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Abstract

This paper studies the application of preconditioned conjugate gradient methods in high
resolution image reconstruction problems. We consider reconstructing high resolution images
from multiple undersampled, shifted, degraded frames with subpixel displacement errors.
The resulting blurring matrices are spatially variant. The classical Tikhonov regularization
and the Neumann boundary condition are used in the reconstruction process. The precon-
ditioners are derived by taking the cosine transform approximation of the blurring matrices.
We prove that when the Ly or H; norm regularization functional is used, the spectra of the
preconditioned normal systems are clustered around 1 for sufficiently small subpixel displace-
ment errors. Conjugate gradient methods will hence converge very quickly when applied to
solving these preconditioned normal equations. Numerical examples are given to illustrate
the fast convergence.

1 Introduction

Due to hardware limitations, imaging systems often provide us with only multiple low resolution
images. However, in many applications, a high resolution image is desired. For example, the
resolution of the pictures of the ground taken from a satellite is relatively low and retrieving
details on the ground becomes impossible. Increasing the image resolution by using digital signal
processing techniques [4, 12, 16, 18, 20, 21] is therefore of great interest.
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We consider the reconstruction of a high resolution image from multiple undersampled,
shifted, degraded and noisy images. Multiple undersampled images are often obtained by us-
ing multiple identical image sensors shifted from each other by subpixel displacements. The
reconstruction of high resolution images can be modeled as solving

Hf =gy, (1)

where ¢ is the observed high resolution image formed from the low resolution images, f is the
desired high resolution image and H is the reconstruction operator. If all the low resolution
images are shifted from each other with exactly half-pixel displacements, H will be a spatially
invariant operator. However, displacement errors may be present in practice, and the resulting
operator H becomes spatially variant.

Since the systems are ill-conditioned and generally not positive definite, we solve them by
using a minimization and regularization technique:

min {[74f = g1 + aR(1)} @

Here R(f) is a functional which measures the regularity of f and the regularization parameter
« is to control the degree of regularity of the solution. In this paper, we will use the Lo and H;
regularization functionals ||f||3 and ||£f||2 where L is the first order differential operator.

Because of the blurring (convolution) process, the boundary values of g are not completely
determined by the original image f inside the scene. They are also affected by the values of f
outside the scene. Thus in solving f from (1), we need some assumptions on the values of f
outside the scene. These assumptions are called boundary conditions. In [4], Bose and Boo used
the traditional choice of imposing the zero boundary condition outside the scene, i.e., assuming a
dark background outside the scene in the image reconstruction. However, when this assumption
is not satisfied by the images, ringing effects will occur at the boundary of the reconstructed
images. The problem is more severe if the images are reconstructed from a large sensor array
since the number of pixel values of the image affected by the sensor array increases.

In this paper, we will use the Neumann boundary condition on the image, i.e., we assume
that the scene immediately outside is a reflection of the original scene at the boundary. The
Neumann boundary condition has been studied in image restoration [15, 1, 13] and in image
compression [19, 14]. Our experimental results in [6] have shown that the Neumann image model
gives better reconstructed high resolution images than that under the zero or periodic boundary
conditions. In [6], we also proposed to use cosine transform preconditioners to precondition the
resulting linear systems and preliminary numerical results have shown that these preconditioners
are effective. The main aim of this paper is to analyze the convergence rate of these systems.
We prove that when the Lo or H; norm regularization functional is used, the spectra of the
preconditioned systems are clustered around 1 for sufficiently small displacement errors.

The outline of the paper is as follows. In Section 2, we give a mathematical formulation of
the problem. A brief introduction on the cosine transform preconditioners and the convergence
analysis will be given in Section 3. In Section 4, numerical results are presented to demonstrate
the effectiveness of the cosine transform preconditioners.



2 The Mathematical Model

We begin with a brief introduction of the mathematical model in high resolution image recon-
struction. Details can be found in [4].

