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We consider the solution of ordinary differential equations (ODEs) using bound-
ary value methods. These methods require the solution of one or more unsymmet-
ric, large and sparse linear systems. The GMRES method with the Strang-type
block-circulant preconditioner is proposed for solving these linear systems. We
show that if an Ay, k,-stable boundary value method is used for an m-by-m sys-
tem of ODEs, then our preconditioners are invertible and all the eigenvalues of the
preconditioned systems are 1 except for at most 2m (k1 + k2) outliers. It follows
that when the GMRES method is applied to solving the preconditioned systems,
the method will converge in at most 2m (k1 + k2) + 1 iterations. Numerical results
are given to illustrate the effectiveness of our methods.

1. Introduction

In this paper, we consider the solution of

dy(®) _ Ty (t) +g(t), te (to,T],
dt (1)
Y(to) =1z,

by boundary value methods (BVMs), see [5]. Here y(t), g(t) : R - R™, z € R,
and J, € R™*™. BVMs are numerical methods based on the linear multistep
formulae (LMF) for solving ordinary differential equations (ODEs). By applying
the method, the solution to (1) is given by the solution of a linear system

My =b, (2)
where M depends on the LMF used. Although inital value methods (IVMs) (where

the system of equations can be solved easily by forward recursions) are more efficient
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than BVMs, the advantage in using BVMs over IVMs comes from their stability
properties, see for instances [1,4] and [5, p. 79 and Figures 5.1-5.3].
By applying BVMs to the ODE in (1), the matrix M in (2) can be written as

M=A®1I, —hB® Jn, (3)

where A and B are (s + 1)-by-(s + 1) matrices with entries depending on the LMF
used, I,,, is the m-by-m identity matrix and h = (T — o) /s is the integration step
size. We note that both A and B can be reduced to a sum of a Toeplitz matrix plus
a low rank matrix. (A matrix is said to be Toeplitz if its entries are constant along
its diagonals.) The size of the matrix M is very large when h is small and/or m is
large. If a direct method is used to solve the system, the operation count will be
too expensive and slow for practical, large scale applications.

In [2], Bertaccini proposed to use Krylov subspace methods [8] such as the GM-
RES method and the BiCGstab method to solve (2). In order to speed up the
convergence rate of the Krylov subspace methods, he proposed two circulant ma-
trices as preconditioners. (A matrix is called circulant if it is Toeplitz and the
last entry of every row is the first entry of its succeeding row.) The use of cir-
culant matrices as preconditioners for solving Toeplitz systems have been studied
extensively since 1986. It has been shown that they are good preconditioners for
a large class of Toeplitz systems, see [6] and the references therein. The first pre-
conditioner proposed in [2] for the matrix M in (3) is the well-known T. Chan
circulant preconditioner, see [6]. The second one is a new preconditioner that he
called the P-circulant preconditioner. His numerical results showed that the Krylov
subspace methods, when applied to solving both circulant preconditioned systems,
converge very quickly. He showed moreover that P is invertible for some special
BVMs whereas the T. Chan preconditioners may be singular or very ill-conditioned.

In this paper, we propose a preconditioner of the form

S=s(A)® I, —h-s(B)® Jn,

for (3). Here s(A) and s(B) are the Strang-type preconditioners for A and B, see [6].
We prove that if an Ay, x,-stable BVM is used to discretize (1), then S is invertible
and the preconditioned matrix can be decomposed as

S_IM = [m(s+1) +L7

where the rank of L is at most 2m(k; + k=) which is independent of the integration
step size h. It follows that the GMRES method applied to the preconditioned system
will converge in at most 2m(k; + kz) + 1 iterations in exact arithmetic. We note
that our proposed preconditioner preserves important algebraic properties in the
matrix M, such as the invertibility and the tensor and sparsity pattern.

In contrast, Bertaccini [2] showed that with his P-circulant preconditioner P,

PM = m(s+1) +U+Va

where the rank of U is equal to 2m (k1 +k2), but V is a matrix of order O(1). Because
of the extra term V, it is not sufficient to guarantee that the GMRES method will
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converge in at most 2m(ky + ko) + 1 iterations. Thus we expect the performance of
our preconditioner is better than that of the P-circulant preconditioner. Numerical
results in §5 will illustrate the effectiveness of our preconditioners.

