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Abstract

This paper studies the application of preconditioned conjugate gradient methods in high

resolution image reconstruction problems� We consider reconstructing high resolution images

from multiple undersampled� shifted� degraded frames with subpixel displacement errors�

The resulting blurring matrices are spatially variant� The classical Tikhonov regularization

and the Neumann boundary condition are used in the reconstruction process� The precon�

ditioners are derived by taking the cosine transform approximation of the blurring matrices�

We prove that when the L� or H� norm regularization functional is used� the spectra of the

preconditioned normal systems are clustered around � for su�ciently small subpixel displace�

ment errors� Conjugate gradient methods will hence converge very quickly when applied to

solving these preconditioned normal equations� Numerical examples are given to illustrate

the fast convergence�

� Introduction

Due to hardware limitations� imaging systems often provide us with only multiple low resolution
images� However� in many applications� a high resolution image is desired� For example� the
resolution of the pictures of the ground taken from a satellite is relatively low and retrieving
details on the ground becomes impossible� Increasing the image resolution by using digital signal
processing techniques ��� ��� ��� �	� �
� ��� is therefore of great interest�
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We consider the reconstruction of a high resolution image from multiple undersampled�
shifted� degraded and noisy images� Multiple undersampled images are often obtained by us�
ing multiple identical image sensors shifted from each other by subpixel displacements� The
reconstruction of high resolution images can be modeled as solving

Hf  g� ���

where g is the observed high resolution image formed from the low resolution images� f is the
desired high resolution image and H is the reconstruction operator� If all the low resolution
images are shifted from each other with exactly half�pixel displacements� H will be a spatially
invariant operator� However� displacement errors may be present in practice� and the resulting
operator H becomes spatially variant�

Since the systems are ill�conditioned and generally not positive de�nite� we solve them by
using a minimization and regularization technique�

min
f

�
kHf � gk�� � �R�f�

�
� ���

Here R�f� is a functional which measures the regularity of f and the regularization parameter
� is to control the degree of regularity of the solution� In this paper� we will use the L� and H�

regularization functionals kfk�� and kLfk
�
� where L is the �rst order di�erential operator�

Because of the blurring �convolution� process� the boundary values of g are not completely
determined by the original image f inside the scene� They are also a�ected by the values of f
outside the scene� Thus in solving f from ���� we need some assumptions on the values of f
outside the scene� These assumptions are called boundary conditions� In ���� Bose and Boo used
the traditional choice of imposing the zero boundary condition outside the scene� i�e�� assuming a
dark background outside the scene in the image reconstruction� However� when this assumption
is not satis�ed by the images� ringing e�ects will occur at the boundary of the reconstructed
images� The problem is more severe if the images are reconstructed from a large sensor array
since the number of pixel values of the image a�ected by the sensor array increases�

In this paper� we will use the Neumann boundary condition on the image� i�e�� we assume
that the scene immediately outside is a re�ection of the original scene at the boundary� The
Neumann boundary condition has been studied in image restoration ���� �� ��� and in image
compression ���� ���� Our experimental results in ��� have shown that the Neumann image model
gives better reconstructed high resolution images than that under the zero or periodic boundary
conditions� In ���� we also proposed to use cosine transform preconditioners to precondition the
resulting linear systems and preliminary numerical results have shown that these preconditioners
are e�ective� The main aim of this paper is to analyze the convergence rate of these systems�
We prove that when the L� or H� norm regularization functional is used� the spectra of the
preconditioned systems are clustered around � for su�ciently small displacement errors�

The outline of the paper is as follows� In Section �� we give a mathematical formulation of
the problem� A brief introduction on the cosine transform preconditioners and the convergence
analysis will be given in Section �� In Section �� numerical results are presented to demonstrate
the e�ectiveness of the cosine transform preconditioners�

�



� The Mathematical Model

We begin with a brief introduction of the mathematical model in high resolution image recon�
struction� Details can be found in ����

