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Abstract. Total variation regularization has good performance in noise removal
and edge preservation but lacks in texture restoration. Here we present a texture-
preserving strategy to restore images contaminated by blur and noise. According to
a texture detection strategy, we apply spatially adaptive fractional order diffusion. A
fast algorithm based on the half-quadratic technique is used to minimize the resulting
objective function. Numerical results show the effectiveness of our strategy.
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1. Introduction

Noise reduction and deblurring are usually used in a pre-processing stage in image
restoration to improve image quality. In this paper, we focus on texture preserving
restoration of images corrupted by additive noise and spatially-invariant Gaussian blur.
The most common image degradation model, where the observed data f ∈ Rn2

is related
to the underlying n× n image rearranged into a vector u ∈ Rn2

, is

f = Bu+ e, (1.1)

where e ∈ Rn2
accounts for the random perturbations due to noise, and B is a n2 × n2

matrix representing the linear blur operator.
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It is well known that restoring the image u is a very ill-conditioned problem and a
regularization method should be used. A popular approach determines an approxima-
tion of u as the solution of the minimization problem

min
u

{1
p
∥Bu− f∥pp +

λ

q
∥A(u)∥qq}, (1.2)

where A is a regularization operator, and λ is a positive regularization parameter
that controls the trade-off between the data fitting term and the regularization term
[13, 25, 27]. For p = 2 and q = 2, we get the classical Tikhonov regularization [11, 13].
This approach enforces smoothness of the solution and suppresses noise by penalizing
high-frequency components, thus also image edges can be smoothed out in the process.

Numerous regularization approaches and advances numerical methods have been
proposed in the literature to better preserve edges, including alternating minimization
algorithms [1], multilevel approaches [16], non-local means filters [4].

A very popular choice in the literature for regularization is based on the total varia-
tion (TV) norm. Total variation minimization was originally introduced for noise reduc-
tion [25] [7], and has also been used for image deblurring [14] and super-resolution image
reconstruction [17]. The TV regularization (ℓ2-TV) is obtained from (1.2) by setting
p = 1, q = 2, and A(u) the gradient magnitude of u. If we let ∇ui := (Gx,iu,Gy,iu)

T ,
with Gx,i, Gy,i representing the ith rows of the x and y-directional finite difference
operators Gx, Gy, respectively, then the regularization term is defined by the TV-norm

∥u∥TV = ∥A(u)∥1 :=
n2∑
i=1

√
(Gx,iu)2 + (Gy,iu)2.

The distinctive feature of TV regularization is that image edges can be preserved, but
the restoration can present staircase effects.

A variant of the ℓ2-TV regularization is the ℓ1-TV regularization which is obtained
from (1.2) by replacing the ℓ2 norm in the data-fitting term by ℓ1 norm:

min
u

{ ∥Bu− f ∥1 + λ ∥u∥TV }, (1.3)

see [5], [28], [29], [26], [27] for discussions on this model. This model has a number of
advantages, including superior performance with non-Gaussian noise such as impulse
noise, see [20]. However, it is well known that the ℓ1-TV regularization has problems
in preserving textures, see [28], [6].

In image denoising, recent works have dealt with this drawback mainly by two
different strategies. In [10] the ℓ2-TV model is adopted using a spatially variant regu-
larizing parameter λ, selected according to local variance measures. In [2], a fractional
order anisotropic diffusion model is introduced, which leads to a “natural interpola-
tion” between the Perona-Malik equations [22], and fourth-order anisotropic diffusion
equations [15]. An adaptive fractional-order multi-scale model is proposed in [31, 32],
where the model is applied to noise removal and the texture is detected by a variant of
the strategy in [10].
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The main goal of this work is to apply an adaptive fractional order regularization
term for the restoration of textured images corrupted by additive noise and blur. To
achieve this aim, we use a 2-phase approach. First we apply a suitable texture de-
tection method on the observed image to obtain a texture map. Then a fractional
order regularization is applied to the parts of the image which are characterized to
be texture regions by the map, and the classical TV regularization (ℓ1-TV) is applied
elsewhere. In particular, we propose to replace the TV regularization term ∥u ∥TV in
(1.3) with a spatially adaptive fractional order TV regularization term, thus integrating
the following four ingredients:

• use of the fractional order α of derivatives to better preserve textures,

• spatial adaptivity of α in order to allow flexibility in choosing the correct regu-
larizing operator,

• spatial adaptivity of λ in order to locally control the extent of restoration over
image regions according to their content,

• an effective texture detection methodology based on the noise auto-correlation
energy which makes no assumption about the noise level of the image.