Besides BVMs, there is a class of iterative methods for the solution of systems of
ODEs known as waveform relaxation methods [9,10,12]. Splitting the matrix .J,, in
(1) into

Jm = Npy — Py
gives the waveform relaxation method:
WO |y (0) = Noyilt) + 800), € (10,7),
(4)
Yit1(to) =2,
kE = 0,1,2,---, where yo(t) is an initial guess usually given by yo(t) = z, for

t € [to,T]. Different choices of P, lead to different preconditioning techniques for
the waveform relaxation methods. We remark that we can use the idea in this paper
to precondition the linear system arising from the application of BVMs to (4).

The paper is organized as follows. In §2, we recall the boundary value methods.
We introduce the Strang-type block-circulant preconditioner in §3 and give the
convergence and cost analysis of our method in §4. Numerical examples are given
in §5. Finally, §6 contains some concluding remarks.

2. BVMs and Their Matrix Forms

BVMs are methods based on LMF for solving ODEs, see [5]. Given (1), a BVM
approximates its solution by means of a discrete boundary value problem. By using
a p-step LMF over a uniform mesh

tj:t()"_jh: jZO,"‘,S,
with h = (T — t9)/s, we have

u—v pn—v
Z QitvYsti =h Z Bivvfsyri, n=v,...,s—p+v. (5)

1=—V 1=—V

Here, y,, is the discrete approximation to y(t,), £, = Jmyn + gn and g, = g(t,).

The BVM in (5) must be used with v initial conditions and p— v final conditions.
That is, we need the values yo,---,y,—1 and the values ys_,4+v41, -",¥s. The
initial condition in (1) only provides us with one value. In order to obtain the other
initial and final values, we have to provide additional (u — 1) equations:

w w
S alyi=nY 8%, j=1,...v-1, (6)
=0 =0

and

H Iz
Sal iy i=hY BV, j=s—ptv+l,s. (7)
1=0 1=0



4 RaymoND H. CHAN, MICHAEL K. NG, AND XIAO0-QING JIN

The coefficients o/) and ) in (6) and (7) should be chosen such that the trunca-
tion errors for these initial and final conditions are of the same order as that in (5),
see [5, p.132]. By combining (5), (6) and (7), we obtain a linear system as in (2).
The advantage in using BVMs is that they have much better stability properties
than traditional initial value methods, see [5, p.79 and Figures 5.1-5.3].

The discrete problem (2) generated by (5)—(7) is given by

My =(A®In —hB®Jyn)y=e1 ®z+h(B®I,)g,

where e = (]-)07 o )O)t € R(s+1)7 y = (yO)' ’ lvys)t € R(s+1)m’ g = (gO)' .

R(E+D)™ and A and B are (s + 1)-by-(s + 1) matrices given by:

1
ol

a(()ufl)

&7))
&7))

and
(1)
0

A(vr—1)
0

Bo

Bo

0
ol
a&ufl)
Qy
... au
&%)
0 a(()s—u+u+1)
ol
0
8L
(v—1)
m
Bu
. ﬂu
Bo
0 ﬂés—u+u+1)

a5

Bu

ﬂ‘(Ls—;H-uﬁ-l)

8

,gs)t €
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3. Construction of the Preconditioner

In [2], Bertaccini proposed to use Krylov subspace methods with block-circulant
preconditioners for solving (8). Two preconditioners were considered. The first one
is the T. Chan block-circulant preconditioner T'. It is defined as

T = ¢(A) ® Iy — he(B) & Jm 9)

where ¢(A) is the minimizer of ||[A — C||p over all (s + 1)-by-(s + 1) circulant
matrices C' under the Frobenius norm || - ||, see [6], and ¢(B) is defined similarly.
More precisely, the diagonals &; and 3; of ¢(A) and ¢(B) are given by

aj:(1_S+1)aj+y+s+1aj+'/—(s+1)a ]:0,1,"-,8,

and
B':(l_i)ﬁ#l/*‘iﬂ'—ku—(ﬁ-l): Jj=0,1,---,s,
J s+1/7 s+177
respectively.