Consider a sensor array with L� � L� sensors� each sensor has N� � N� sensing elements
�pixels� and the size of each sensing element is T� � T�� Our aim is to reconstruct an image of
resolution M� �M�� where M�  L� � N� and M�  L� � N�� To maintain the aspect ratio
of the reconstructed image� we consider the case where L�  L�  L only� For simplicity� we
assume that L is an even number in the following discussion�

In order to have enough information to resolve the high resolution image� there are subpixel
displacements between the sensors� In the ideal case� the sensors are shifted from each other
by a value proportional to T��L� T��L� However� in practice there can be small perturbations
around these ideal subpixel locations due to imperfection of the mechanical imaging system�
Thus� for l�� l�  
� �� � � � � L � � with �l�� l�� � �
� 
�� the horizontal and vertical displacements
dxl�l� and d

y
l�l�

of the �l�� l���th sensor array with respect to the �
� 
��th reference sensor array are
given by

dxl�l� 
T�
L
�l� � �xl�l�� and dyl�l� 

T�
L
�l� � �yl�l���

Here �xl�l� and �
y
l�l�

denote respectively the normalized horizontal and vertical displacement errors�
We remark that the parameters �xl�l� and �yl�l� can be obtained by manufacturers during

camera calibration� We assume that

j�xl�l� j �
�

�
and j�yl�l� j �

�

�
�

For if not� the low resolution images observed from two di�erent sensor arrays will be overlapped
so much that the reconstruction of the high resolution image is rendered impossible�

Let f be the original scene� Then the observed low resolution image gl�l� for the �l�� l���th
sensor is modeled by�

gl�l� �n�� n�� 

Z T��n��
�

�
��dy

l�l�

T��n��
�

�
��dy

l�l�

Z T��n��
�

�
��dxl�l�

T��n��
�

�
��dx

l�l�

f�x�� x��dx�dx� � �l�l� �n�� n��� ���

for n�  �� � � � � N� and n�  �� � � � � N�� Here �l�l� is the noise corresponding to the �l�� l���th
sensor� We intersperse the low resolution images to form an M� �M� image by assigning

g�L�n� � �� � l�� L�n� � �� � l��  gl�l� �n�� n��� ���

Here g is an M� �M� image and is called the observed high resolution image� Figure � shows
the method of forming a � � � image g with a � � � sensor array where each gij has a � � �
sensing elements� i�e� L  �� M� M�  �� and N�  N�  ��

Using a column by column ordering for g� we obtain g  Hf � � where H is a spatially
variant operator ���� Since H is ill�conditioned due to the averaging of the pixel values in the
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Figure �� Construction of the observed high resolution image

image model in ���� the classical Tikhonov regularization is used and the minimization problem
��� is solved� In this paper� we use the regularization functionals�

R�f�  kfk�� and R�f�  kLfk�� ���

where L is the �rst order di�erential operator�

��� Image Boundary

The continuous image model in ��� can be discretized by the rectangular rule and approximated
by a discrete image model� Because of the blurring process �cf� ����� the boundary values of
g are also a�ected by the values of f outside the scene� Thus in solving f from ���� we need
some assumptions on the values of f outside the scene� In ���� Bose and Boo imposed the zero
boundary condition outside the scene� i�e�� assuming a dark background outside the scene in the
image reconstruction�

Let g and f be respectively the discretization of g and f using a column by column ordering�
Under the zero boundary condition� the blurring matrix corresponding to the �l�� l���th sensor
can be written as

�Hl�l���� 
�Hx
l�l�����

�Hy
l�l�

���

�



where �Hx
l�l�

��� is an M� �M� banded Toeplitz matrix with bandwidth �L� �

�Hx
l�l���� 

�

L

�
BBBBBBBBBB�

� � � � � hx�l�l� 

���

� � �
� � �

� � �
� � �

�
� � �

� � �
� � �

� � � hx�l�l�

hx�l�l�
� � �

� � �
� � �

� � � �
� � �

� � �
� � �

� � �
���


 hx�l�l� � � � � �

�
CCCCCCCCCCA
�

and

hx�l�l� 
�

�
� �xl�l� �

The M� �M� banded blurring matrix �Hy
l�l�

��� is de�ned similarly� We note that ringing e�ects
will occur at the boundary of the reconstructed images if f is indeed not zero close to the bound�
ary� see for instance Figure � in x�� The problem is more severe if the image is reconstructed
from a large sensor array since the number of pixel values of the image a�ected by the sensor
array increases�

In ���� we proposed to use the Neumann boundary condition on the image� It assumes that
the scene immediately outside is a re�ection of the original scene at the boundary� Our numer�
ical results have shown that the Neumann boundary condition gives better reconstructed high
resolution images than that by the zero or periodic boundary conditions� Under the Neumann
boundary condition� the blurring matrices are still banded matrices with bandwidth �L � ��
but there are entries added to the upper left part and the lower right part of the matrices �see
the second matrix in ����� The resulting matrices� denoted by Hx

l�l�
��� and H

y
l�l�

���� have a
Toeplitz�plus�Hankel structure�

Hx
l�l���� 

�

L

�
BBBBBBBBBB�

� � � � � hx�l�l� 

���

� � �
� � �

� � �
� � �

�
� � �

� � �
� � �

� � � hx�l�l�

hx�l�l�
� � �

� � �
� � �

� � � �
� � �

� � �
� � �

� � �
���


 hx�l�l� � � � � �

�
CCCCCCCCCCA
�
�

L

�
BBBBBBBB�

� � � � � hx�l�l� 

��� � �

�
� �
�

� � �
�

hx�l�l�
hx�l�l�

� �
�

�

� �
�

� �
� ���


 hx�l�l� � � � � �

�
CCCCCCCCA
�

���
and H

y
l�l�

��� is de�ned similarly� The blurring matrix corresponding to the �l�� l���th sensor
under the Neumann boundary condition is given by

Hl�l����  Hx
l�l�����H

y
l�l�

����

The blurring matrix for the whole sensor array is made up of blurring matrices from each

�



sensor�

HL��� 

L��X
l�	�

L��X
l�	�

Dl�l�Hl�l����� ���

Here Dl�l� are diagonal matrices with diagonal elements equal to � if the corresponding compo�
nent of g comes from the �l�� l���th sensor and zero otherwise� see ��� for more details� With the
Tikhonov regularization� our discretization problem becomes�

�HL���
tHL��� � �R�f  HL���

tg �	�

where R is the discretization matrix corresponding to the regularization functional R�f� in ����

� Cosine Transform Based Preconditioners

The linear system �	� will be solved by using the preconditioned conjugate gradient method�
In this section� we construct the cosine transform preconditioner of HL��� which exploits the
banded and block structures of the matrix�

Let Cn be the n� n discrete cosine transform matrix� i�e�� the �i� j��th entry of Cn is given
by r

�� 	i�
n

cos

�
�i� ����j � ��


�n

�
� � � i� j � n�

where 	ij is the Kronecker delta� Note that the matrix�vector product Cnz can be computed in
O�n log n� operations for any vector z� see ���� pp� ����
�� For an m�m block matrix B with
the size of each block equal to n� n� the cosine transform preconditioner c�B� of B is de�ned
to be the matrix �Cm �Cn���Cm �Cn� that minimizes

jj�Cm �Cn���Cm �Cn��BjjF

in the Frobenius norm� see �	�� Here � is any diagonal matrix� Clearly� the cost of computing
c�B���y for any vector y is O�mn logmn� operations� For banded matrices in ���� which have
��L� ��� non�zero diagonals and are of size M�M� �M�M�� the cost of constructing c�HL����
is of O�L�M�M�� operations only� see ����

��� Spatially Invariant Case

When there are no subpixel displacement errors� i�e�� when all �xl��l�  �yl��l�  
� the matrices