The paper is organized as follows. We describe the proposed adaptive fractional
model for image restoration in Section 2. An iterative solution of the proposed model
obtained by the half-quadratic strategy and its numerical aspects are discussed in Sec-
tion 3. In Section 4 we briefly illustrate the computational aspects related to the
fractional order derivatives and in Section 5 we describe the texture detection method
we used. Numerical examples and comments are provided in Section 6 and the paper
is concluded in Section 7.

2. The proposed adaptive model

We propose to modify the functional in (1.2) to the following adaptive fractional
variational model

min
u

{∥Bu− f∥1 + ∥ΛAα(u)∥1}, (2.1)

where Λ = diag(λ1, . . . , λn2) is an n2 × n2 diagonal matrix with λi representing the
regularization parameter for the ith pixel, Aα(ui) = ∥∇αiui∥2, where αi represents the
fractional order of differentiation for the ith pixel, and

∇αiui := (Gαi
x,iu,G

αi
y,iu)

T , (2.2)

is the fractional-order discrete gradient operator, with components representing the x
and y-directional fractional finite difference operators.

Let us motivate our model by analyzing the high-pass filtering character of the
fractional order derivative operator. In Figure 1 we show the restored images of the
blurred and noisy test image in Figure 6(b) by applying model (2.1) with different α
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(a) α = 1.0 (b) α = 1.5 (c) α = 1.8 (d) α = 2.0

Figure 1: Restoration of test image shown in Figure 6(b) using model (2.1) with different values of α while
λ = 1.0 is fixed for all tests.

while keeping λ = 1.0. With α = 1 we get the ℓ1-TV model (1.3) which preserves edges
but fails to preserve fine scale features such as textures in the images, see Figure 1(a).
The high-pass capability becomes stronger with larger α, so more and more texture
regions are better preserved when α increases to 1.5, 1.8 and then 2.0, see Figures
1(b)–(d) respectively. However, for α = 2.0 the high pass capability of fractional order
derivatives is too strong so that most components of the image remain and only little
high frequencies noise is removed. Thus a best filtering is obtained by adaptively
applying the fractional order regularization in texture regions and TV regularization
in other non-texture perturbed regions.

Our method consists of two phases. At the first phase, we apply the texture detector
proposed in Section 5 to the observed image f to obtain a texture detection map. The
texture map contains a texture measure (a real positive value) for each pixel and it
is thresholded to obtain the texture and non-texture classes. The texture class is
further partitioned into C subclasses according to the texture measure. Following this
classification a value αi is associated to each pixel i, with αi = 1 if the ith pixel belongs
to the non-texture class, and αi ∈ {α̂1, . . . , α̂C} if the ith pixel belongs to one of the C
texture subclasses. The regularization parameters λi in the diagonal matrix Λ in (2.1)
are then chosen according to αi’s. In particular, each texture class has an associated
regularization value, while for the non-texture class we set λ = 1.0. In the second
phase, we apply the classical TV regularization (ℓ1-TV) to the non-texture regions
while applying a fractional order TV regularization (ℓ1-TV

α) in the texture class. The
corresponding minimization problem is solved by the half-quadratic method in [6].