The second preconditioners proposed in [2] is called the P-circulant precondi-
tioner. It is defined as

P=A®I, —hB® J, (10)

where the diagonals &; and Bj of A and B are given by

- j j .
= (1+ s+1)af+” + s+—1aj+u—(s+1), j=0,1,---s,

and

~ j j -
ﬂj:(1+S+1)ﬁj+y+S+lﬁj+V—(S+1)7 .7:0,1,"-,8,

respectively. The numerical results in [2] show that the GMRES method converges
very fast for both preconditioners. For some special BVMs, Bertaccini has proved
that the preconditioner P is invertible, but the preconditioner 7" may be singular
or very ill-conditioned.

In this paper, we propose the following preconditioner for (8):

S =5(A) ® Iy —hs(B) @ Jn, (11)
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where s(A) and s(B) are given by

Qy, e au Qo e Oy 1
Qo Qo
0
s(4) = :
0
ay ay,
aVJrl e au Qo e Qy,
and
By Bu Bo -+ Bu—a
Bo Bo
. . . 0
s(B) =
0
Bu By
Borr -+ B Bo - B,

Here {a;}! , and {3;}!_, are the coefficients in (5). We note that s(A) and s(B)
are the generalized Strang-type circulant preconditioners of A and B respectively,
see [6].

We now prove that S is invertible provided that the given BVM is stable and the
eigenvalues of J,,, are in the negative half of the complex plane C. The stability of
a BVM is closely related to two characteristic polynomials defined as follows:

w—v n=v
p(z) = 2" Z ajipzl  and o(2) =27 Z Birv2. (12)

j=—v j=—v
Note that they are u-degree polynomials.

DEFINITION 1[5, p.101] Consider a BVM with the characteristic polynomials p(z)
and o(z) given by (12). The region

Dyy—v = {q€C:p(z)—qo(z) has v zeros inside |z| =1

and p — v zeros outside |z| = 1}
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is called the region of A, ,—,-stability of the given BVM. Moreover, the BVM is
said to be A, ,_, -stable if

C ={qgeC:Re(q) <0} CDyp—».

THEOREM 1 If the BVM for (2) is A, ,—,-stable and hA;(Jm) € Dy — where
Me(Jm) (K =1,--+,m) are the eigenvalues of J,, then the preconditioner S in (11)
is nonsingular.

Proof. Since s(A) and s(B) are circulant matrices, their eigenvalues are given by

1 1
ga(z) S @z 4.t ay tayi- + .. tag— = P(f)
z z z
and
—v 1 1 olz
98(2) Z 02" A A B+ Bur s A o = (V)’
4 z z
evaluated at w; = e>/(+1) for j = 0,...,s, see [6]. The eigenvalues \;x(S) of S

are therefore given by
Ajk(s):gA(wj)_hAk(Jm)gB(wj)a jZO,"',S, k:]-)"'vm'

Since the BVM is A, ,_,-stable, if hA;(J) € D, -0, the p-degree polynomial
p(z) — hAg(Jm)o(z) will have no roots on the unit circle |z| = 1. Thus for all
k=1,---.m,

94() = A Um)gn(2) = = {0(2) = () ()} £0, Ve = 1.

It follows that A\jz(S) #0 forall j =0,---,s,and k =1,---,m. a
In particular, we have

CoroLLARY 1 If the BVM is 4, ,,-stable and A¢(Jm) € C, then the precon-
ditioner S is nonsingular.

Proof. We just note that hAg(Jy) € C C Dy pyey. O

4. Spectra of Preconditioned Matrices and Operation Cost

In this section, we show that all the eigenvalues of the preconditioned matrix
S~1M are 1 except for at most 2mp outliers and hence the GMRES method applied
to the preconditioned system will converge in at most 2mu + 1 iterations in exact
arithmetic.

THEOREM 2 All the eigenvalues of the preconditioned matrix S~!M are 1 except
for at most 2mpu outliers.