Consider a sensor array with L; X Lo sensors, each sensor has N; X N» sensing elements
(pixels) and the size of each sensing element is 77 x 7. Our aim is to reconstruct an image of
resolution My X My, where My = Ly X Ny and My = Lo X No. To maintain the aspect ratio
of the reconstructed image, we consider the case where Ly = Ly = L only. For simplicity, we
assume that L is an even number in the following discussion.

In order to have enough information to resolve the high resolution image, there are subpixel
displacements between the sensors. In the ideal case, the sensors are shifted from each other
by a value proportional to 71 /L x Ty/L. However, in practice there can be small perturbations
around these ideal subpixel locations due to imperfection of the mechanical imaging system.
Thus, for ly,lo =0,1,---, L — 1 with (I1,l2) # (0,0), the horizontal and vertical displacements
df;, and d} ; of the [I1,lo]-th sensor array with respect to the [0, 0]-th reference sensor array are
given by

. _ D ]
Wl = L

Here €, and e%’l 1, denote respectively the normalized horizontal and vertical displacement errors.
We remark that the parameters €, and 6%12 can be obtained by manufacturers during
camera calibration. We assume that

(i +€,;,) and d%lz =—=(l2+ e?lb).

1 1
el 1, | < 3 and |e%’112| < 3
For if not, the low resolution images observed from two different sensor arrays will be overlapped
so much that the reconstruction of the high resolution image is rendered impossible.
Let f be the original scene. Then the observed low resolution image g¢;,;, for the (I1,l3)-th
sensor is modeled by:

T2(n2+%)+dly1,2 T (m-l—%)-l—dflb
g1, [ni,ne] = / / f(z1, z2)dz1dze + iy, [n1, 2, (3)

T2(n2—%)+dly1,2 Tl(m—%)-l-dfl,2

for ny = 1,...,N; and ng = 1,..., Na. Here 7, is the noise corresponding to the (I1,l2)-th
sensor. We intersperse the low resolution images to form an M; x My image by assigning

glL(n1 — 1) + 11, L(ng — 1) + o] = gi,1,[n1, na]. (4)

Here g is an M; x M> image and is called the observed high resolution image. Figure 1 shows
the method of forming a 4 X 4 image g with a 2 x 2 sensor array where each g;; has a 2 x 2
sensing elements, i.e. L =2, M} = My =4, and N; = Ny = 2.

Using a column by column ordering for g, we obtain ¢ = Hf + n where H is a spatially
variant operator [4]. Since H is ill-conditioned due to the averaging of the pixel values in the
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Figure 1: Construction of the observed high resolution image

image model in (3), the classical Tikhonov regularization is used and the minimization problem
(2) is solved. In this paper, we use the regularization functionals:

R(f) = IfI3 and R(f) = LS5 (5)

where L is the first order differential operator.

2.1 Image Boundary

The continuous image model in (3) can be discretized by the rectangular rule and approximated
by a discrete image model. Because of the blurring process (cf. (3)), the boundary values of
g are also affected by the values of f outside the scene. Thus in solving f from (1), we need
some assumptions on the values of f outside the scene. In [4], Bose and Boo imposed the zero
boundary condition outside the scene, i.e., assuming a dark background outside the scene in the
image reconstruction.

Let g and f be respectively the discretization of g and f using a column by column ordering.
Under the zero boundary condition, the blurring matrix corresponding to the (I1,/2)-th sensor
can be written as

Hyi, () = H:lvllz (e) ® H?lh (€)



where I:Ifllz(e) is an My x My banded Toeplitz matrix with bandwidth 2L — 1
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The My x M5 banded blurring matrix ﬁi’l l2(6) is defined similarly. We note that ringing effects
will occur at the boundary of the reconstructed images if f is indeed not zero close to the bound-
ary, see for instance Figure 3 in §4. The problem is more severe if the image is reconstructed
from a large sensor array since the number of pixel values of the image affected by the sensor
array increases.