Hx
l�l�

�
� and also Hy
l�l�

�
� are the same for all l� and l�� We will denote them simply by Hx
L and

H
y
L� We claim that in this case� the blurring matrix HL 	 HL�
�  Hx

L �H
y
L can always be

diagonalized by the discrete cosine transform matrix�

�



We begin with L  �� The blurring matrix H�  Hx
� � H

y
�� where H

x
� is an M� � M�

tridiagonal matrix given by

Hx
� 

�

�

�
BBBBB�

�
�

�
�

�
� � �

�
� � �

� � �
� � �

�
� � �

�
�
�

�
�

�
CCCCCA


�

�

�
BBBBB�

� �
�

�
� � �

�
� � �

� � �
� � �

�
� � �

�
�
� �

�
CCCCCA
�

�

�

�
BBBBB�

�
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� � �
� � �

� � �


 
 


 �

�

�
CCCCCA

and Hy
� is an M� �M� matrix with the same structure� It is easy to see that in this case� the

matrices Hx
� and Hy

� can be diagonalized by CM�
and CM�

respectively� see the basis given in
��� �� for the class of matrices that can be diagonalized by the cosine transform matrix� Thus
H� can be diagonalized by CM�

�CM�
�

Next we observe that the blurring matrix is ill�conditioned�

Lemma � Under the Neumann boundary condition� the M��M� matrix H
x
� can be diagonalized

by the discrete cosine transform matrix and its eigenvalues are given by

�j�H
x
��  cos�

�
�j � ��


�M�

�
� � � j �M�� ���

In particular� the condition number ��Hx
�� of the matrix Hx

� satis�es

��Hx
�� 
 O�M�

� �� ��
�

Proof� The formula for the eigenvalues can be derived easily using the basis given in ��� �� for the
class of matrices that can be diagonalized by the cosine transform matrix� Since �max�H

x
��  �

and

�min�H
x
��  cos�

�
�M� � ��


�M�

�
� sin�

�



M�

�
�


�

M�
�

�

the estimate of the condition number is then given by ��
��

It follows from Lemma � that the condition number of the matrix H�� Hx
� � H

y
�� is of

O�M�
�M

�
� �� The matrix is very ill�conditioned� For L  �� we have the following theorem�

Theorem � Under the Neumann boundary condition� the matrix Hx
L can be diagonalized by the

discrete cosine transform matrix and its eigenvalues are given by

�i�H
x
L� 

�

L
cos�

�
�i� ��


�M�

�
pL

�
�i� ��


M�

�
� � � i �M�� ����

�



where

pL

�
�i� ��


M�

�


�					

					�

L��X
j	�

cos

�
�i� ����j � ��


M�

�
� L  �k for some positive integer k�

�

�
�

�L�����X
j	�

cos

�
�i� ���j


M�

�
� otherwise�

����

Proof� We �rst establish a relationship between the matrices Hx
L and Hx

� � From ���� for L  ��
we have

Hx
L 

�					

					�

�

L

L��X
j	�

S�j��H
x
� � L  �k for some positive integer k�

�

L

�L�����X
j	�

S�jH
x
� � otherwise�

����

where S� is the M� �M� identity matrix and

Sk  Toeplitz�ek��� � Hankel�ek�� � � k �M� � ��

Here Toeplitz�ek� is the M��M� symmetric Toeplitz matrix with the k�th unit vector ek as the
�rst column� and Hankel�ek� is the M� �M� Hankel matrix with ek as the �rst column and ek
in the reverse order as the last column�

We remark that the Toeplitz part in Sk can be interpreted as the decomposition of the
discrete blurring function �
��� �� � � � � �� � � � � �� 
��� into the sum of the elementary discrete blurring
function �
��� �� 
��� with di�erent shifts� For example� for L  �� we have

�
�

�
� �� �� ��

�

�
�  �

�

�
� ��

�

�
� 
� 
� � �
� 
�

�

�
� ��

�

�
��

where the two terms on the right together gives the Toeplitz part in S�� For L  �� we have

