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Abstract

Parallel magnetic resonance imaging (pMRI) is a technique to accelerate the magnetic resonance
imaging process. The problem of reconstructing an image from the collected pMRI data is ill-posed.
Regularization is needed to make the problem well-posed. In this paper, we first construct a 2-dimensional
tight framelet system whose filters have the same support as the orthogonal Haar filters and are able to
detect edges of an image in the horizontal, vertical, and ±45o directions. This system is referred to as
directional Haar framelet (DHF). We then propose a pMRI reconstruction model whose regularization
term is formed by the DHF. This model is solved by a fast proximal algorithm with low computational
complexity. The regularization parameters are updated adaptively and determined automatically during
the iteration of the algorithm. Numerical experiments for in-silico and in-vivo data sets are provided to
demonstrate the superiority of the DHF-based model and the efficiency of our proposed algorithm for
pMRI reconstruction.

1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique used in radiology to inves-
tigate the anatomy and physiology in the human body, in both health and disease. It visualizes the internal
body structure of the patients without exposing them to ionizing radiation [35]. It produces high-resolution
images that can help to diagnose a variety of medical problems. However, MRI is a relatively slow imaging
technique that has limited its application to imaging of time-varying objects. Patients are discomforted by
the lengthy imaging procedures due to lying in a confined space, as well as having to hold their breath [44].
Parallel imaging techniques using an array of surface coils have been developed to acquire multiple sets of
undersampled k-space data simultaneously to significantly accelerate the MRI process [14, 15]. Over the
last two decades, a number of parallel imaging techniques and strategies have been produced for parallel
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MRI (pMRI) image reconstruction from the undersampled data. The most well-known ones include sen-
sitivity encoding (SENSE) [37] and generalized autocalibrating partially parallel acquisitions (GRAPPA)
[18]. Both methods provide good results with nearly identical reconstruction quality [1].

SENSE has been made commercially available for clinical purposes. Many clinical applications already
benefit from the capabilities of SENSE in terms of increased imaging speed, effectively reduced blurring,
and increased spatial resolution provided by pMRI [44, 17]. For pMRI reconstruction by SENSE, accurate
estimation of coil sensitivity is required, but it is difficult to be determined because of the complex geometry
of the coils and the noise in the coil images. As a consequence, the reconstructed image by SENSE often
suffers from artifacts like noise amplification [42], Gibbs effect [48] and aliasing [1]. To overcome these
problems, regularization techniques that do not need modifications in hardware or data acquisition, are
widely adopted for SENSE-based reconstruction model. In [31], Tikhonov regularization was used due to
the existence of a closed-form solution while the regularization parameter was set automatically by using
the L-curve method. With Tikhonov regularization, bias is often introduced due to the poor quality of
reconstruction image, in particular, at high reduction factors.

Recently, the smooth prior used in Tikhonov regularization was replaced by non-smooth edge-preserving
prior. The resulting edge-preserving regularization, like total-variation (TV) regularization [2, 46, 23] or
wavelet-based regularization [8], has been proposed for pMRI reconstruction problem. In a comparison
with Tikhonov regularization, edge-preserving regularization makes a noticeable improvement in preserv-
ing sharp edges of reconstructed images and removing the noise or artifacts. The accuracy of sensitivity
maps is crucial for pMRI reconstruction since the aliasing artifacts, caused by inaccurate sensitivity maps,
can hardly be reduced by any kind of reconstruction methods. Hence, sensitivity estimation method is as im-
portant as the reconstruction method in SENSE. In [47], a method that jointly estimates the sensitivities and
SENSE reconstruction was proposed to refine the sensitivities iteratively so that the SNR of reconstruction
is improved and the image artifact is reduced. In [24], a framework that allows the integration of a-priori
information, such as a TV or total generalized variation penalty [3], in an iteratively regularized Gauss-
Newton method, was proposed with a goal of joint estimation of images and coil sensitivities. The selection
of a regularization parameter in regularization method is critical in order to achieve a reconstructed image
with acceptable quality. The regularization parameter in [2, 46, 23, 8] was not set automatically; therefore,
limiting their practical applications for the pMRI reconstruction.

GRAPPA [18] is a k-space method that interpolates the missing data in the k-space for each coil. It
does not need to explicitly know the coil sensitivities, but requires to estimate an interpolation kernel using
the auto calibration signal (ACS) data. To acquire the correct interpolation kernel for reconstructing high
quality MRI images, the authors in [50, 36] regularize the GRAPPA-based interpolation kernel and estimate
it by an iterative scheme. The method in [45] applies sparsity-promoting regularizers on the GRAPPA-based
calibration kernel and the coil image in each channel. It jointly updates the kernel and the images iteratively.

The relationship between SENSE and GRAPPA was clarified and the gap between them was bridged
in [43]. Both approaches restrict the solution to a subspace spanned by the sensitivities. By combining the
advantages from both SENSE and GRAPPA, a hybrid reconstruction method to pMRI was then proposed.

Recently, compressive sensing (CS) has been applied to pMRI problems in order to accelerate imaging
speed and to improve the quality of MRI images [33]. The ℓ1-SPIRiT [34] is an algorithm for auto cali-
brating parallel imaging and permits an efficient implementation with clinically-feasible runtimes by using
compressive sensing. The state-of-the-art ℓ1-ESPIRiT algorithm proposed in [43] uses the wavelet regu-
larization and sensitivities estimated from the calibration matrix as in GRAPPA. Sparse dictionary learning
with compressive sensing was proposed in [38] to reconstruct MR images from highly undersampled k-
space data.

This work complements the existing TV and wavelet-based regularization methods for pMRI recon-
struction. The main contributions of the work are described as follows:
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• We construct a tight framelet system based on the two-dimensional orthogonal Haar wavelet. The
filters associated with this system have the same support as the filters of the orthogonal Haar wavelet
and provide information of edges for an image in the horizontal, vertical, and ±45o directions. We
call our constructed system the directional Haar framelet (DHF) system and the corresponding filters
as the DHF filters. We show that the computational complexity of the DHF system is even lower than
that of the classical orthogonal Haar wavelet system.

• We propose a new regularization technique that assimilates the advantages of both total variation and
wavelet regularization for SENSE and remedies their drawbacks. This regularization term is the com-
position of a sparsity-prompting function with a weighted coefficient vector. The coefficient vector
is obtained by applying the DHF filters to the underlying image. The sparsity-prompting function
can simply be the ℓ1 norm or the joint ℓ1 norm [34], but not limited to these. We solve the proposed
DHF-based pMRI reconstruction model by a fast proximal algorithm. We further develop a strategy to
adaptively update and determine the regularization parameters during the iterations of the algorithm.

• We conduct experiments on in-silico and in-vivo data. Experimental results show the robustness of our
DHF-based pMRI reconstruction model against the noise on different MRI machines with different
coil receivers. They also show that our method requires the least CPU times to produce the best
reconstructed images.

The outline of the paper is as follows. The principle of parallel MRI and particularly the SENSE-based
method are reviewed in Section 2. Section 3 presents a directional Haar wavelet-based tight frame system
constructed from the 2-dimensional orthogonal Haar wavelet system. We also present a sparsity-promoting
regularization optimization model in real domain. A fast proximal algorithm for the proposed model is
presented in Section 4. We give the reconstruction results, based on both simulation and real MRI images,
in Section 5. Conclusions are given in Section 6.

2 Brief Review on SENSE-based Methods

A good MRI image can be obtained from sufficient number of samples in the k-space at the expense of
long acquisition times. Fast imaging methods are required to reduce acquisition times. Recent development
of parallel MRI (pMRI) is the greatest progress in increasing imaging speed. Most pMRI scanners involve
skipping k-space data in the phase-encoding direction. To reduce the imaging time by a factor of r (known
as the reduction factor or the acceleration factor), the usual setting for pMRI is to perform k-space sampling
where a downsampling factor r is taken in the phase-encoding direction [1].

To recover the skipped k-space data, the receiver coils in an array of receiver surface coils are used to
receive MRI signals simultaneously, and the obtained images are called the coil images. The receiver coils
have distinct coil sensitivities depending on their positions. Hence the resulting MRI signals contain not
only frequency information, but also some spatial information. Thus pMRI reconstruction algorithms can
utilize this spatial information to recover the information loss due to the skipping of data. Sampling partial
k-space data leads to aliasing artifacts in coil images and the sensitivity profiles of all coils help to solve the
nonlinear reconstruction problem. To remove artifacts and retrieve high quality images, the techniques for
pMRI can be mainly divided in two groups: image domain techniques such as PILS, SENSE, and Fourier
domain techniques such as SMASH and GRAPPA.