3. The numerical algorithm

The fidelity and regularization terms in (2.1) are not differentiable, therefore in
the following we use a smoothed version of them. To this end, let us define ∥v∥1,ϵ :=∑

i |vi|ϵ, with |vi|ϵ :=
√

v2i + ϵ for any vi ∈ R and ϵ > 0, and let β and γ be two small
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regularization parameters. Hence, we want to minimize the functional

Φ(u) = ∥Bu− f ∥1,γ + ∥ΛAα(u)∥1,β
=
∑n2

i=1 |Biu− fi|γ + λi |∇αi(ui)|β
=
∑n2

i=1

√
(Biu− fi)2 + γ + λi

√
(Gαi

x,i u)
2 + (Gαi

y,i u)
2 + β

(3.1)

where Bi is the ith row of B, fi is the intensity of the ith pixel of the observed image.
The minimization of the functional (3.1) is obtained in a way similar to what is

done for the half quadratic ℓ1-TV [6, 9, 19]. Half-quadratic regularization is based on
the following expression for the modulus of a real, nonzero number x:

|x| = min
v>0

{
v x2 +

1

4 v

}
, (3.2)

whose minimum is at v = 1
2 |x| , and the function inside the curly bracket in (3.2)

is quadratic in x but not in v; hence the name half-quadratic. By using (3.2), the
minimum of the function in (3.1) can be determined by minimizing the L operator
defined as follows:

minuΦ(u) = minu
∑n2

i=1

[
|Biu− fi|γ + λi |∇αiui|β

]
= minu

∑n2

i=1

[
minwi>0

(
wi|Biu− fi|2γ + 1

4wi

)
+λiminvi>0

(
vi |∇αiui|2β + 1

4vi

)]
= minu,v>0,w>0

∑n2

i=1

[
wi|Biu− fi|2γ + 1

4wi
+ λi(vi |∇αiui|2β + 1

4vi
)
]

:= minu,v>0,w>0 L(u, v, w).
(3.3)

In order to solve (3.3), we apply the alternating minimization procedure, namely, for
k = 0, 1, . . ., we solve successively

v(k+1) = argminv>0 L(u(k), v, w(k))

w(k+1) = argminw>0 L(u(k), v(k+1), w)

u(k+1) = argminu>0 L(u, v(k+1), w(k+1)).

(3.4)

The first two minimizations in (3.4) have explicit solutions for each iteration:

v
(k+1)
i =

1

2
|∇αiu

(k)
i |−1

β , w
(k+1)
i =

1

2
|Biu

(k) − fi|−1
γ . (3.5)

Since L(u, v(k+1), w(k+1)) is continuous differentiable in u, the solution u(k+1) of the
third minimization in (3.4) is obtained by imposing

0 = ∇uL(u, v(k+1), w(k+1)) = (Gα)T Λ̂ D̂β(u
(k))Gαu+BTDγ(u

(k))(Bu− f), (3.6)

where Gα := (Gα
x ;G

α
y ) ∈ R2n2×n2

is the discretization matrix of the adaptive frac-

tional gradient operator, Λ̂ := diag(Λ,Λ) ∈ R2n2×2n2
is a diagonal matrix of the adap-

tive regularization parameters, D̂β(u
(k)) := diag(Dβ(u

(k)), Dβ(u
(k))) ∈ R2n2×2n2

where
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Dβ(u
(k)) ∈ Rn2×n2

and Dγ(u
(k)) ∈ Rn2×n2

are diagonal matrices with their ith diagonal
entries being

(Dβ(u
(k)))i= 2v

(k+1)
i = |∇αiu

(k)
i |−1

β , (3.7)

(Dγ(u
(k)))i= 2w

(k+1)
i = |Biu

(k)− fi|−1
γ , (3.8)

respectively.
Algorithm 3.1 outlines the computations for the adaptive fractional method for

solving (3.3).

Algorithm 3.1. Adaptive-Fractional (AF) Algorithm

Input: degraded image f , number of texture classes C;

Output: approximate solution u(k) of (3.3);

1. {λi, αi, i = 1, . . . , n2 } = TD(f, C) compute the texture-adaptive parameters

on the degraded image f ;

2. Initialize the iterative process by setting u(0) = f ;

3. For k = 1, 2, . . . until convergent, solve[
(Gα)T Λ̂ D̂β(u

(k))Gα +BTDγ(u
(k))B

]
u(k+1) = BTDγ(u

(k))f (3.9)

endfor

The linear system of equation (3.9) is solved by the conjugate gradient method
where we terminate the iterations as soon as the norm of the residual is less than
or equal to 10−4. The use of an iterative solver allows us to avoid storing the large
dimension matrices B and Gα; the only requirement is matrix-vector products. In
particular, the product which involves matrix B makes use of FFT convolution, while
the product by Gα is done according to (4.5), described in Section 4. This makes it
possible to solve large-scale problems on fairly small computers. The texture detection
procedure, step 1 in Algorithm 3.1, will be outlined in Section 5.