Proof. Let E = M — S, we have by (8) and (11),

E=(A—5(A) @I, —hB—-5B))®Jm=La®I,—hLp® Jn.
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It is easy to check that L4 and Lp are (s 4+ 1)-by-(s + 1) matrices with nonzero
entries only in the following four corners: a v-by-(u + 1) block in the upper left; a
v-by-v block in the upper right; a (u — v)-by-(u + 1) block in the lower right; and
a (u — v)-by-(u — v) block in the lower left.

Since p > v, rank (L4) < p and rank (Lp) < p. Thus, we have

rank(Ls ® I,,,) = rank(Ly) -m < mp

and
rank(Lp ® Jp,) = rank(Lp) - m < mpu.
Therefore
ST'M = ILyst1) + ST'E = Ly(s1) + L,
where the rank of L is at most 2mpu. O

We now show that the GMRES method for the system S~'!My = S~ 'b will
converge fast. We first note that given a linear system Ax = b, the GMRES method,
in the k-th iteration, will seek an approximation of x from the affine subspace xg
+span{rg, Arg, A%rg, - - -, A¥~1ry}. Here xq is the initial guess and ry is the initial
residual. Thus if A = I + L, where I is the identity matrix, then the GMRES
method will converge in at most rank(L) + 1 iterations in exact arithmetic. Hence
we have

COROLLARY 2 When the GMRES method is applied to solving the preconditioned
system S~!My = S~ 'b, the method will converge in at most 2mpu + 1 iterations
in exact arithmetic.

In contrast, Bertaccini [2] showed that with his P-circulant preconditioner P,
P'M = m(s+1) T U +V,

where the rank of U is equal to 2mpu and ||V||]2 = O(1) (the right hand side of (46)
in [2] is bounded by O(1/(hs)) = O(1)). Because of the extra term V, one can not
conclude that the GMRES method will converge in at most 2mu + 1 iterations.

Regarding the cost per iteration, the main work in each iteration for the GMRES
method is the matrix-vector multiplication

S Mz = (s(A) @I, —hs(B)® Jp) "(A®1I,, — hB® Jy)z

see for instance Saad [11]. Since A and B are banded matrices and .J, is assumed
to be sparse, the matrix-vector multiplication Mz = (A ® I,,, — hB ® Jp,)z can be
done very fast.

To compute S~1(Mz), since s(A) and s(B) are circulant matrices, we have the
following decompositions

s(A) = FA4F* and s(B)= FApF*

where A4 and Ap are diagonal matrices containing the eigenvalues of s(A4) and
s(B) respectively and F is the Fourier matrix, see [6]. It follows that

S™HMz) = (F* @ 1,)(Aa ® I, — hAg @ Jo) " (F ® I,,)(Mz).
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This product can be obtained by using Fast Fourier Transforms and solving s linear
systems of order m. Since J,, is sparse, the matrix

AA®Im—hAB®Jm

will also be sparse. Thus S~!(Mz) can be obtained by solving s sparse linear
systems of order m. It follows that the total number of operations per iteration is
yimslogs + y2smn, where n is the number of nonzeros of J,,,, and v; and v, are
some positive constants.

Next let us compare the computational cost of our method with a direct solver
for the linear system (2). Consider first the simple case where J, is diagonalizable:
Jm = Q,,1®,,Q.,. In general, the number of operations required to compute Q,,,
Q;,t and @, is O(m?), see [7]. The solution to (2) can be obtained by multiplying
the matrices Iy ® Q,, and Iy ® Q! to some vectors, and solving m banded linear
systems of order s and bandwidth . Hence the total number of operations for direct
solvers is y3m?® +y4sm? +ysmsu?, where vz, 74 and 75 are some positive constants.
If the number of iterations required for convergence of our method is smaller than

3 () m + yam + ysp°
v1 log s + 12n

)

then the complexity of our method is better than that of direct solvers. In particular,
when m is larger than s or the bandwidth of the matrices A and B are very large
(i.e., when we employ higher order BVMs), our method will be more efficient.

In the case where the Jacobian matrix J,,, is not diagonalizable, then direct solvers
will not be able to make use of the block structure of M and hence will be very
expensive. Example 3 in [3] shows that the preconditioned GMRES method with
circulant preconditioners can still be very effective though. Moreover, for nonlinear
problems, J,,, will be different at each Newton iteration and therefore the cost of
diagonalization of these J,,, will be very expensive.