�
�

�
� �� �� �� �� ��

�

�
�  �

�

�
� ��

�

�
� 
� 
� 
� 
� � �
� 
�

�

�
� ��

�

�
� 
� 
� � �
� 
� 
� 
�

�

�
� ��

�

�
��

where the �rst and the third terms on the right together gives the Toeplitz part in S� while the
middle term gives the Toeplitz part of S�� Because we are considering the Neumann boundary
condition� entries outside the blurring matrix Hx

L are �ipped into the matrix �cf� ����� This is
done by means of the Hankel part of Sk� Thus the resulting shift matrices are given by Sk and
we obtain �����

Since fSkg
M���
k	� is exactly a basis for the space containing all matrices that can be diagonal�

ized by CM�
� see ���� it follows that the matrix Hx

L can be diagonalized by the discrete cosine
transform matrix� We also note that the eigenvalues of Sk are given by

�i�Sk�  � cos

�
�i� ��k


M�

�
� � � i �M��

	



see for instance ���� Using ���� and ���� the eigenvalues of Hx
L are given in �����

Theorem � states that the matrices HL� Hx
L �H

y
L� are also very ill�conditioned and their

condition numbers are at least of orderM�
�M

�
� �cf� ������ We remark that some of these matrices

may even be singular� For instance� when L  � and M�  M�  ��� ����H
x
��  
� Thus a

regularization procedure such as �	� should be imposed to obtain a reasonable estimate for the
original image in the high resolution reconstruction�

In this paper� we consider the L� and H� norm regularization functionals in �	�� Corre�
spondingly� we are required to solve the following linear systems�

�Ht
LHL � �I�f  Ht

Lg or �Ht
LHL � �LtL�f  Ht

Lg� ����

where �  
� I is the identity matrix and LtL is the discrete Laplacian matrix with the Neumann
boundary condition� We note that LtL can be diagonalized by the discrete cosine transform
matrix� see for instance ���� Thus if we use the Neumann boundary condition for both the
blurring matrix HL and the regularization operator LtL� then the coe�cient matrix in ���� can
be diagonalized by the discrete cosine transform matrix and hence its inversion can be done
in three ��dimensional fast cosine transforms �one for �nding the eigenvalues of the coe�cient
matrix� two for transforming the right hand side and the solution vector� see ���� for instance��
Thus the total cost of solving the system is of O�M�M� logM�M�� operations�

We remark that for the zero boundary condition� discrete sine transform matrices can di�
agonalize Toeplitz matrices with at most � bands �e�g�� �H�� but not dense Toeplitz matrices
in general �e�g�� �H��� see ��� for instance� Therefore� in general we have to solve large block�
Toeplitz�Toeplitz�block systems� The fastest direct Toeplitz solvers require O�M�

�M
�
� � opera�

tions� see ����� The systems can also be solved by the preconditioned conjugate gradient method
with some suitable preconditioners� see �	�� We note however that the cost per iteration is at
least four ��dimensional fast Fourier transforms� Thus we see that the cost of using the Neumann
boundary condition is signi�cantly lower than that of using the zero boundary condition�

��� Spatially Variant Case

When there are subpixel displacement errors� the blurring matrix HL��� has the same banded
structure as that of HL� but with some entries slightly perturbed� It is a near block�Toeplitz�
Toeplitz�block matrix but it can no longer be diagonalized by the cosine transform matrix�
Therefore we solve the corresponding linear system by the preconditioned conjugate gradient
method� We will use the cosine transform preconditioner c�HL���� of HL��� as the precondi�
tioner�

Below we study the convergence rate of the preconditioned conjugate gradient method for
solving the linear systems

�c�HL����
tc�HL���� � �I����HL���

tHL��� � �I�f  HL���
tg ����

and
�c�HL����

tc�HL���� � �LtL����HL���
tHL��� � �LtL�f  HL���

tg� ����

�



where � is a positive constant� We prove that the spectra of the preconditioned normal systems
are clustered around � for su�ciently small subpixel displacement errors� Hence when the conju�
gate gradient method is applied to solving the preconditioned systems ���� and ����� we expect
fast convergence� Our numerical results in x� show that the cosine transform preconditioners
can indeed speed up the convergence of the method� We begin the proof with the following
lemma�

Lemma � Let ��  max��l��l��L��f�
x
l�l�

� �yl�l�g� Then for all M� and M�� we have

kHL����HLk� � ��� and kc�HL���� �HLk� � ���� ����

Proof� From ���� each row or column of HL��� and HL di�er in at most �L entries and each
entry is bounded by ���L� It follows that

kHL����HLk� � ��� and kHL����HLk� � ����

Hence the �rst inequality in ���� follows by using k�k� �
p
k � k�k � k�� For the second inequality�

we �rst note that by Theorem �� c�HL�  HL� Hence we have

kc�HL�����HLk�  kc�HL����HL�k� � kHL����HLk��

where the last inequality follows from kc���k� � k � k�� see ����

Lemma � Let ��  max��l��l��L��f�
x
l�l�

� �yl�l�g� Then

kHL���
tHL���� c�HL����

tc�HL����k� � dL��
��

where dL��� is a function independent of M� and M� and lim���� dL��
��  
�

Proof� We note that

kHL���
tHL���� c�HL����

tc�HL����k�

� kHL���
t�HL���� c�HL�����k� � k�HL���

t � c�HL����
t�c�HL����k��

By Theorem �� kHLk� is bounded above by a constant independent of M� and M�� Hence by
����� kHL���

tk� and kc�HL����k� are also bounded above by some constants independent of M�

and M�� Moreover� by ���� again� kHL���� c�HL����k� and kHL���
t� c�HL����

tk� are less than
	��� The result therefore follows�

Using the above lemmas� we can analyze the convergence rate of the preconditioned systems
���� and �����

Theorem � Let ��  max��l��l��L��f�
x
l�l�

� �yl�l�g� If �� is su�ciently small� then the spectra of

the preconditioned matrices

�c�HL����
tc�HL���� � �I����HL���

tHL��� � �I�

are clustered around � and their smallest eigenvalues are bounded away from � by a positive

constant independent of M� and M��

�




Proof� We just note that

k�c�HL����
tc�HL���� � �I���k� �

�

�

and

�c�HL����
tc�HL���� � �I����HL���

tHL��� � �I�

 I� �c�HL����
tc�HL���� � �I����HL���

tHL���� c�HL����
tc�HL������

Hence the result follows by applying Lemma ��

Theorem � Let ��  max��l��l��L��f�
x
l�l�

� �yl�l�g� If �� is su�ciently small� then the spectra of

the preconditioned matrices

�c�HL����
tc�HL���� � �LtL����HL���

tHL��� � �LtL�

are clustered around � and their smallest eigenvalues are uniformly bounded away from � by a

positive constant independent of M� and M��

Proof� Since

�c�HL����
tc�HL���� � �LtL����HL���

tHL��� � �LtL�

 I� �c�HL����
tc�HL���� � �LtL����HL���

tHL���� c�HL����
tc�HL������

it su�ces to show that k�c�HL����
tc�HL���� � �LtL���k� is bounded above by a constant inde�

pendent of M� and M�� Since �min�A� � �min�B� � �min�A�B� for any Hermitian matrices A
and B �see ��
� Theorem 	����� p������� we have

k�c�HL����
tc�HL���� � �LtL���k�


�

�min�c�HL����tc�HL���� � �LtL�

�
�

�min�H
t
LHL � �LtL� � �min�c�HL����tc�HL�����Ht

LHL�

�
�

�min�Ht
LHL � �LtL�� kc�HL����tc�HL�����Ht

LHLk�
�

��	�

Because the matrix Ht
LHL��LtL can be diagonalized by the ��dimensional discrete cosine

transform matrix� we can estimate the smallest eigenvalue of this matrix� We �rst note that