SENSE is one of the most famous image domain-based methods and is currently used in clinical practice.
SENSE needs pre-scanning full k-space data to obtain unaliased coil images for the estimation of coil
sensitivity. The coil images are modulated by their individual coil sensitivities Sℓ, where ℓ = 1, 2, . . . , p
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with p being the number of the coils. The coil image from the ℓ-th coil is modeled as follows:

gℓ = F−1PFSℓu+ ηℓ, (1)

where u is the desired image, ηℓ is the white Gaussian noise, F is the discrete Fourier transform matrix with
inverse F−1, and P , called sampling matrix, is a diagonal matrix with 0 and 1 (indicating the corresponding
k-space data is skipped or not) at its diagonal elements [15]. The range of gℓ in (1) varies from coil to coil
and depends on the setting of the MRI machine. Combining equations from all p coils, the set of equations
in (1) can be transformed into matrix form:

g =Mu+ η, (2)

where g is all the aliased images in vector form, u is the image to be reconstructed, η represents the noise in
the vector g and M is the composition of F , its inverse, P and Sℓ. More precisely,

g :=

g1...
gp

 , M :=

F
−1PFS1

...
F−1PFSp

 , η :=

η1...
ηp

 . (3)

A least squares technique is used by SENSE to reconstruct an image for model (2). Due to the complex
geometry of the receiver coils, the actual sensitivities Sℓ are hardly possible to be pre-estimated accurately
in real applications, especially in areas having low photon densities or constant blood flow [16]. These kind
of errors together with noise contained in the coil images could be amplified in the reconstructed image,
and resulting in severely aliasing artifacts, especially in the case with a large reduction factor. To reduce
the artifacts and preserve sharp edges in the reconstructed image, the total variation regularization together
with the least squares fitting was proposed to unfold the aliased images in pMRI [46, 23]. This model is
formulated as

min
u

{
1

2
∥Mu− g∥22 + λ∥u∥TV

}
, (4)

where ∥u∥TV is the total variation of u and λ is a positive number balancing the least squares fitting term and
the total variation regularization term. The robustness of the total variation regularization against the noise
and error in the estimation of the coil sensitivities was numerically confirmed in [46, 23]. However, it is well
known that staircase artifacts may appear in the reconstructed image due to the total variation regularization
[13], and the regularization parameter λ needs to be set individually for each MRI reconstruction problem.
It was shown in [32] that Bregman iteration algorithm for problem (4) can preserve both sharp edges lost
in Tikhonov regularization and fine structures missed in total variation regularization, while reducing noise
and aliasing artifacts. Wavelet transforms, which enables a good space and frequency localization of useful
information, have also been used in MRI reconstruction. Artifacts appeared in the basic SENSE reconstruc-
tion can be easily detected by wavelets and hence be attenuated [8]. The model formulated in the wavelet
domain in [8] emphasizes the sparse representation of the underlying image, and hence edges in the recon-
structed image will be enhanced. However ringing artifacts will be introduced in the reconstructed image as
well due to the modification of wavelet coefficients.

3 Adaptive Directional Haar Wavelet-based Regularization Model

In this paper, the pMRI reconstruction problem (2) is solved by a new regularization model that assimilates
the advantages of both total variation and wavelet regularization for SENSE and remedies their drawbacks.
Our proposed optimization model for the pMRI reconstruction problem (2) is given in the form

min
u

{
1

2
∥Mu− g∥22 + ∥ΓWu∥1

}
, (5)
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where Γ is a diagonal matrix with non-negative diagonal elements, and W is a tight frame matrix that will
be constructed later. We remark that the same reconstruction model with W generated by the Haar wavelet
has been used in [49] for spectral breast CT reconstruction.

In total-variational based model (4) there is a global regularization parameter λ. In contrast, for our
model (5), each tight frame coefficient has its own regularization parameter. The diagonal elements of the
diagonal matrix Γ are formed from these regularization parameters. By using a different regularization
parameter for each coefficient, our optimization model has an ability to access the local information of the
underlying image. A procedure of adaptively selecting these parameters will be given in the next section.

The mathematical model (1) is ill-posed and requires regularization techniques to make it well-posed.
The total variation regularization is known to be edge-preserving and performs well especially for piecewise
smooth images, but it may result in the loss of texture and may introduce staircase artifacts that are particu-
larly visible in the vicinity of both non-horizontal and non-vertical edges. Wavelet regularization promotes
the sparsity of images in wavelet domain, and hence, leads to reconstructed images with sharp edges, but
also likely with ringing artifacts. The presence of artifacts by total variation regularization or wavelet reg-
ularization makes the pMRI reconstruction inefficient. Therefore, one needs to find a proper regularization
to suppress these artifacts in pMRI reconstructions. One way to avoid or suppress ringing artifacts arising
from wavelet regularization is to choose a wavelet system whose wavelet filters have a short support (see,
e.g., [41, pages 342, 365]). The filters associated with the classical 2-dimension orthogonal Haar wavelet
indeed have a short support which is {0, 1}2. But, as it is well-known, the regularization with the orthogonal
Haar wavelet is similar to the total variation regularization; therefore, staircase artifacts will appear in the
neighbors of edges that are neither vertical or horizontal.

For pMRI reconstruction in (5), we will construct a tight frame matrix W that is an extension of the
classical 2-dimension orthogonal Haar wavelet. Not only the support of its filters is the same as that of the
2-dimension orthogonal Haar wavelet, but it also can detect edges in the vertical, horizontal as well as ±45o

directions. It is expected that artifacts around the edges in the vicinity of ±45o in the reconstructions using
the orthogonal Haar wavelet can be better suppressed in the reconstructions using our constructed frame
matrix W .

The rest of this section will be devoted to the construction of this matrix W . We start with an overview
of tight frames. Then, we construct our directional tight Haar wavelet frame (DHF) from the well-known
orthogonal Haar wavelet. Finally, we present fast DHF transform and its computational complexity. The
associated matrix representation of the transform will be considered as W in (5).

3.1 Preliminaries of Tight Frames

Since the images of interest in this paper are in the two-dimensional space, we focus on tight wavelet frames
on R2. Tight wavelet frames have been proven to be useful in image processing, see, e.g., [5, 7, 6, 9, 10, 12,
11, 28, 29, 30, 39] and the references therein.

A countable set X ⊂ L2(R2) is called a tight frame of L2(R2) if f =
∑

µ∈X⟨f, µ⟩µ holds for all
f ∈ L2(R2). Clearly, a tight frame generalizes an orthogonal basis. Comparing with an orthogonal basis, a
tight frame is an overcomplete system but keeps the energy-preserving property of an orthonormal basis. For
a given Ψ := {ψ1, . . . , ψL} ⊂ L2(R2), we define a system X(Ψ) generated by Ψ as X(Ψ) := {2nψℓ(2

n ·
−k) : 1 ≤ ℓ ≤ L, ;n ∈ Z,k ∈ Z2}. When X(Ψ) forms a tight frame of L2(R2), the system X(Ψ) is called
a tight wavelet frame system and each function ψℓ, ℓ = 1, . . . , L, is called a tight framelet. The construction
of framelets Ψ is usually based on a multiresolution analysis that is generated by some refinable function φ
with refinement mask τ0 satisfying φ = 4

∑
k∈Z2 τ0[k]φ(2 · −k). The construction of the framelets Ψ is

reduced to finding a finite sequence of masks τℓ such that

ψℓ = 4
∑
k∈Z2

τℓ[k]φ(2 · −k), (6)
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for 1 ≤ ℓ ≤ L. The set {τℓ : 0 ≤ ℓ ≤ L} is called a frame filter bank, τℓ, 1 ≤ ℓ ≤ L are called wavelet
frame masks or the highpass filters of the system, and the refinement mask τ0 is known as the lowpass filter.
By unitary extension principle, as long as the masks τℓ, 1 ≤ ℓ ≤ L, are finitely supported and their Fourier
series τ̂ℓ satisfy

L∑
ℓ=0

τ̂ℓ(ω)τ̂ℓ(ω + ν) =

{
1, if ν = (0, 0);
0, if ν ∈ {0, π}2\{(0, 0)} (7)

for all ω ∈ [−π, π]2, X(Ψ) with Ψ = {ψ1, . . . , ψL} given by (6) forms a tight wavelet frame of L2(R2).
Recall that for a mask a, â(ω) :=

∑
k∈Z2 a[k]e−ık·ω which is a 2π-periodic function. Here, and in the

sequel, ı denotes the imaginary unit.

3.2 Directional Tight Haar Wavelet Frame (DHF)

Our directional tight Haar wavelet frame (DHF) is constructed via orthogonal Haar wavelet. Recall that the
2-dimensional orthogonal Haar wavelet filters are

h0[k] =

{
1
4 , if k ∈ {0, 1}2;
0, otherwise,

h1[k] =


1
4 , if k = (0, 0) or (1, 0);

−1
4 , if k = (0, 1) or (1, 1);
0, otherwise,

h2[k] =


1
4 , if k = (0, 0) or (0, 1);

−1
4 , if k = (1, 0) or (1, 1);
0, otherwise,

h3[k] =


1
4 , if k = (0, 0) or (1, 1);

−1
4 , if k = (0, 1) or (1, 0);
0, otherwise.