In [6], we proposed to use the Neumann boundary condition on the image. It assumes that
the scene immediately outside is a reflection of the original scene at the boundary. Our numer-
ical results have shown that the Neumann boundary condition gives better reconstructed high
resolution images than that by the zero or periodic boundary conditions. Under the Neumann
boundary condition, the blurring matrices are still banded matrices with bandwidth 2L — 1,
but there are entries added to the upper left part and the lower right part of the matrices (see
the second matrix in (6)). The resulting matrices, denoted by Hf,; (¢) and HJ (¢), have a
Toeplitz-plus-Hankel structure:

1 -~ 1 A*r 0

l1l2 1 1 hfl; 0
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lila

(6)

and H} | (e) is defined similarly. The blurring matrix corresponding to the (l1,l2)-th sensor
under the Neumann boundary condition is given by

H,,(€) = Hj, () @ H ().

lil2

The blurring matrix for the whole sensor array is made up of blurring matrices from each



Sensor:
L-1L-1

Hy(e) = Z Z Dy, 1, Hyyi, (€). (7)

11=012=0

Here D;,;, are diagonal matrices with diagonal elements equal to 1 if the corresponding compo-
nent of g comes from the (I, l2)-th sensor and zero otherwise, see [4] for more details. With the
Tikhonov regularization, our discretization problem becomes:

(H(e)'Hi(e) + aR)f = Hr(e)'g (8)

where R is the discretization matrix corresponding to the regularization functional R(f) in (5).

3 Cosine Transform Based Preconditioners

The linear system (8) will be solved by using the preconditioned conjugate gradient method.
In this section, we construct the cosine transform preconditioner of Hy (€) which exploits the
banded and block structures of the matrix.

Let C,, be the n x n discrete cosine transform matrix, i.e., the (i, j)-th entry of C,, is given
by

2-d0u ((i —12j - Dr

>, 1<4,7 <n,
n 2n

where §;; is the Kronecker delta. Note that the matrix-vector product C,z can be computed in
O(nlogn) operations for any vector z, see [13, pp. 59-60]. For an m x m block matrix B with
the size of each block equal to n x n, the cosine transform preconditioner ¢(B) of B is defined
to be the matrix (C,, ® C,)A(C,, ® C,) that minimizes

||(Cm 02y Cn)A(Cm 029 Cn) - B||F

in the Frobenius norm, see [8]. Here A is any diagonal matrix. Clearly, the cost of computing
c(B)~ty for any vector y is O(mnlogmn) operations. For banded matrices in (7), which have
(2L — 1)? non-zero diagonals and are of size My My x M My, the cost of constructing c(Hp (¢))
is of O(L%2M;M>) operations only, see [7].

3.1 Spatially Invariant Case

When there are no subpixel displacement errors, i.e., when all € b = e%’hb = 0, the matrices
H}, (0) and also H}, (0) are the same for all /; and l. We will denote them simply by Hf and
HY. We claim that in this case, the blurring matrix H;, = H(0) = H? ® HY can always be
diagonalized by the discrete cosine transform matrix.



We begin with L = 2. The blurring matrix Hy = H% ® HY, where HY is an M; x M,
tridiagonal matrix given by

3 1 1 1
? 2 1 } 2 1 2 0
HE = L SRR SR -
1 1 1 1
1o 1 1oq l 0 0 0
> 1 3 SR 0 1
2 2 2 2

and HY is an My x My matrix with the same structure. It is easy to see that in this case, the
matrices HY and HY can be diagonalized by Cj, and Cjy, respectively, see the basis given in
[2, 3] for the class of matrices that can be diagonalized by the cosine transform matrix. Thus
H; can be diagonalized by Cj;, ® Cyy,.

Next we observe that the blurring matrix is ill-conditioned.

Lemma 1 Under the Neumann boundary condition, the My x My matriz HS can be diagonalized
by the discrete cosine transform matriz and its eigenvalues are given by

wiE) =oost (U ™) << an, )

In particular, the condition number k(HZ) of the matriz HS satisfies
K(H5) > O(M?). (10)

Proof: The formula for the eigenvalues can be derived easily using the basis given in [2, 3] for the
class of matrices that can be diagonalized by the cosine transform matrix. Since Apax(H%) =1

and )
M, — 1) . T us
Amin(H%) = COS2 (%) < Sln2 <ﬁ1> < Wa
the estimate of the condition number is then given by (10).

