations. In the tables §;, n; and a are parameters
defined by (3.1.3) or (3.9.8).

Let us first consider the case where \; < u; and s; = 1. Tables 1 and 2 give
the number of iterations required to converge for two different choices of 3;. We
see that the convergence rate is almost independent of 3;. The results also show
that the case where o = 1 is critical for Craig’s method. More precisely, when
a > 1, the number of iterations seems to be constant as n; = co. When a =1,
it increases like O(logn;). This is consistent with (3.7.17). When a < 1, Craig’s
method does not converge for sufficiently large n;. However, from theorem 3.2.1,
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we see that for sufficiently large n;, there is no need to solve the matrix equation
numerically.

Next we consider the case where \; > pu; and s; = 1. Table 3 gives the
results of our method for different choices of a. In the table, & = oo represents
the problems where A\; = u;. We see that the convergence rate in this case is
almost the same as in the case where A\; < u;.

Table 4 gives the time in seconds required for the different stages of the
algorithms. ‘Initialization’ refers to the generation of ®, S;, @); and the right
hand side b. ‘Iteration’ refers to the solving of Byg = b by the iterative meth-
ods. We have used the Fast Fourier Transform in computing the matrix-vector
multiplication in each iteration. ‘Generating p’ refers to the computation of p in
(2.2.14). We note that the timings are consistent with the theoretical estimates.
We remark that substantial saving would result if only a few entries of p were
needed.

Table 5 gives the results for a family of multi-server problems that satisfy
(3.9.8). As remarked there, when s; = O(n;), (3.9.8) may not be a good limit.
Indeed, Craig’s method diverges when s; = n; — 1. We note that in the multi-
server case, s; > 1, we cannot use the Fast Fourier Transform. Hence the
work and storage requirement per iteration are 2n? + O(n;) and n? + O(n;)
respectively.

Let us compare our method with other conventional methods. First we
assume that the system (2.2.2) is solved by a classical iterative method such as
the point SOR method, see Kaufman [11]. Since the graph of the generating
matrix A is the same as the graph of a discrete Laplacian, it is clear that the
point SOR method requires 7n? + O(n;) work and n? + O(n;) storage spaces per
iteration. We note that this method converges very slowly. Tables 6 and 7 give
the numerical evidence. Table 6 lists the number of iterations required by the
two methods and table 7 compares the time required in seconds. In the tables,
w* denotes the optimal relaxation factor up to three decimal points obtained
experimentally. We see that the point SOR method has a very slow convergence
rate especially when s; is small. In the three cases we considered, our method
converges 3 to 29 times faster than the point SOR method.

Let us now consider the approach of solving the system by a direct method.
Since the band-width of the generating matrix A is n;, the band Gaussian
elimination will require O(n}) work and O(n?) storage space. A direct method
that takes advantage of the separablity of the problem will reduce these counts
to O(n?) and O(n?) respectively, see Kaufman [11]. Since the graph of A is
the same as the graph of a discrete Laplacian, nested dissection method can
also be used, see George and Liu [8]. The counts for this method are O(n3)
and O(n?logn;) respectively. Let us remark that our preconditioned system
Byo = b can also be solved by direct methods. In fact, we can compute and
store B by using (2.2.17). This would require O(n?) operations and O(n?)
storage spaces. Thus we see that solving the preconditioned system Byg = b by
conjugate gradient type methods requires the least amount of work and storage.
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2\
Table 1: Craig’s Method, == = 1 — Bih, i = si = 1,06; = 3,0 =