It can be directly verified that
∑3

ℓ=0 |ĥℓ(ω)|2 = 1 and
∑3

ℓ=0 ĥℓ(ω)ĥℓ(ω + ν) = 0 for ν ∈ {0, π}2\{(0, 0)}.
The scaling function φ(x, y) equals 1 for (x, y) ∈ [0, 1]2 and 0 otherwise. Three wavelets corresponding to
the highpass filters h1, h2 and h3 at (x, y) ∈ R2 are

ψ1(x, y) =


1, if (x, y) ∈ [0, 1]× [0, 1/2);

−1, if (x, y) ∈ [0, 1]× [1/2, 1];
0, otherwise,

ψ2(x, y) = ψ1(y, x), and ψ3(x, y) = ψ1(x, y)ψ2(x, y), respectively.
With the orthogonal Haar wavelet filters hℓ, we define the masks τℓ, 0 ≤ ℓ ≤ 6, as follows

τ̂0(ω)
τ̂1(ω)
τ̂2(ω)
τ̂3(ω)
τ̂4(ω)
τ̂5(ω)
τ̂6(ω)


=



1 0 0 0
0 1

2
1
2 0

0 1
2

−1
2 0

0 1
2 0 1

2
0 0 1

2
1
2

0 1
2 0 −1

2
0 0 1

2
−1
2




ĥ0(ω)

ĥ1(ω)

ĥ2(ω)

ĥ3(ω)

 . (8)

It can be shown directly that the masks τℓ given in (8) satisfy (7) with L = 6; therefore, they form a 2-
dimensional tight frame filter bank. In this filter bank, the refinement mask τ0 is the same as h0 while the
six wavelet frame masks τ1, τ2, τ3, τ4, τ5, and τ6 are, respectively,

τ1[k] =


1
4 , if k = (0, 0);

−1
4 , if k = (1, 1);
0, otherwise,

τ2[k] =


1
4 , if k = (1, 0);

−1
4 , if k = (0, 1);
0, otherwise,

τ3[k] =


1
4 , if k = (0, 0);

−1
4 , if k = (0, 1);
0, otherwise,

τ4[k] =


1
4 , if k = (0, 0);

−1
4 , if k = (1, 0);
0, otherwise,

τ5[k] =


1
4 , if k = (1, 0);

−1
4 , if k = (1, 1);
0, otherwise,

τ6[k] =


1
4 , if k = (0, 1);

−1
4 , if k = (1, 1);
0, otherwise,

(9)
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These wavelet frame filters acting as difference operators have an ability to provide directional information
of an image when they are applied onto the image. More precisely, the filters τ1 and τ2 act as the first-order
difference operator in the 45o and 135o directions, respectively. Both τ3 and τ5 are the first-order difference
operator in the horizontal direction while both τ4 and τ6 are the first-order difference operator in the vertical
direction. For easy exposition in the later discussion, our constructed wavelet frame filters are refereed to as
the DHF filters.

For the tight frame system associated with the DHF filter, the corresponding scaling function φ is exactly
the same as the scaling function of the orthogonal Haar wavelet system. Through (6) and (9), one can
get directly that the tight framelets ψ1, ψ3, ψ2, ψ4, ψ5, and ψ6 corresponding τ1, τ3, τ2, τ4, τ5, and τ6 at
(x, y) ∈ R2 are

ψ1(x, y) =


1, if (x, y) ∈ [0, 1/2)× [0, 1/2);

−1, if (x, y) ∈ [1/2, 1]× [1/2, 1];
0, otherwise,

ψ3(x, y) =


1, if (x, y) ∈ [0, 1/2)× [0, 1/2);

−1, if (x, y) ∈ [0, 1/2)× [1/2, 1];
0, otherwise,

ψ2(x, y) = ψ1(y, 1− x), ψ4(x, y) = ψ3(y, x), ψ5(x, y) = ψ3(x− 1/2, y), and ψ6(x, y) = ψ3(y− 1/2, x),
respectively. We can see that the scaling function and framelets for both the orthogonal Haar wavelet and
the DHF system are supported on [0, 1]2.

3.3 Fast DHF Transform and Its Computational Complexity

Next we present the fast frame transform for DHF when applied onto images. To this end, for j ≥ 1 we
define

τj,i := τ̃j,i ∗ τ̃j−1,0 ∗ · · · ∗ τ̃0,0 (10)

with τ0,i = τi and

τ̃j,i[k] =

{
τi[2

−jk], k ∈ 2jZ2;
0, k ̸∈ 2jZ2.

Here ∗ denotes the convolution operator. The relationship among the filters τj,i, for 3 ≤ i ≤ 6 is described
as follows.

Proposition 1 For the filters given in (10), then for all j ≥ 0 and ω = (ω1, ω2) ∈ [−π, π]2,

τ̂j,5(ω) = e−ı2jω1 τ̂j,3(ω) and τ̂j,6(ω) = e−ı2jω2 τ̂j,4(ω)

Moreover, |τ̂j,3(ω)| = |τ̂j,5(ω)| and |τ̂j,4(ω)| = |τ̂j,6(ω)|.

Proof: We only need to prove τ̂j,5(ω) = e−ı2jω1 τ̂j,3(ω), the other follows similarly.
It follows from (9) that τ̂3(ω) = 1

4 − 1
4e

−ıω2 and τ̂5(ω) = 1
4e

−ıω1 − 1
4e

−ı(ω1+ω2). Hence, τ̂5(ω) =

e−ıω1 τ̂3(ω), that is, τ̂0,5(ω) = e−ıω1 τ̂0,3(ω). By the definition of τ̃j,i, one has that ̂̃τ j,3(ω) = τ̂0,3(2
jω) and̂̃τ j,5(ω) = τ̂0,5(2

jω). From (10), we obtain τ̂j,3(ω) = ̂̃τ j,3(ω)∏j−1
k=0

̂̃τk,0(ω) and τ̂j,5(ω) = ̂̃τ j,5(ω)∏j−1
k=0

̂̃τk,0(ω).
Hence, τ̂j,5(ω) = e−ı2jω1 τ̂j,3(ω) which yields |τ̂j,3(ω)| = |τ̂j,5(ω)| immediately. �

The implication of Proposition 1 in computational savings of the fast frame transform using the DHF
filters will be clear soon.

Let u be an image of size n1 × n2 in Rn1×n2 . The 2-dimensional fast frame transform using the DHF
filters with levels of decomposition J for u ∈ Rn1×n2 is given by

Wu = {Wj,iu : 0 ≤ j ≤ J − 1, 0 ≤ i ≤ 6}, (11)
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where Wj,iu := τj,i[−·] ~ u ∈ Rn1×n2 with ~ being the convolution operator under a proper boundary
condition, such as periodic or symmetric boundary. We observe that the frame transform generates more
data at the output than at the input. The redundancy rate is the ratio of the number of components in the
output to that in the input. Clearly, the redundancy rate depends on the number of filters as well as the
number of levels in decomposition. At first glance, for single level decomposition, the redundancy rate of
the DHF system is 7 while the redundancy rate of the Haar system is 4. However, in the following, we show
that the computational complexity of DHF is actually lower than that of Haar system.

First we note that, by exploring the structures of the pairs of the filters (τ3, τ5) and (τ4, τ6), and ignoring
the boundary issue, we have

(W0,5u)[k1, k2] = (W0,3u)[k1 − 1, k2] and (W0,6u)[k1, k2] = (W0,4u)[k1, k2 − 1],

which can be viewed as a consequence of Proposition 1 with j = 0. Therefore, the redundancy rate of the
DHF system is about 5

4 higher than that of the Haar wavelet system.
The operator Wj,i in (11) is a linear operator and we useWj,i, an n×nmatrix with n = n1n2, to denote

its matrix representation. We further form a matrix W of size (6J + 1)n× n by stacking the matrices

WJ−1,0,WJ−1,1, . . . ,WJ−1,6︸ ︷︷ ︸,WJ−2,1, . . . ,WJ−2,6︸ ︷︷ ︸, . . . ,W0,1, . . . ,W0,6︸ ︷︷ ︸ . (12)

This matrix W serves as the matrix representation of the fast frame transform W given in (11). The identity
W⊤W = I holds due to (7), but W⊤W ̸= I , where the superscript ⊤ denotes the conjugate transpose. For
simplicity, we call W the DHF matrix and it will be used in problem (5).

By Proposition 1, the identities of |τ̂j,3(ω)| = |τ̂j,5(ω)| and |τ̂j,4(ω)| = |τ̂j,6(ω)| lead to

W⊤
j,3Wj,3 =W⊤

j,5Wj,5 and W⊤
j,4Wj,4 =W⊤

j,6Wj,6,

respectively, all 0 ≤ j ≤ J − 1. Therefore, it would not be necessary to compute the coefficients Wj,5u
and Wj,6u in our later applications. In this sense, although the filters τi, i ∈ {0, 1, 2, 3, 4} cannot form a
tight frame system, but they are sufficient for the decomposition and reconstruction of images. Including
two additional filters τ5 and τ6 into the set of filters τi, i ∈ {0, 1, 2, 3, 4} will enable us to generate a tight
frame system.

By the above discussion, we conclude that the computational complexity of the fast frame transform
with the DHF is even lower than that with the Haar filter. Actually, the computational cost of one level
decomposition (resp. reconstruction) of an image with n pixels via the DHF needs 7n additions and n
multiplications (resp. 13n additions and n multiplications). As a comparison, the computational cost of one
level decomposition (resp. reconstruction) of an image with n pixels via the Haar filters needs 12n additions
and n multiplications (resp. 15n additions and n multiplications).

From now on, a 2-dimensional image u ∈ Rn1×n2 will be viewed as a vector u ∈ Rn by concatenating
its columns. The vector w := Wu is the tight frame coefficients of u and satisfy the perfect reconstruction
formula, i.e., u =W⊤Wu =W⊤w.

4 A Fast Adaptive DHF Algorithm

In this section, we will develop algorithms for solving the optimization problem (5). First, to prepare
for an efficient numerical algorithm for the optimization problem (5), a constrained optimization problem
equivalent to (5) is presented. Next, we develop an iterative scheme based on proximity operator for the
constrained optimization problem. Since the regularization parameter matrix Γ is involved in this problem,
an adaptive scheme is developed to estimate it in each step of the iterative scheme. Finally, an algorithm
stemming from the iterative scheme together with the estimation of Γ is proposed for solving the resulting
optimization problem (16).
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4.1 Constrained Optimization Problem

In the fidelity term ∥Mu − g∥22 of the optimization problem (5), the image u is a real vector while the
observed image g is a complex vector since the Fourier matrix is involved in the formulation of the imaging
matrix M . We now reformulate this fidelity term such that the resulting fidelity term is formed by a real
matrix and vectors.