It follows from Lemma 1 that the condition number of the matrix Hao(= HS ® HY) is of
O(M?M?2). The matrix is very ill-conditioned. For L > 2, we have the following theorem.

Theorem 1 Under the Neumann boundary condition, the matriz H} can be diagonalized by the
discrete cosine transform matriz and its eigenvalues are given by

N(H]) = & cos? (%)m ((;T”W) 1<i< M, (11)



where

L/4 (i—1)(2j —1)
i— — )7
coS J , L = 4k for some positive integer k,
M &
(i — 1)7T> j=1 !
pbL ( = _
M, L E2M G~ 124 -
5 cos M, , otherwise.

(12)

Proof: We first establish a relationship between the matrices Hf and Hj. From (6), for L > 2,

we have
L/4

2
17 Z Soj_1H3, L = 4k for some positive integer k,
_ Jj=1
Hi=q oo (13)
I Z Sy, H3, otherwise,
J=0

where Sy is the My x M; identity matrix and
Sr = Toeplitz(egs1) + Hankel(eg), 1<k < M;—1.

Here Toeplitz(ey) is the My x My symmetric Toeplitz matrix with the k-th unit vector e as the
first column, and Hankel(ey) is the M; x M; Hankel matrix with e, as the first column and e
in the reverse order as the last column.

We remark that the Toeplitz part in S can be interpreted as the decomposition of the

discrete blurring function [0.5,1,...,1,...,1,0.5] into the sum of the elementary discrete blurring
function [0.5,1,0.5] with different shifts. For example, for L = 4, we have

1 1 1 1 1 1

- L,1,1,-|=[=,1,-,0,0 0,0,-,1,=

[2’ ) 9’ ’2] [2’ ’2’ ) ]+[ 9’ ’2’ ’2]’

where the two terms on the right together gives the Toeplitz part in S;. For L = 6, we have

Lo, S = 21, 2,0,0,0,00 4+ [0,0, 5,1, 5,0,0] 4+ 0,0,0,0, =, 1, 1]
2’,’,”2 2’,2”’, ”2’ ,2” ’,”2’ ’2,

where the first and the third terms on the right together gives the Toeplitz part in So while the
middle term gives the Toeplitz part of Sy. Because we are considering the Neumann boundary
condition, entries outside the blurring matrix H} are flipped into the matrix (cf. (6)). This is
done by means of the Hankel part of S;. Thus the resulting shift matrices are given by S; and
we obtain (13).

Since {S} 2/[:10_ ! is exactly a basis for the space containing all matrices that can be diagonal-
ized by Cyy,, see [3], it follows that the matrix H} can be diagonalized by the discrete cosine
transform matrix. We also note that the eigenvalues of Sy are given by

(1 — 1k

Ai(Sk) = 2cos < i,

>7 ]-SZSMla

8



see for instance [3]. Using (13) and (9), the eigenvalues of H} are given in (11). [

Theorem 1 states that the matrices Hy (= Hf ® HY) are also very ill-conditioned and their
condition numbers are at least of order M2M?2 (cf. (11)). We remark that some of these matrices
may even be singular. For instance, when L = 4 and M; = My = 64, \33(HY) = 0. Thus a
regularization procedure such as (8) should be imposed to obtain a reasonable estimate for the
original image in the high resolution reconstruction.