1,2
(n1,n2) o (n1,n2) «a (n1,m2)
0. 1. 2. | 3. 0.] 1. 2. | 3. 0.] 1. 2. | 3.
(5.8) 8| 8| 8| 7 (8.8) 8| 8| 7| 7 (8.5) 5| 5] 5] 5
(10,16) |13 11| 9| 9| (616 |13|10| 9| o (1610) |10] 9| 8| 7
(2032) | 14|12 |10 |10 (3232) |14 |11 |10 10 (3220) |13]11| 9| 9
(40,64) | 19 | 13 | 12 | 12 (64,64) 19 | 13 | 12 | 12 (64,40) | 15 | 12 | 11 | 11
(80,128) | ** | 14 | 12 | 12 || (128,128) | ** | 14 | 12 | 12 || (128,80) | 23 | 13 | 12 | 12
** more than 30 iterations.
. i )
Table 2: Craig’s Method, i =1-=06ih¢pu = s; = 3 = 1,0 = 1,2
2
(n1,n2) a (n1,n2) «Q (n1,n2) a
1. | 2. | 3. 1. 2. | 3. 1. | 2. ] 3.
GS) | 8| 8| 71 58 S 8 7 85 | 5| 5|5
(10,6) |11 10| 9| @6,16) [11| 9| 9 6,100 | 9| 8| 7
(20,32) | 12 | 10 | 10 (32,32) 12 | 10 | 10 (32,20) | 11 91 9
(40,64) |14 | 12 | 12 || (64,64) |14 [ 12 | 12 || (64,40) | 13 | 10 | 11
(80,128) | 15 | 12 | 12 || (128,128) | 16 | 12 | 12 || (128,80) | 14 | 12 | 12
. i .
Table 3: Craig’s Method, H_ =14+ 6hpm = s = 1,8 =1,i = 1,2
2
(n1,n2) o (n1,n2) o (n1,n2)
1. | 2.1 3. | o© 1.] 2. ] 3. | o© 1.] 2. ] 3. | o©
GS) | 8| 8] 7] 6| 838 S 8| 7/ 6| &5 | 5| 5| 5] 4
(10,16) |12 /10| 8| 7| (616 |11| 9| 8| 7| 610 | 9| 8| 7| 6
(2032) |14 /10| 10| 9 (3232) |13|10|10| 9 (3220 |11] 9| 9] 8
(40,64) |15 |12 | 12 | 11| (64,64) |14 |12 |12 | 11| (64,40) [13 |11 | 11| 9
(80,128) | 16 | 12 | 12 | 11 || (128,128) | 16 | 12 | 12 | 11 || (128,80) | 14 | 12 | 12 | 11
. i . .
Table 4: Craig’s Method, m =1-0ih?, pi =si = 1,6 =1,i = 1,2
2
ny = N9 8 16 32 64 128
Initialization 0.001 0.002 0.006 0.010 0.023
Iteration 0.044 0.097 0.215 0.519 1.144
No. of iterations 8 9 10 12 12
Time per iteration || 0.0055 | 0.0108 | 0.0215 | 0.0433 | 0.0953
Generating p 0.014 0.053 0.192 0.794 3.381
Total time 0.059 0.152 0.413 1.323 4.548

.tex Table 5: Craig’s Method, s;p; = Ai + mih$, i =2n; = 1,01 =1,2
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S; 1 5} n; — 1
a 0.1 1. 2. | 3. 0. 1. 2. | 3. 0.1 1. 2. | 3.
(8,8) 8| 8| 7| 7 8| 8| 8| 8 8| 8| 8| 8
(16,16) 13 | 10 9 912 (11|11 |11 14|14 | 14 | 14
(32,32) 14 (11 10| 10|16 |13 |13 | 13| 15|16 | 16 | 16
(64,64) 19 | 13 [ 12 | 12 || 18 | 15 | 14 | 14 || ** | ** | **k | **
(128,128) || ** | 14 | 12 | 12 || ** | 15 | 15 | 15 || ** | ** | k| *x

** more than 30 iterations

Table 6: Comparison with the Point SOR method

| Parameters || Sihi = N + b = =1,1=1,2,a0 =2 |
Method point SOR: Initial guess p = po Craig’s
ni | s | N w* Relaxation factor w Iterations

1.0 13| 15| 16| 1.7 1.8 | 1.9 w*
1|16 || 1.610 || 361 | 191 | 108 | 63 78 | 141 | 520 54
3116 | 1435|133 | 64| 37| 51 73 | 123 | 311 31
1 (64| 1.794 ** 1974 | 600 | 444 | 300 | 158 | 981 || 155
7 164 | 1.606 || 350 | 183 | 103 | 58 72 | 122 | 312 50
more than 1000 iterations

0o CO| v~ =~
0o CO| v~ =~

*

*

Table 7: Time in Seconds Required by Craig’s and Point SOR,

| Parameters || Sifi = N + b i =mn=1,1=1,2, a0 =2 |
Problem n; = 16,5, =1 n; = 16,s; = 15 n; = 40,s; = 39
Dimension N 256 256 1600
Method Craig’s | pt SOR || Craig’s | pt SOR || Craig’s | pt SOR
w* 1.889 1.725 1.832
No. of iterations 9 406 14 79 16 132

Time for iteration 0.097 4.421 0.158 0.859 0.976 9.075
Time per iteration || 0.0108 | 0.0109 || 0.0113 | 0.0109 | 0.0610 | 0.0688
Total time 0.152 4.439 0.263 0.878 2.196 9.106
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