Hereafter, Re(·) and Im(·) stand for the real and imaginary parts, respectively. Define

P =

[
Re(M)
Im(M)

]
, z =

[
Re(g)
Im(g)

]
, ϵ =

[
Re(η)
Im(η)

]
. (13)

With these matrices and vectors, the observed model (1) can be rephrased as

z = Pu+ ϵ. (14)

For real-valued vector u, ∥Mu− g∥22 = ∥Pu− z∥22. As a consequence, problem (5) becomes

min
u

{
1

2
∥Pu− z∥22 + ∥ΓWu∥1

}
. (15)

No complex numbers and operators are involved in the above formulation. Therefore, it will facilitate the
development of numerical algorithms for (15).

For problem (15), we denote by w the tight frame coefficient vector of u with the DHF matrix W , that
is, w = Wu. This says that w is in the range of W . Since W is the tight frame matrix, from the relation
W⊤W = I the vector satisfies the condition w = WW⊤w. Hence, the optimization problem (15) is
converted to

minimize 1
2∥PW

⊤w − z∥22 + ∥Γw∥1
subject to w =WW⊤w

(16)

The two optimization problems (15) and (16) are equivalent in the following sense. If u⋆ is a solution to
problem (15), then w⋆ = Wu⋆ is a solution to problem (16). Conversely, if w⋆ is a solution to prob-
lem (16), then u⋆ =W⊤w⋆ is a solution to problem (15). An iterative scheme will be proposed to solve the
optimization problem (16) in the next subsection.

4.2 A Proximity Operator Algorithm for Problem (16)

In this subsection, we propose an iterative scheme based on the proximity operator for solving problem (16)
such that each step in the scheme can be computed efficiently.

We begin by introducing our notation and recalling some necessary background from convex analysis.
The class of all lower semicontinuous convex functions f : Rd → (−∞,+∞] such that dom f := {x ∈
Rd : f(x) < +∞} ̸= ∅ is denoted by Γ0(Rd). The indicator function of a closed convex set C in Rd is
defined, at u ∈ Rd, as

ιC(u) :=

{
0, if u ∈ C,
+∞, otherwise.

Clearly, the indicator function ιC is in Γ0(Rd) for any closed nonempty convex set C. With the notion of
the indicator function, the optimization problem (16) can be rewritten as

min
w

{
1

2
∥PW⊤w − z∥22 + ∥Γw∥1 + ι{0}((I −WW⊤)w)

}
. (17)

The objective function in (17) is the sum of three convex functions. We propose to apply an algorithm
developed recently in [27] for problem (17). To this end, we first recall two notions, namely proximity
operator and conjugate function.

9



For a function f ∈ Γ0(Rd), the proximity operator of f with parameter λ, denoted by proxλf , is a
mapping from Rd to itself, defined for a given point x ∈ Rd by

proxλf (x) := argmin

{
1

2λ
∥u− x∥22 + f(u) : u ∈ Rd

}
.

We also need the notation of the conjugate. The conjugate of f ∈ Γ0(Rd) is the function f∗ ∈ Γ0(Rd)
defined at x ∈ Rd by f∗(x) := sup{⟨u, x⟩ − f(u) : u ∈ Rd}.

Theorem 1 (Theorem 5.3 in [27]) For f ∈ Γ0(Rm), r ∈ Γ0(Rn), and a differentiable h ∈ Γ0(Rm),
consider an optimization problem of the form

min
w

{h(w) + f(w) + r(Bw)}, (18)

where B is an n × m real matrix. For positive numbers α and β, and θ ≥ 0, begin with t0 = 1 and an
arbitrary pair (v0, w0) ∈ Rn×Rm, we generate a sequence {(vk, wk)} with the following iterative scheme

ṽk+1 = proxβr∗(v
k + βBwk),

w̃k+1 = proxαf (w
k − αB⊤(2ṽk+1 − vk)− α∇h(wk)),

tk =
1+
√

1+4(tk−1)2

2 ,[
vk+1

wk+1

]
=

[
vk

wk

]
+

(
tk−1−1

tk
+ θ

)[
ṽk+1 − vk

w̃k+1 − wk

]
.

(19)

We assume that problem (18) has a solution and the gradient of h is Lipschitz continuous with Lipschitz
constant L. If

1

α
− L

2
> β∥B∥22 and θ <

1 + max{1
2 ,

L
L+2ρ}

2max{1
2 ,

L
L+2ρ}

− 1,

where ρ = min
{

1
α − L

2 ,
1
β

}
·
(
1− ∥B∥2

√
β( 1α − L

2 )
−1

)
, then the sequence {wk} converges to a solution

of problem (18).

We now apply Theorem 1 to the optimization problem (17) (i.e., (16)). To this end, we identify 1
2∥PW

⊤ ·
−z∥22, ∥ · ∥1 ◦ Γ, ι{0}, and I −WW⊤ in the objective function of (17) as h, f , r, and B in that of (18),
respectively. In this scenario, we first compute ∥I −WW⊤∥2.

Lemma 1 Let W be a DHF matrix. Then ∥W∥2 = 1 and ∥I −WW⊤∥2 = 1.

Proof: Since W is a DHF matrix, that is, W⊤W = I , it implied that ∥W∥2 = 1. Further Since (I −
WW⊤)2 = I −WW⊤ and I ̸=WW⊤, then ∥I −WW⊤∥2 = 1. �

Next, to show the gradient of h is Lipschitz continuous, we introduce a constant related to the sensitivity
matrices Si as

κ := max
k

p∑
i=1

|s(i)k |2, (20)

where s(i)k , the k-th diagonal element of the sensitivity matrix Si, is the sensitivity coefficient of the i-th coil
at the k-th pixel.

Lemma 2 Let P and z be given in (13), and let W be the DHF matrix. Define h(w) = 1
2∥PW

⊤w − z∥22
for w ∈ Rm. Then the gradient of h is κ-Lipschitz continuous, where κ is given in (20).
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Proof: A direct computation gives ∇h(w) = WP⊤(PW⊤w − z). Hence, the gradient of h is ∥PW⊤∥22-
Lipschitz continuous. By Lemma 1, ∥PW⊤∥22 ≤ ∥P∥22. Now, let us estimate the norm of P . By (13) and
(3), we have

P⊤P =

p∑
i=1

S⊤
i F−1PFSi. (21)

Hence, the kℓ-th entry of the matrix S⊤
i F−1PFSi is the corresponding entry of the matrix F−1PF mul-

tiplied by s(i)k s
(i)
ℓ . Likewise, from (21), the kℓ-th entry of the matrix P⊤P is the corresponding entry of

the matrix F−1PF multiplied by
∑p

i=1 s
(i)
k s

(i)
ℓ . Define a p × m matrix S whose ij-th entry is s(i)j and

Q = S⊤S. Clearly, the kℓ-th entry of Q is
∑p

i=1 s
(i)
k s

(i)
ℓ . Thus, equation (21) can be rewritten as

P⊤P = Q ⋄ (F−1PF), (22)

where ⋄ denotes the Hadamard product. Since the sampling matrix P is a diagonal matrix with 0 and 1 as
its diagonal elements, then F−1PF is positive semi-definite and ∥F−1PF∥2 ≤ 1. By Theorem 5.5.18 in
[20], from (22) we have that

∥P⊤P∥2 ≤ ∥F−1PF∥2 ·max
k

p∑
i=1

|s(i)k |2 ≤ κ.

This completes the proof. �

Finally, we present the proximity operators of ∥ · ∥1 ◦ Γ and ι{0}. To this end, we recall that for a given
p × p diagonal matrix D with non-negative diagonal elements, the soft shrinkage operator with respect to
the threshold matrix D is denoted by shrinkD that maps Rp to itself. For a vector x ∈ Rp, the i-th entry of
the vector y = shrinkD(x) is sign(xi)max{|xi| − dii, 0}, where xi is the i-th entry of x and dii is the i-th
diagonal entry of D.

Lemma 3 Let Γ be an m×m diagonal matrix with nonnegative diagonal elements. Define f(w) = ∥Γw∥1
and r(w) = ι{0}(w) for w ∈ Rm. Then for any positive numbers α and β and w ∈ Rm,

proxαf (w) = shrinkαΓ(w) and proxβr∗(w) = w.

Proof: It is well-known that proxαf (w) = shrinkαΓ(w) for allw ∈ Rm. We just need to show proxβr∗(w) =
w. From the definition of conjugate function, we have that r∗(w) = 0. Hence,

proxβr∗(w) = argmin

{
1

2β
∥v − x∥22 : v ∈ Rm

}
= w

for all w ∈ Rm. This completes the proof. �

With the above preparation, the application of Theorem 1 to the optimization problem (17) is stated in
the following theorem.

Theorem 2 For positive numbers α and β, and θ ≥ 0, begin with t0 = 1 and an arbitrary pair (v0, w0) ∈
Rn × Rm, we generate a sequence {(vk, wk)} with the following iterative scheme

w̃k+1 = shrinkαΓ(w
k − α(I −WW⊤)(vk + 2βwk)− αWP⊤(PW⊤wk − z)),

tk =
1+
√

1+4(tk−1)2

2 ,[
vk+1

wk+1

]
=

[
vk

wk

]
+

(
tk−1−1

tk
+ θ

)[
β(I −WW⊤)wk

w̃k+1 − wk

]
.