In this paper, we consider the Ly and H; norm regularization functionals in (8). Corre-
spondingly, we are required to solve the following linear systems:

(H Hy +ol)f =H,g or (H,Hp +oL'L)f = H.g, (14)

where o > 0, Iis the identity matrix and L'L is the discrete Laplacian matrix with the Neumann
boundary condition. We note that L'L can be diagonalized by the discrete cosine transform
matrix, see for instance [5]. Thus if we use the Neumann boundary condition for both the
blurring matrix Hy, and the regularization operator L'L, then the coefficient matrix in (14) can
be diagonalized by the discrete cosine transform matrix and hence its inversion can be done
in three 2-dimensional fast cosine transforms (one for finding the eigenvalues of the coefficient
matrix, two for transforming the right hand side and the solution vector, see [17] for instance).
Thus the total cost of solving the system is of O(M; M, log My Ms) operations.

We remark that for the zero boundary condition, discrete sine transform matrices can di-
agonalize Toeplitz matrices with at most 3 bands (e.g., I:IZ) but not dense Toeplitz matrices
in general (e.g., Hy), see [9] for instance. Therefore, in general we have to solve large block-
Toeplitz-Toeplitz-block systems. The fastest direct Toeplitz solvers require O(M?2M23) opera-
tions, see [11]. The systems can also be solved by the preconditioned conjugate gradient method
with some suitable preconditioners, see [8]. We note however that the cost per iteration is at
least four 2-dimensional fast Fourier transforms. Thus we see that the cost of using the Neumann
boundary condition is significantly lower than that of using the zero boundary condition.

3.2 Spatially Variant Case

When there are subpixel displacement errors, the blurring matrix Hy, (¢) has the same banded
structure as that of Hy, but with some entries slightly perturbed. It is a near block-Toeplitz-
Toeplitz-block matrix but it can no longer be diagonalized by the cosine transform matrix.
Therefore we solve the corresponding linear system by the preconditioned conjugate gradient
method. We will use the cosine transform preconditioner ¢(Hp,(¢)) of Hy(e) as the precondi-
tioner.

Below we study the convergence rate of the preconditioned conjugate gradient method for
solving the linear systems

[c(Hz (€)' c(Hz () + oI] '[Hz () Hy(e) + oI]f = Hy(e)'g (15)

and
[e(HL(e)'e(H(€)) + oL'L] ™' Hy (e) Hy () + oL'LIf = Hy(e)'g, (16)



where « is a positive constant. We prove that the spectra of the preconditioned normal systems
are clustered around 1 for sufficiently small subpixel displacement errors. Hence when the conju-
gate gradient method is applied to solving the preconditioned systems (15) and (16), we expect
fast convergence. Our numerical results in §4 show that the cosine transform preconditioners
can indeed speed up the convergence of the method. We begin the proof with the following
lemma.

Lemma 2 Let € = ma‘XOSll,lzﬁL—l{eﬁh? 6%12}. Then for all My and My, we have
|Hz(e) —Hp|l2 < 4" and |c(Hp(e)) — Hplle < 4€™. (17)

Proof: From (7), each row or column of Hy (¢) and Hj, differ in at most 4L entries and each
entry is bounded by €*/L. It follows that

||HL(6) - HLHoo S 46* and ||HL(6) — HL||1 S 46*.

Hence the first inequality in (17) follows by using |||l2 < v/ - [l1]| - ||so- For the second inequality,
we first note that by Theorem 1, ¢(Hz) = Hy. Hence we have

le(Hz(€)) =Hilla = [le(Hz(e) = Hy)l2 < [[Hr(€) = Hi|l2,

where the last inequality follows from [[c(-)||2 < || - [|2, see [2].

Lemma 3 Let ¢ = maxogll,lsz,l{efllz, 6%12}‘ Then
IHL ()" HL () — c(Hz (€)' ec(Hr(e))ll2 < dr(€")
where dp(+) is a function independent of My and My and lime-_,odp(€*) = 0.
Proof: We note that
IHLL (€) Hi (€) — c(HL (€)' c(HL (e))l2
< |Hz(e) [HL(e) — c(Hr(e)]llz + I[HL(e)" — c(HL(e))]e(HL(e))]2-

By Theorem 1, ||H||2 is bounded above by a constant independent of M; and Ms. Hence by
(17), [HL(e)!||l2 and ||c(HL (€))||2 are also bounded above by some constants independent of M
and Ms. Moreover, by (17) again, |[Hz () — c(Hg(¢))|l2 and |Hz ()t — c(HL (€))!||2 are less than
8¢*. The result therefore follows.