��i���M��j�L
tL�  � sin�

�
�i� ��


�M�

�
� � sin�

�
�j � ��


�M�

�
� ����

��



for � � i � M� and � � j � M�� see ���� By using ���� and the fact that HL  Hx
L �H

y
L� we

obtain

��i���M��j�H
t
LHL� 

�
�

L

��

cos�
�
�i� ��


�M�

�
cos�

�
�j � ��


�M�

�
p�L

�
�i� ��


M�

�
p�L

�
�j � ��


M�

�
�

��
�
for � � i �M� and � � j �M�� where pL��� is de�ned in �����

Clearly the function sin��x��� is zero at x  
 and positive in �
� 
�� whereas the function
cos��x���p�L�x� 
 ��� at x  
 and is nonnegative in �
� 
�� Thus we see that the function

�� sin�
�x
�


� �� sin�

�y
�


�

�
�

L

��

cos�
�x
�


cos�

�y
�


p�L�x�p

�
L�y�

is positive for all x and y in �
� 
�� It follows from ���� and ��
� that the matrix Ht
LHL� �LtL

is positive de�nite and its smallest eigenvalue is bounded away from 
 by a positive constant
independent ofM� andM�� In view of Lemma �� the right hand side of ��	� is therefore bounded
by a positive constant independent of M� and M� for su�ciently small ���

Thus we conclude that the preconditioned conjugate gradient method applied to ���� and ����
with �  
 will converge superlinearly for su�ciently small displacement errors� see for instance
�	�� Since HL��� has only ��L � ��� non�zero diagonals� the matrix�vector product HL���x can
be done in O�L�M�M��� Thus the cost per each iteration is O�M�M� logM�M� � L�M�M��
operations� see ��
� p������ Hence the total cost for �nding the high resolution image vector is
of O�M�M� logM�M� � L�M�M�� operations�

� Numerical Examples

In this section� we illustrate the e�ectiveness of using cosine transform preconditioners for solving
high resolution image reconstruction problems� The original image is shown in Figure � �left��
The conjugate gradient method is employed to solving the preconditioned systems ���� and �����
The stopping criteria is jjr�j�jj��jjr

���jj� � �
�
� where r�j� is the normal equations residual after
j iterations� In the tests� the parameters �xl�l� and �yl�l� are random values chosen between ����
and ���� A Gaussian white noise with signal�to�noise ratio of �
dB is added to the low resolution
images�

Tables ��� show the numbers of iterations required for convergence for L  � and � re�
spectively� In the tables� �cos�� �cir� or �no� signify that the cosine transform preconditioner�
the level�� circulant preconditioner �	� or no preconditioner is used respectively� We see from
the tables that the cosine transform preconditioner converges much faster than the circulant
preconditioners for di�erent M and �� where M� M�  M�� is the size of the reconstructed
image and � is the regularization parameter� Also the convergence rate is independent of M for
�xed � as predicted by Theorems � and ��

Next we show the ��� � ��� reconstructed images from four ��	���	 low resolution images�
i�e�� a ��� sensor array is used� One of the low resolution images is shown in Figure � �middle��

��
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Table �b� Number of iterations for L  � where the H� norm regularization is used�
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The observed high resolution image g is shown in Figure � �right�� We tried the Neumann� zero
and periodic boundary conditions to reconstruct the high resolution images� Figure � shows the
reconstructed images� The optimal regularization parameter � is chosen such that it minimizes
the relative error of the reconstructed image fr��� to the original image f � i�e�� it minimizes
kf � fr���k��kfk�� By comparing the �gures in Figure �� it is clear that the trees in the image
are much better reconstructed under the Neumann boundary condition than that under the zero
and periodic boundary conditions� We also see that the boundary artifacts under the Neumann
boundary condition are less prominent than that under the other two boundary conditions�

Figure �� The original image �left�� a low resolution image �middle�� and the observed high
resolution image �right��

Figure �� Reconstructed image using the Neumann boundary condition �left�� the zero boundary
condition �middle� and the periodic boundary condition �right��
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