(23)
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If the parameters α, β and θ satisfy the following conditions

1

α
− κ

2
> β and θ <

1 + max{1
2 ,

κ
κ+2ρ}

2max{1
2 ,

κ
κ+2ρ}

− 1, (24)

where κ is given by (20) and ρ = min
{

1
α − κ

2 ,
1
β

}
·
(
1−

√
β( 1α − κ

2 )
−1

)
, then the sequence {wk} con-

verges to a solution of problem (17).

Proof: We identify 1
2∥PW

⊤ · −z∥22, ∥ · ∥1 ◦ Γ, ι{0}, and I −WW⊤ in the objective function of (17) as
h, f , r, and B in that of (18), respectively. By Lemma 3, the first equation in the iterative scheme (19)
becomes ṽk+1 = vk + β(I −WW⊤)wk. By substituting ṽk+1 in the second and fourth equations of (19)
by vk + β(I −WW⊤)wk, the iterative scheme reduces to (23). By Lemmas 1 and 2 and Theorem 1, if the
conditions in (24) are satisfied, then sequence {wk} will converge to a solution of problem (17). �

4.3 Estimation of the Regularization Parameter Matrix Γ

It is well known that the performance of a regularized optimization problem relies heavily on the selection
of the associated regularization parameters. However, it is still an active research area to find an efficient
way to estimate these parameters. Our tight wavelet frame based optimization problem (17) (or equivalently
(16)) allows us to estimate the regularization parameter matrix Γ through analyzing the statistics of frame
coefficients. We now provide a detailed description of the estimation of Γ.

In the optimization problem (17), the vector w collects all tight frame coefficients of the underlying
image. When the iterative scheme (23) is applied to the optimization problem (17), it can be seen from (23)
that the vector w̃ is the penalized version of w together with a perturbation with respect to the thresholding
matrix αΓ. From the definition of the shrinkage operator, the value of each entry in w̃ is determined by the
corresponding threshold in Γ and the value of the corresponding entry in w. Intuitively, an entry with a large
magnitude inw encodes edge information at a related location in the underlying image and should be kept or
less affected; therefore, a small threshold should be used. On the other hand, an entry with a small magnitude
in w is likely killed by a large threshold. In a nutshell, the regularization parameter matrix Γ should adapt
to the geometric information of the image and the statistical modeling of the frame coefficients. Following
our work in [29], we propose the following way to find Γ.

Suppose that the matrixW ∈ Rm×q is formed from the fast DHF transform with J decomposition levels
and w ∈ Rm is the coefficient vector obtained by applying W to the underlying image. For the i-th entry of
w, there is an unique index (ℓ, j,k) with 1 ≤ ℓ ≤ J , 0 ≤ j ≤ 6, and k ∈ Z2, denoted by I(i), associated
with i. If I(i) = (ℓ, j,k), it says that wi is the coefficient at the k location of a matrix and in the j-th
sub-band at the ℓ-th level of decomposition. Then, the i-th diagonal entry of Γ is estimated as follows (see,
[29]):

γi =

{
0, if (ℓ, j) = (J, 0),√
2σ2

ℓ,j

σI(i)
, otherwise,

(25)

where I(i) = (ℓ, j,k). Here, σ2ℓ,j is the noise variance of the coefficients in the j-th subband at the ℓ-th
decomposition level while σ2I(i) is the variance of wi with the assumption that this coefficient is Laplace
distributed. In practice, we suppose the noise has an independent, identically distributed Gaussian distribu-
tion, and estimate the noise variance on the image W⊤w by the method in [22]. The noise variance σ2ℓ,j
of the coefficients at each subband is computed as our prior method in [28] while σ2I(i) is approximatively
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estimated by (see [21])

σ2I(i) = max


 1.25

√
2

|W(I(i))|
∑

k∈W(I(i))

|wk|

2

− σ2ℓ,j , 10
−9

 ,

where the set W(I(i)) contains all indexes of coefficients in the neighborhood of the coefficient wi in the j-
th subband at the ℓ-th decomposition level, and |W(I(i))| is the cardinality of the set W(I(i)). The number
10−9 is used only for numerical convenience. In this paper, a neighborhood with size 3× 3 for W(I(i)) is
used in the experiments.

4.4 Algorithm

By combining the results from the previous subsections, a fast adaptive iterative algorithm based on (23) for
the optimization problem (16) is presented in Algorithm 1. The number of decomposition levels with the
DHF is J = 2. The parameter κ is computed through (20). For a fixed α > 0, we choose β = 1

α−
κ
2 −0.001

that satisfies the first inequality in (24). The initial guess w0 can be derived from the observed sum-of-
squares (SoS) image ugSoS whose entry at the location k is defined as

ugSoS [k] :=

√√√√ p∑
ℓ=1

|gℓ[k]|2, (26)

where gℓ is the ℓ-th coil image. It was known that the signal-to-noise ratio (SNR) in the SoS image is
asymptotically (as the input SNR → ∞) equal to that of maximum-ratio combining, which is the best
unbiased reconstruction method when the coil sensitivities are known [26]. In other words, the image ugSoS
is an approximation of the target image. Therefore, we choose v0 = w0 =WugSoS .

Algorithm 1 (Fast Adaptive DHF Algorithm (FADHFA) for pMRI)

1. Initialization: v0 = w0 = Wugsos with gsos given in (26); κ given in (20); the parameters α < 2
κ ,

β = 1
α − κ

2 − 0.001, and non-negative θ satisfying (24);

2. For k = 1, 2, . . .,

(a) Estimate Γ via (25) only when k equals to 1, 6, 11, 16, 22 or 26;

(b) compute (vk+1, wk+1) via (23);

3. Compute the image uk+1 =W⊤vk+1 when a stopping condition is satisfied, then stop.

Updating the regularization parameter matrix Γ in Algorithm 1 at k = 1, 6, 11, 16, 22, 26 is motivated by
our numerical observations on the trend of the regularization parameters during the iterations. If we allow
Γ to be estimated at each step, the values of estimated parameters at the first 50 steps for three randomly
selected pixels are plotted in Figure 1. From this figure, we find that the values of these parameters tend to
constants roughly after 25 iterations, we therefore propose in Algorithm 1 to update Γ only when k is 1, 6,
11, 16, 21 or 26. Finally, since the matrix Γ is fixed after the 26-th iteration, the convergence of Algorithm
1 is guaranteed by Theorem 2.
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Figure 1: The values of three regularization parameters of Γ at the first 50 iterations.

5 Experiments

In this section, we illustrate the effectiveness of our model (15) and the corresponding algorithms in pro-
ducing high-quality images from coil pseudo random downsampling k-space data in the phase-encoding
direction on the Cartesian coordinate. Simulated test data is used in Section 5.1, phantom MR images ac-
quired by an MRI machine are used in Section 5.2, and in-vivo medical MR coil images are used in Section
5.3.

To have a through comparison of the performance of the DHT for pMRI, we consider to replace our
frame transform matrix W in FADHFA by two other wavelets. The first one is the three-level framelet
transform using the tensor product complex tight framelet CTF6 that has 6 filters and offers 14 directions in
2-dimension [19], and we will denote the resulting algorithm by FACTF6A. The excellent performance of
CTF6 in image denoising has been reported in a comparison with the dual tree complex wavelet transfor-
m and shearlets in [19]. The other is the two-level non-decimated wavelet transform using the orthogonal
Haar wavelet from which we generated our directional Haar tight framelet system, and we will denote the
corresponding algorithm by FAHaarA. We also compare our method with the TV-based regularization mod-
el (4) solved by the method in [46] and the method ℓ1-ESPIRiT (an eigenvalue approach to autocalibrating
parallel MRI) in [43]. The source code of the TV-based algorithm [46] was provided by the authors, and
that of the ℓ1-ESPIRiT method was downloaded from the web site of one of the authors1. We terminate our
method when ∥uk+1 − uk∥22/∥uk∥22 < 10−8 or when the number of iterations exceeds 200. Here uk is the
kth iteration produced by the underlying algorithm. All experiments are performed in Matlab R2009a on
a Lenovo X1 Carbon computer with Intel(R) Core(TM) i5-4200U processor (2.30GHz), 8G memory, and
Windows 7 operating system.

5.1 Performance on Simulated Data

In this section, we compare the reconstruction performance of FADHFA against FACTF6A, FAHaarA, and
the TV-based algorithm on the Shepp-Logan phantom of size 256-by-256 shown in Figure 2 (a). (It will be
unfair for ℓ1-ESPIRiT if we are to compare it with our method as it generates its own sensitivity profiles
rather than using the true ones given below.)