Using the above lemmas, we can analyze the convergence rate of the preconditioned systems
(15) and (16).

Theorem 2 Let ¢* = maXOSh,leLfl{eflly6%112}- If € is sufficiently small, then the spectra of
the preconditioned matrices

[c(HL(€)) c(HL(e)) + oI] ' [HL(e) H (e) + o]

are clustered around 1 and their smallest eigenvalues are bounded away from 0 by a positive
constant independent of My and Ms.

10



Proof: We just note that

oL ) e () + o)y <

and

[c(HL (€)' c(HL(€)) + oI] 7' [HL(e) H (€) + o]
= I+ [c(HL(e) c(Hz(e)) + oI] 7' [Hr(€) H(e) — c(HL (€)' c(Hz(e))]-

Hence the result follows by applying Lemma 3.

Theorem 3 Let ¢* = maXOSh,leL—l{eﬁlZa5%112}- If €* s sufficiently small, then the spectra of
the preconditioned matrices

[c(HL (€)' c(HL(€) + aL'L] ™ [Hy (¢) HL(€) + aL'L]

are clustered around 1 and their smallest eigenvalues are uniformly bounded away from 0 by a
positive constant independent of My and M.

Proof: Since

[c(HL (€)' c(HL(€) + aL'L] ™ [H(¢) HL(€) + aL'L]
I+ [e(Hr(e) e(HL(e)) + aL'L) ™' [Hr(e) Hr(€) — c(HL(€)) e(Hz (e))],

it suffices to show that ||[c(H (€))!c(Hp (€)) + aL!L] |5 is bounded above by a constant inde-
pendent of My and M. Since Apin(A) + Amin(B) < Amin(A + B) for any Hermitian matrices A
and B (see [10, Theorem 8.1.5, p.396]), we have

lle(HL (€)' c(HL(€)) + aL'L] "2

/\min(C(HL(e))tczHL(e)) +al'L)
: Amin(H7 Hz, + oL'L) + AmingC(HL(e))tC(HL(e)) —H}Hy)
= Amin(H7 Hp, + oLL) — “C(;—IL(G))tC(HL(e)) —H HL[l2

(18)

Because the matrix HY Hy, + oL'L can be diagonalized by the 2-dimensional discrete cosine
transform matrix, we can estimate the smallest eigenvalue of this matrix. We first note that

i (1 —1)m i (j—)m
A(i—l)Mz-}-j(LtL) = 4:SII]_2 < 2M1 + L_LSID2 27]\42 ; (19)

11



for 1 <i < M; and 1 < j < My, see [5]. By using (11) and the fact that Hy, = Hf ® H%, we
obtain

for 1 <i< Mj; and 1 < j < Ms, where py(+) is defined in (12).
Clearly the function sin?(x/2) is zero at x = 0 and positive in (0, 7], whereas the function
cost(z/2)p? (z) > 1/4 at = 0 and is nonnegative in [0, 7]. Thus we see that the function

4o sin® (g) + 4 sin? (g) + <%>4cos4 (g) cos? (g) 2 (z)p2 (y)

is positive for all z and y in [0, 7]. It follows from (19) and (20) that the matrix H; Hy, + oL'L
is positive definite and its smallest eigenvalue is bounded away from 0 by a positive constant
independent of M; and Ms. In view of Lemma 3, the right hand side of (18) is therefore bounded
by a positive constant independent of M; and M, for sufficiently small €*.

Thus we conclude that the preconditioned conjugate gradient method applied to (15) and (16)
with a > 0 will converge superlinearly for sufficiently small displacement errors, see for instance
[8]. Since Hy (¢€) has only (2L — 1)? non-zero diagonals, the matrix-vector product Hy,(e)x can
be done in O(L?M;Mj3). Thus the cost per each iteration is O(M;Mslog My My + L? My M)
operations, see [10, p.529]. Hence the total cost for finding the high resolution image vector is
of O(My My log My M, + L?M; M>) operations.