5. Numerical Tests

In this section, we illustrate the efficiency of our preconditioner over other circu-
lant preconditioners by solving the test problems given in [2]. All the experiments
were performed in MATLAB. We used the MATLAB-provided M-file “gmres” (see
MATLAB on-line documentation) to solve the preconditioned systems. In our tests,
the zero vector is the initial guess and the stopping criterion is ||ry||2/||ro||2 < 107¢,
where r, is the residual after ¢ iterations. In the examples, the BVM we used is
the third order generalized Adam’s method which has p = 2. Its formulae and the
additional initial and final conditions can be found in [5, p.153].

Example 1. Heat equation:

ou_ o

ot (93:26’u

u(0,t) = a(w,t) =0, te]l0,2n],
z

u(z,0) =z, x € [0,7].
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We discretize the partial differential operator 8?/0x? with central differences and
step size equals to w/(m + 1). The system of ODEs obtained is:

d}(’i—it) =Tny(t), t € [0,2m]
Y(O) = [.T1,562, T 7xm]tv

where T, is a scaled discrete Laplacian matrix

-2 1
1
(m +1)*
T = 2 (13)
1 -2 1
1 -1
Example 2. Wave equation:
Pu_ o
ot ox2’
ou
u(0,t) = a(w,t) =0, te]l0,2n],
u(z,0) =z, x € [0, 7],
0
8—1:(93,0):0, z € [0,7].

We again discretize 92 /0z? with central differences and step size equals to 7/(m+1).
The resulting system of ODEs is:
dy(?)

= = H,y(t), telo,2
LD = Hay() € [0,27]

y(O) = [1’1,1’2,'",l'm/Q,O,"',O]t,

where H,, is a Hamiltonian matrix

0 I
Hm — m/2 m/2 ) ,
( Tm/2 0m/2

with T}, given in (13).

Table 1 lists the numbers of iterations required for convergence of the GMRES
method for different m and s. In the table, I means no preconditioner is used, and T,
P and S denote that the T. Chan, Bertaccini and Strang-type block-circulant pre-
conditioners are used respectively. These preconditioners are defined in (9)—(11). We
see that the number of iterations required for convergence when a circulant precon-
ditioner is used is always less than that when no preconditioner is used. Moreover,
the Strang-type preconditioner performs better than T. Chan’s and Bertaccini’s
preconditioners in all cases. As expected from Theorem 2, the numbers under col-
umn S stay roughly constant for increasing s when m is fixed; and for fixed s, the
numbers grow with m.
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m s I S T P m s I S T P
24 6 121 31 58 60 24 6 117 54 87 90
12 222 33 54 56 12 192 59 87 90
24 269 35 53 53 24 157 71 95 100
48 302 38 52 52 48 128 95 123 127
96 363 41 51 51 96 162 143 175 176
48 6 241 43 84 85 48 6 236 88 152 158
12 476 46 79 82 12 426 103 153 158
24 605 48 75 76 24 406 119 157 161
48 684 53 76 76 48 291 134 161 173
96 838 54 74 73 96 289 180 223 228
9 6 481 59 115 117 9% 6 475 124 235 240
12 998 62 109 115 12 927 167 259 267
24  >1000 65 103 105 24  >1000 197 263 268
48 >1000 75 112 114 48 738 210 253 266
96 >1000 68 95 96 96 656 246 276 291

TABLE 1. NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE IN EXAMPLES 1
(LEFT) AND 2 (RIGHT).

6. Concluding Remarks

In summary, we have shown that the GMRES method with the Strang-type
preconditioner is efficient for solving ODEs from BVMs. We note that the results
obtained here can be extended to nonlinear ODEs. Indeed, by linearization, non-
linear problems can be solved iteratively by solving a discrete system (2) in each
step. Thus a fast algorithm for solving (2), such as the one proposed here, will be
of greater importance in these cases.

We finally remark that Bertaccini has included our results in this paper on the
Strang-type preconditioners in the revised edition of [3], which is the journal version

of [2].
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