The pixel values of the Shepp-Logan phantom range from 0 to 1. Assume that we have an array of
4 surface coils. The original phantom image is modulated by 4 different smoothly-decaying sensitivity

1The code is available at: http://www.eecs.berkeley.edu/˜mlustig/Software.html
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(a) (b) (c) (d)

Figure 2: (a) The Shepp-Logan phantom (the rectangle is for later zoom-in comparison); (b) Sampling
model of the 33% k-space; (c) Four coil images with Gaussian noise σ = 0.01; (d) The SoS image from the
33% k-space.

profiles:

S1[i, j] = ζ/(25000 + (i+ 40)2 + (j + 20)2),

S2[i, j] = ζ/(25000 + (i+ 50)2 + (j − 290)2),

S3[i, j] = ζ/(25000 + (i− 290)2 + (j + 10)2),

S4[i, j] = ζ/(25000 + (i− 280)2 + (j − 310)2),

i, j = 1, 2, . . . , 256 and the complex constant ζ = (25000 + ı25000)/
√
2. For these sensitivity matrices,

the parameter κ given in (20) is 1.012. More precisely, we perform an entry-wise multiplication of Sℓ with
u, ℓ = 1, 2, 3, 4, see (1). Then we apply the sampling model as in Figure 2 (b) for shortening imaging time
in the k-space to obtain the noiseless coil images. We further add additive white Gaussian noise with noise
level σ = 0.01 to each image to obtain the observed noisy coil images gℓ. The four noisy coil images from
the phantom are shown in Figure 2 (c). The SoS image of four noisy coil images is shown in Figure 2 (d),
which is obviously noisy and blurred with aliasing artifacts.

The result in Figure 3 (a) is obtained from solving the TV-based model (4). The regularization parameter
λ in (4) is chosen to be 0.005 using trial and error for the best reconstruction quality. The results in Figure 3
(b), (c), and (d) are obtained by the FACTF6A, FAHaarA, and FADHFA, respectively. We emphasize that
FACTF6A, and FAHaarA use the same model (16) except that the DHF tight frame system is replaced by
CTF6 and the orthogonal Haar wavelet, respectively. Thus we used the same technique as given in Section
4.3 to estimate the regularization matrix for these methods. We can see that the aliasing artifacts and noise
in Figure 2 (d) are significantly suppressed in Figures 3 (a)–(d).

For this test example, since the original phantom is available, we can measure the accuracy of the
reconstructions by the normalized mean-squared error (NMSE), which is a global image quality metric that
quantifies the difference between the ground true image u and the reconstruction û. It is defined by

NMSE =
∥u− û∥22
∥u∥22

.

A lower NMSE value means a better accuracy of reconstruction. In Table 1, the corresponding NMSE of
the reconstructions in Figures 3 (a)–(d) are given. Clearly, the reconstruction given by FADHFA has the
smallest NMSE value.

To further evaluate the quality of the images in Figures 3 (a)–(d), the zoom-in images of the region
marked by the white rectangle in Figure 2 (a) are displayed in Figure 4. We observe that the edges in Figure 4
(c), (d), and (e), which are from the TV-based regularization, FACTF6A, and FAHaarA, respectively, are
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(a) (b)

(c) (d)

Figure 3: The reconstructed images by (a) the TV regularization algorithm [46] with parameter 0.005; (b)
FACTF6A; (c) FAHaarA; and (d) FADHFA, respectively.

blurry, while the edges in Figure 4 (f) by FADHFA are close to those in the original phantom shown in
Figure 4 (a).

In Table 1 we also report the CPU time for obtaining the reconstructed images in Figure 3 (a)–(d). We
see that our method requires the least time, and it is even faster than FAHaarA as explained at the end of
Section 3. Since our tight algorithm FADHFA performs much better than FACTF6A, and FAHaarA in terms
of the quality of the reconstructed images and CPU time, we will not compare with these two methods in
the following experiments.

Table 1: The NMSE indexes and the CPU usage for the reconstructions in Figure 3.
pMRI Algorithms TV-based Alg. [46] FACTF6A FAHaarA FADHFA

NMSE 8.2× 10−4 2.6× 10−3 3.6× 10−4 2.19× 10−4

CPU Time 12.3s 48.2s 9.1s 9.0s
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(a) (b) (c)

(d) (e) (f)

Figure 4: Zoom-in images of the region marked by the white rectangle in Figure 2(a). (a) Original phantom;
(b) SoS image from the 33% k-space; the reconstructed images by (c) the TV regularization algorithm [46]
with parameter 0.005; (d) FACTF6A; (e) FAHaarA; and (f) FADHFA .

5.2 MRI Phantoms

In this subsection, phantom MR images are acquired on a 3T MRI System (Tim Trio, Siemens, Erlangen,
Germany). A turbo spin-echo sequence was used to acquire T2-weighted images. The detailed imaging
parameters are as follows: field of view (FOV) = 256 × 256 mm2, image marix size = 512 × 512, slice
thicknesses (ST) = 3 mm, flip angle = 180 degree, repetition time (TR) = 4000 ms, echo time (TE) = 71 ms,
echo train length (ETL) = 11 and number of excitation (NEX) = 1.

To accelerate the imaging speed, parts of each coil data are collected to fuse a desired image, which
represent parts of the target imaging slice. An example with four coil images of size 512-by-512 is given
here. According to the sampling model in Figure 5 (a), 33% of k-space data (marked by white color there)
of each coil are collected for shortening imaging time. Figure 5 (b) is one of the coil images obtained by
applying the inverse Fourier transform for the collected k-space data with zero-padding for missing data.
Reconstructing the pMRI images from the observed coil images via problem (16) requires the availability
of coil sensitivities. The approach of estimating the coil sensitivities proposed in [37, 4] roughly consists of
two main steps: the first step is to identify a region of interpolation and the second step is to estimate the
sensitivities through a polynomial locally fitting the pixels of the coil images on the interpolation region. In
[37], the interpolation region was determined by checking whether the target signal in ugSoS given by (26)
(see Figure 5 (c)) dominates noise or not.

To reduce the noise effects, we propose an alternative way to determine the interpolation region. Our
method of estimating the coil sensitivities is described in the following. The observed SoS image ugSoS is
first decomposed several levels by using the DHF filters. For the resulting coefficient matrices in the coarsest
level, we component-wisely take the absolute values of the coefficient matrices and then add them up to a
single coefficient matrix. From this resulting matrix and with a pre-given threshold, we generate a binary
matrix whose entry is 1 (white) if this entry is above the threshold or 0 (black) otherwise. Figure 5 (d) is
the resulting binary image. For this binary image, the value of 1 at a location indicates that the pixel values
at that location in all the observed coil images gℓ can give feasible information of the target image. The
collection of these locations then form the interpolation region. Given this region, the polynomial fitting
procedure in [37]2 is used to obtain the sensitivity maps. Figure 5 (e) is the estimated coil sensitivity by

2The code is available at: http://maki.bme.ntu.edu.tw/?page_id=253
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: (a) Sampling model of 33% k-space; (b) One coil image from the 33% k-space; (c) SoS image
from the 33% k-space; (d) Binary image for the interpolation area of (c); and (e) Sensitivity estimated by
fitting polynomial algorithm [37]; (f) SoS images of full k-space; (g) Sampling model of 25% k-space; and
(h) SoS images of full k-space.

(a) (b) (c)

Figure 6: The reconstructed images from 33% k-space sample by (a) ℓ1-ESPIRiT [43] with parameter 0.01;
(b) TV regularization algorithm [46] with parameter 0.00013; and (c) Our FADHFA.
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using the coil image data of Figure 5 (b) corresponding to the binary image of Figure 5 (d). With this
scheme, each coil sensitivity can be efficiently estimated from parts of the k-space data.

(a) (b)

(c) (d)

Figure 7: Zoom-in images of the region marked by a larger white rectangle in Figure 5. (a) SoS image of
the full k-space in Figure 5 (f); the reconstructed images by (b) ℓ1-ESPIRiT [43] with parameter 0.01; (c)
TV regularization algorithm [46] with parameter 0.00013; and (d) Our FADHFA.

(a) (b) (c) (d)

Figure 8: Performance of the results on another set of 4-coil images of Figure 5 (h) by 2-D pseudo random
sampling model in Figure 5 (g). (a) SoS image of the full k-space with zoom-in part at the square region
of Figure 5 (h); (b)–(d): ℓ1-ESPIRiT [43] with parameter 0.008, TV regularization algorithm [46] with
parameter 0.0001 and our FADHFA, respectively.

Three different approaches, namely, ℓ1-ESPIRiT algorithm [43], total variation based reconstruction in
[46], and our proposed FADHFA are used to reconstruct an image from four coil images with the sampling
model described in Figure 5 (a).

The SoS image of the full k-space is considered as a reference image shown in Figure 5 (f). The image
in Figure 6 (a) is the result from the ℓ1-ESPIRiT using the default settings in the source code of ℓ1-ESPIRiT
algorithm [43] except that the regularization parameter is set to be 0.01 after an extensive trail-and-error
search to find the best one. The reconstructed image via (4) by the method in [46] is displayed in Figure 6
(b). The reconstructed image by the FADHFA is shown in Figure 6 (c). Clearly, aliasing artifacts appeared
in Figure 5 (c) are significantly suppressed by the three methods.
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Table 2: First number in parentheses: the CNR values for the regions marked in Figure 5 (f) (i.e. Figure
7) and Figure 5 (h) (i.e. Figure 8). Second number in parentheses: the CPU time in seconds for the
reconstructions of the whole image by the various algorithms.

% of k-space Zoom-in image ℓ1-ESPIRiT [43] TV-based Alg. [46] Our FADHFA
33% Figure 7 (65.0, 255s) (73.3, 65s) (124.4, 28s)
25% Figure 8 (91.0, 256s) (108.0, 67s) (168.1, 44s)

To further evaluate the quality of the reconstructions, we zoom in to the region containing the bright
dots given in Figure 5 (f). They are depicted as Figure 7 (a)–(d), respectively. We can see that the image in
Figure 7 (a) is more noisy than the other images in Figure 7. The dots in Figure 7 (d) are sharper and brighter
than those in Figure 7 (b) and (c), which are close to dots by SoS image of the full k-space in Figure 7 (a).
We conclude that our FADHFA performs better in preserving the details of the images and removing noisy
artifacts in smooth area. Furthermore, unlike the TV-based method or the ℓ1-ESPIRiT method, our proposed
FADHFA automatically updates the regularization parameters.