4 Numerical Examples

In this section, we illustrate the effectiveness of using cosine transform preconditioners for solving
high resolution image reconstruction problems. The original image is shown in Figure 2 (left).
The conjugate gradient method is employed to solving the preconditioned systems (15) and (16).
The stopping criteria is |[r()||o/|[r(?)]]2 < 1075, where r(?) is the normal equations residual after
J iterations. In the tests, the parameters €, and e?l ;, are random values chosen between —1 /2
and 1/2. A Gaussian white noise with signal-to-noise ratio of 30dB is added to the low resolution
images.

Tables 1-2 show the numbers of iterations required for convergence for L = 2 and 4 re-
spectively. In the tables, “cos”, “cir” or “no” signify that the cosine transform preconditioner,
the level-2 circulant preconditioner [8] or no preconditioner is used respectively. We see from
the tables that the cosine transform preconditioner converges much faster than the circulant
preconditioners for different M and «, where M (= M; = M>) is the size of the reconstructed
image and « is the regularization parameter. Also the convergence rate is independent of M for
fixed « as predicted by Theorems 2 and 3.

Next we show the 256 x 256 reconstructed images from four 128 x 128 low resolution images,
i.e., a 2 x 2 sensor array is used. One of the low resolution images is shown in Figure 2 (middle).

12



o 1 x10°2 1x10°3 1 x107*

M | cos cir no|cos cir no | cos cir no
32 8 27 48 | 12 58 127 | 20 83 325
64 8 27 48 | 11 64 130 | 19 125 347
128 | 8 27 48 | 11 68 129 | 17 173 345
256 | 8 27 48| 10 68 129 | 17 181 348

Table 1la. Number of iterations for L = 2 where the

Lo norm regularization is used.

« 1 x 1072 1x1073 1x10~*
M | cos cir no|cos cir no|cos cir no
32 7T 16 26| 9 38 68| 13 70 178
64 7T 16 26| 9 36 69| 13 88 180
12860 7 16 26| 9 38 69| 13 99 180

256 | 6 16 26| 8 38 69| 13 99 180

Table 1b: Number of iterations for L = 2 where the

H; norm regularization is used.

o 1 x10°2 1x10°3 1 x107*

M | cos cir no|cos cir no | cos cir no
32 7 33 45| 10 67 111 | 16 145 256
64 6 34 47| 10 84 123 | 16 180 314
1281 6 32 47| 10 96 125 | 15 237 323
256 | 6 32 47| 9 92 125 | 15 262 323

Table 2a: Number of iterations for L = 4 where the Lo norm regularization is used.

« 1 x 1072 1 %103 1x10~*

M | cos cir no|cos cir no| cos cir no
32 5 23 33| 8 46 72| 12 86 159
64 5 23 33| 8 63 83| 12 127 182
128 5 23 34| 7 65 87| 11 155 204
256 | 5 22 34| 7 63 86| 11 178 216

Table 2b: Number of iterations for L = 4 where the H; norm regularization is used.
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The observed high resolution image g is shown in Figure 2 (right). We tried the Neumann, zero
and periodic boundary conditions to reconstruct the high resolution images. Figure 3 shows the
reconstructed images. The optimal regularization parameter « is chosen such that it minimizes
the relative error of the reconstructed image f,(«) to the original image f, i.e., it minimizes
If — £.(a)||2/||f]]2. By comparing the figures in Figure 3, it is clear that the trees in the image
are much better reconstructed under the Neumann boundary condition than that under the zero
and periodic boundary conditions. We also see that the boundary artifacts under the Neumann
boundary condition are less prominent than that under the other two boundary conditions.

Figure 2: The original image (left), a low resolution image (middle), and the observed high
resolution image (right).

Figure 3: Reconstructed image using the Neumann boundary condition (left), the zero boundary
condition (middle) and the periodic boundary condition (right).
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