Since we do not know the ground true phantom, the CNR (contrast-to-noise ratio) is utilized to measure
the quality of the reconstructed images quantitatively. The CNR index is a local quality metric and is defined
as the ratio of a target region contrast to the background noise as

CNR =
|EΩT

(û)− EΩB
(û)|

σΩB
(û)

,

where û is an reconstructed image. Here, EΩT
is the mean of a specific bright target region ΩT , EΩB

is the
mean of an uniform region ΩB (darkness), and σΩB

is the standard deviation over the region ΩB . Higher
CNR implies better ability to detect the lesion by an observer [25, 40]. We use the big rectangle in Figure 5
(f) as the bright target region ΩT and the small rectangle in the middle as the uniform region ΩB to evaluate
the CNR values for the images in Figures 6 (b)–(d).

The CNR values by ℓ1-ESPIRiT [43], TV-based algorithm [46] and our FADHFA are given in Table 2.
Our FADHFA gives the highest CNR value, which means that it allows one to better detect lesions in the
reconstructed images. The CPU times by ℓ1-ESPIRiT [43], TV-based algorithm [46] and our FADHFA are
also given there which show that our FADHFA is fastest in reconstructing the MRI image. We emphasize
here again we only have to solve our problem once as we do not have to estimate the regularization param-
eter, while the other methods may have to solve the corresponding problems several times to get the best
regularization parameters.

The FADHFA, the ℓ1-ESPIRiT [43] and TV-based regularization method are applied to another 4-coil
images by 2-D pseudo random sampling model. The sampling model given in Figure 5 (g) is used to collect
a 25% k-space data. Figure 5 (h) is the reference SoS image of full k-space data. The regularization param-
eters in (4) and in ℓ1-ESPIRiT are set to be 0.0001 and 0.008, respectively by trial-and-error. To compare
the reconstructed images conveniently, we just present the region marked by the square in Figure 5 (h).
The zoomed-in region of reference SoS image of full k-space data is displayed in Figure 8 (a). The corre-
sponding results by ℓ1-ESPIRiT, the TV-based regularization method and FADHFA are shown in Figures 8
(b), (c), and (d), respectively. Again, we can conclude that FADHFA performs better than the TV-based
regularization method in terms of preserving the edges and removing the artifacts. To calculate the CNR
values in this test, the square and rectangular regions in Figure 5 (h) are identified as the bright target region
ΩT and background uniform region ΩB , respectively. The CNR values and CPU times of ℓ1-ESPIRiT [43],
TV-based algorithm [46] and our FADHFA are given in Table 2. It shows that our FADHFA gives the high-
est CNR value and needs the least CPU times. Unlike the TV-based method and ℓ1-ESPIRiT, our FADHFA
does not need to set the regularization parameters by hand. That makes it more suitable for real clinical
applications on different slices and sampling models.
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(a) (b)

(c) (d)

Figure 9: (a) SoS image of the full k-space with zoom-in parts. (b) ℓ1-ESPIRiT [43] with parameter 0.006.
(c) TV regularization algorithm [46] with parameter 0.00015. (d) Our FADHFA.

5.3 In-vivo Data

In this subsection we test our DHF-based algorithm FADHFA on MRI data that are obtained by head exam-
ination from a healthy volunteer. The imaging was done on a 3T MRI system (Tim Trio, Siemens, Erlangen,
Germany). A turbo spin-echo sequence was used to acquire transverse T2-weighted images. The detailed
imaging parameters are as follows: field of view (FOV) = 256 × 256 mm2, image marix size = 512 × 512,
slice thicknesses (ST) = 3.5 mm, flip angle = 180 degree, repetition time (TR) = 4000 ms, echo time (TE) =
94 ms, echo train length (ETL) = 11 and number of excitation (NEX) = 1.

For the 12-coil images of a slice, the SoS image of the full k-space details is shown in Figure 9 (a).
Then 33% full k-space data are sampled using the sampling model that is the same as the one in Figure 5
(a). Figures 9 (b), (c) and (d) show the reconstructions from the 33% full k-space data by the ℓ1-ESPIRiT,
TV-based and FADHFA algorithms, respectively. The regularization parameter in (4) is set to be 0.00015,
and the regularization parameter of ℓ1-ESPIRiT [43] is set to be 0.006.

In Table 3, the CPU time by ℓ1-ESPIRiT [43], TV-based algorithm [46] and our FADHFA are given.
Our FADHFA only costs about one sixth of the CPU time used by ℓ1-ESPIRiT [43] and is twice faster than
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Table 3: The CNR values at four different square regions marked in Figure 9 (a) and CPU time (in seconds)
by pMRI algorithms.

pMRI Algorithms Region 1 Region 2 Region 3 Region 4 Times
ℓ1-ESPIRiT [43] 39.21 45.19 34.61 40.39 293s
TV-based Alg. [46] 59.03 68.82 66.99 84.51 108s
Our FADHFA 192.17 223.06 217.45 272.70 50s

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 10: Zoom-in parts of the square regions 1, 2, 3 and 4 in Figure 9 (a). The first column: Reference SoS
image of the full k-space. The reconstructed images of the second, third and forth columns by ℓ1-ESPIRiT
[43], TV regularization algorithm [46] and our FADHFA on 33% full k-space data, respectively.
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the TV-based algorithm [46]. To compare the quality of the reconstructions by ℓ1-ESPIRiT, the TV-based
algorithm and FADHFA in terms of the CNR values, in Figure 9 (a), the regions marked by the squares
are respectively considered as the bright target region ΩT and the one by the rectangle labeled by 5 as
background uniform region ΩB . For example, at square region 1, the CNR values by ℓ1-ESPIRiT [43],
TV-based algorithm [46] and our FADHFA are 39.21, 59.03 and 192.17, respectively. The CNR value by
FADHFA is about five and three times higher than that by ℓ1-ESPIRiT [43] and by TV-based algorithm [46],
respectively. We can see that our FADHFA always provides the highest CNR value for each region in Table
3, and therefore, FADHFA always gives good contrast results for detecting lesions.

To conveniently distinguish the difference of the reconstructed images, we zoom-in region 1 marked in
Figure 9 (a), and provide the zoom-in images in Figures 10 (a)–(d) corresponding to the images displayed in
Figures 9 (a)–(d). Clearly, the quality of the images in Figures 10 (d) is much better than the one in Figure 10
(c) in terms of the sharpness of the brain tissue. The boundary of the organ tissue in Figure 10 (d) is more
obvious than that in Figure 10 (c). This indicates that our directional Haar wavelet-based regularization term
is better than TV regularization to preserve details of the structures and to suppress the noise. Meanwhile, the
detail structures in Figure 10 (d) by FADHFA is more noticeable than that in Figure 10 (b) by ℓ1-ESPIRiT,
which is closer to the reference SoS image of the full k-space in Figure 10 (a) and makes the difference of
organ structures to be distinguished easily.

The zoom-in regions 2, 3 and 4 marked in Figure 9 (a) are provided in the second, third and forth rows
of Figure 10, respectively. The contrast in Figure 10 (h) by FADHFA is more noticeable to distinguish the
difference of organ than that in Figure 10 (g) by ℓ1-ESPIRiT and that in Figure 10 (f) by TV-based algorithm.
For region 3, our FADHFA is still better to preserve the details of tissue structures than ℓ1-ESPIRiT and TV-
based algorithm. The boundary of different tissues in Figure 10 (l) by FADHFA is clearer than that in
Figure 10 (j) by ℓ1-ESPIRiT and that in Figure 10 (k) by TV-based algorithm. For region 4, Figure 10 (p) by
FADHFA is much closer to reference image in Figure 10 (m) than Figure 10 (n) by ℓ1-ESPIRiT and that in
Figure 10 (o) by TV-based algorithm. All these observations are consistent with the CNR values presented
in Table 3, which again confirm that the proposed fast DHF-based pMRI reconstruction algorithm FADHFA
is robust against the noise on different MRI machines with different coil receivers.

6 Conclusions

We constructed a directional Haar framelet (DHF) system whose filters have the ability to capture informa-
tion of edges of images in the horizonal, vertical, and ±45o directions. The computational complexity of
the fast tight frame transform with DHT is lower than that with the orthogonal Haar wavelet transform. We
proposed a pMRI reconstructed model in real domain whose regularization term was formed from the DHF.
The reconstruction model can be efficiently solved by a proximal algorithm. We developed a way to auto-
matically update the regularization parameter in each iteration of the algorithm. Finally, the performance of
the proposed model was demonstrated for in-silico and in-vivo data sets.
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[8] L. CHAâRI, J. C. PESQUET, A. BENAZZA-BENYAHIA, AND P. CIUCIU, A wavelet-based regularized
reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging, Medical Image
Analysis, 12 (2011), pp. 185–201.

[9] R. H. CHAN, T. F. CHAN, L. SHEN, AND Z. SHEN, Wavelet algorithms for high-resolution image
reconstruction, SIAM Journal on Scientific Computing, 24 (2003), pp. 1408–1432.

[10] , Wavelet deblurring algorithms for spatially sarying blur from high-resolution image reconstruc-
tion, Linear Algebra and Applications, 366 (2003), pp. 139–155.

[11] R. H. CHAN, S. D. RIEMENSCHNEIDER, L. SHEN, AND Z. SHEN, High-resolution image recon-
struction with displacement errors: a framelet approach, International Journal of Imaging Systems
and Technology, 14 (2004), pp. 91–104.

[12] R. H. CHAN, S. D. RIEMENSCHNEIDER, L. SHEN, AND Z. SHEN, Tight frame: an efficient way
for high-resolution image reconstruction, Applied and Computational Harmonic Analysis, 17 (2004),
pp. 91–115.

[13] T. CHAN, S. ESEDOGLU, AND F. PARK, Image decomposition combining staircase reduction and
texture extraction, Journal of Visual Communication and Image Representation, 18 (2007), pp. 464–
486.

[14] A. DESHMANE, V. GULANI, M. A. GRISWOLD, AND N. SEIBERLICH, Parallel MR imaging, Journal
of Magnetic Resonance Imaging, 36 (2012), pp. 55–72.

[15] J. A. FESSLER, Model-based image reconstruction for MRI, IEEE Signal Processing Magazine, 27
(2010), pp. 81–89.

[16] M. A. GRISWOLD, F. BREUER, M. BLAIMER, S. KANNENGIESSER, R. HEIDEMANN,
M. MUELLER, M. NITTKA, V. JELLUS, B. KIEFER, AND P. M. JAKOB, Autocalibrated coil sen-
sitivity estimation for parallel imaging, NMR in Biomedicine, 19 (2006), pp. 316–324.

[17] M. A. GRISWOLD, P. M. JAKOB, AND Q. CHEN, Resolution enhancement in single-shot imaging
using simultaneous acquisition of spatial harmonics (SMASH), Magnetic Resonance in Medicine, 41
(1999), pp. 1236–1245.

[18] M. A. GRISWOLD, P. M. JAKOB, R. M. HEIDEMANN, M. NITTKA, V. JELLUS, J. WANG,
B. KIEFER, AND A. HAASE, Generalized autocalibrating partially parallel acquisitions (GRAPPA),
Magnetic Resonance in Medicine, 47 (2002), pp. 1202–1210.

24



[19] B. HAN AND Z. ZHAO, Tensor product complex tight framelets with increasing directionality, SIAM
Journal on Imaging Sciences, 7 (2014), pp. 997–1034.

[20] R. HORN AND C.JOHNSON, Topics in matrix analysis, Cambridge University Press, 1991.

[21] A. HYVARINEN, Sparse code shrinkage: Denoising of non-gaussian data by maximum likelihood
estimation, Neural Computation, 11 (1999), pp. 1739–1768.

[22] J. IMMWEKÆR, Fast noise variance estimation, Computer Vision and Image Understanding, 64
(1996), pp. 300–302.

[23] S. L. KEELING, C. CLASON, M. HINTERMLLER, F. KNOLL, A. LAURAIN, AND G. VON WINCKEL,
An image space approach to Cartesian based parallel MR imaging with total variation regularization,
Medical Image Analysis, 16 (2012), pp. 189–200.

[24] F. KNOLL, C. CLASON, K. BREDIES, M. UECKER, AND R. STOLLBERGER, Parallel imaging with
nonlinear reconstruction using variational penalties, Magnetic Resonance in Medicine, 67 (2012),
pp. 34–41.

[25] A. KROL, S. LI, L. SHEN, AND Y. XU, Preconditioned alternating projection algorithms for maxi-
mum a posteriori ECT reconstruction, Inverse Problems, 28 (2012), p. 115005.

[26] E. G. LARSSON, D. ERDOGMUS, R. YAN, J. C. PRINCIPE, AND J. R. FITZSIMMONS, SNR-
optimality of sum-of-squares reconstruction for phased-array magnetic resonance imaging, Journal
of Magnetic Resonance, 163 (2003), pp. 121–123.

[27] Q. LI AND N. ZHANG, Fast proximity-gradient algorithms for structured convex optimization prob-
lems, Applied and Computational Harmonic Analysis, accepted.

[28] Y. R. LI, D. Q. DAI, AND L. SHEN, Multiframe super-resolution reconstruction using sparse direc-
tional regularization, IEEE Transactions on Circuits and Systems for Video Technology, 20 (2010),
pp. 945–956.

[29] Y. R. LI, L. SHEN, D. Q. DAI, AND B. W. SUTER, Framelet algorithms for de-blurring images
corrupted by impulse plus Gaussian noise, IEEE Transactions on Image Processing, 20 (2011), p-
p. 1822–1837.

[30] Y. R. LI, L. SHEN, AND B. W. SUTER, Adaptive inpainting algorithm based on DCT induced wavelet
regularization, IEEE Transactions on Image Processing, 22 (2013), pp. 752–763.

[31] F.-H. LIN, K. K. KWONG, J. W. BELLIVEAU, AND L. L. WALD, Parallel imaging reconstruction
using automatic regularization, Magnetic Resonance in Medicine, 51 (2004), pp. 559–567.

[32] B. LIU, K. KING, M. STECKNER, J. XIE, J. SHENG, AND L. YING, Regularized sensitivity encod-
ing (SENSE) reconstruction using Bregman iterations, Magnetic Resonance in Medicine, 61 (2009),
pp. 145–152.

[33] M. LUSTIG, D. DONOHO, AND J. M. PAULY, Sparse MRI: The application of compressed sensing
for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), pp. 1182–1195.

[34] M. MURPHY, M. ALLEY, J. DEMMEL, K. KEUTZER, S. VASANAWALA, AND M. LUSTIG, Fast
ℓ1-SPIRiT compressed sensing parallel imaging MRI: Scalable parallel implementation and clinically
feasible runtime, IEEE Transactions on Medical Imaging, 31 (2012), pp. 1250–1262.

25



[35] R. A. NOVELLINE AND L. F. SQUIRE, Squire’s fundamentals of radiology, 5th Edition, Cambridge:
Harvard University Press, 1997.

[36] S. PARK AND J. PARK, Adaptive self-calibrating iterative GRAPPA reconstruction, Magnetic Reso-
nance in Medicine, 67 (2012), pp. 1721–1729.

[37] K. P. PRUESSMANN, M. WEIGER, M. B. SCHEIDEGGER, AND P. BOESIGER, SENSE: sensitivity
encoding for fast MRI, Magnetic Resonance in Medicine, 42 (1999), pp. 952–962.

[38] S. RAVISHANKAR AND Y. BRESLER, MR image reconstruction from highly undersampled k-space
data by dictionary learning, IEEE Transactions on Medical Imaging, 30 (2011), pp. 1028–1041.

[39] L. SHEN, M. PAPADAKIS, I. A. KAKADIARIS, I. KONSTANTINIDIS, D. KOURI, AND D. HOFFMAN,
Image denoising using a tight frame, IEEE Transactions on Image Processing, 15 (2006), pp. 1254–
1263.

[40] J. SIJBERS, P. SCHEUNDERS, N. BONNET, D. V. DYCK, AND E. RAMAN, Quantification and im-
provement of the signal-to-noise ratio in a magnetic resonance image acquisition procedure, Magnetic
Resonance Imaging, 14 (1996), pp. 1157–1163.

[41] G. STRANG AND T. Q. NGUYEN, Wavelets and Filterbanks, Wellesley, MA: Wellesley-Cambridge,
1997.

[42] P. THUNBERG AND P. ZETTERBERG, Noise distribution in SENSE- and GRAPPA-reconstructed im-
ages: a computer simulation study, Magnetic Resonance Imaging, 25 (2007), pp. 1089–1094.

[43] M. UECKER, P. LAI, M. J. MURPHY, P. VIRTUE, M. ELAD, J. M. PAULY, S. S. VASANAWALA,
AND M. LUSTIG, ESPIRiTłan eigenvalue approach to autocalibrating parallel MRI: where SENSE
meets GRAPPA, Magnetic Resonance in Medicine, 71 (2014), pp. 990–1001.

[44] M. WEIGER, K. P. PRUESSMANN, AND P. BOESIGER, Cardiac real-time imaging using SENSE,
Magnetic Resonance in Medicine, 43 (2000), pp. 177–184.

[45] D. S. WELLER, J. R. POLIMENI, L. GRADY, L. L. WALD, E. ADALSTEINSSON, AND V. K. GOYAL,
Sparsity-promoting calibration for GRAPPA accelerated parallel MRI reconstruction, IEEE Transac-
tions on Medical Imaging, 32 (2013), pp. 1325–1335.

[46] X. YE, Y. CHEN, AND F. HUANG, Computational acceleration for mr image reconstruction in par-
tially parallel imaging, IEEE Transactions on Medical Imaging, 30 (2011), pp. 1055–1063.

[47] L. YING AND J. SHENG, Joint image reconstruction and sensitivity estimation in SENSE (JSENSE),
Magnetic Resonance in Medicine, 57 (2007), pp. 1196–1202.

[48] L. YUAN, L. YING, D. XU, AND Z.-P. LIANG, Truncation effects in SENSE reconstruction, Magnetic
Resonance Imaging, 24 (2006), pp. 1311–1318.

[49] B. ZHAO, H. GAO, H. DING, AND S. MOLLOI, Tight-frame based iterative image reconstruction for
spectral breast CT, Medical Physics, 40 (2013), p. 031905.

[50] T. ZHAO AND X. HU, Iterative GRAPPA (iGRAPPA) for improved parallel imaging reconstruction,
Magnetic Resonance in Medicine, 59 (2008), pp. 903–907.

26