The model (2.1) allows the use of the proof techniques in [6] to prove the convergence
of sequence {u(k)} to the minimum of Φ(u), as illustrated by the following result.

Theorem (Convergence). For the sequence u(k) generated by the half-quadratic AF
Algorithm, if

ker((Gα)TGα) ∩ ker(BTB) = {0} (3.10)

we have

• {Φ(u(k))} is monotonic decreasing and convergent;
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• limk→∞ ∥u(k) − u(k+1)∥2 = 0;

• {Φ(u(k))} converges to the unique minimizer u∗ of Φ(u) from any initial guess
u(0);

We remark that, in our case, for α ∈ [1, 2], ker((Gα)TGα) is spanned at most by
the two vectors: 1n2 , an n2 vector of ones, and (1, 2, . . . , n2), while the blurring matrix
B is a low-pass filter. Thus (3.10) always holds.

4. Fractional-order derivatives of variable α order

In this section, in order to allow for a complete overview of the discrete numerical

procedure for computing the matrix-vector product
(
(Gα)T Λ̂ D̂β G

α
)
u(k+1) in (3.9),

we will explain how the fractional order derivatives have been discretized and made
spatially-adaptive by using variable fractional order.

Fractional-order derivatives have a long history and can be seen as a generalization
of the integer-order derivatives. Many definitions of fractional-order derivative exist,
and all are consistent in some respect with the integer-order one. One of the most
popular is the frequency domain definition [8, 21].

Since images are functions defined on a bounded domain, the computation of the
fractional-order partial derivatives by the discrete Fourier transforms requires that the
function must be symmetric and even, so that a prolongation of the image has to be
implemented. This yields a high computational cost. Moreover, here we are interested
in variable-order fractional differentiation, i.e. in the computation of spatially-adaptive
fractional-order derivatives. In this case the fractional order derivatives in the frequency
domain should be properly reconsidered.

Hence, following [30], in this paper we use the Grunwald-Letnikov fractional-order
derivative [23]. Let an image be an n × n matrix with i and j denoting the column
and the row pixel coordinates. The discrete, fractional-order gradient at a pixel (i, j)
is defined as (∇αi,ju)i,j =

(
(∆

αi,j
x u)i,j , (∆

αi,j
y u)i,j

)
where

(∆
αi,j
x u)i,j =

K−1∑
s=0

ω
αi,j
s ui−s,j

(∆
αi,j
y u)i,j =

K−1∑
s=0

ω
αi,j
s ui,j−s

αi,j ∈ R+, (4.1)

with K > 0 being the number of pixels used for the approximation, and ωα
s , for a

generic α = αi,j , being the real coefficients defined as

ωα
s = (−1)s

(
α

s

)
= (−1)s

Γ(α+ 1)

Γ(s+ 1)Γ(α− s+ 1)
, α ∈ R+, s ∈ N. (4.2)
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The generalized binomial coefficients
(
α
s

)
, defined in (4.2) in terms of the Gamma

function, can be computed by the following recurrence relationships(
α

0

)
= 1;

(
α

s

)
=

(
α

s− 1

)
·
(
1− α+ 1

s

)
, α ∈ R+ , s = 1, 2, . . . . (4.3)
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Figure 2: Values of the coefficients ωα
s used in (4.1) for the discrete approximation of the fractional-order

partial derivatives.

In Figure 2 we show the values of the coefficients ωα
s used in (4.1) and defined in

(4.2)–(4.3) for values of α between 1 and 2 and increasing s values. Only the first
ten coefficients ωα

0 , . . . , ω
α
9 are reported since they vanish to zero very fast and only

α ∈ [1, 2] values are considered since this is the range we use in AF algorithm. In
Figure 2(a) the first fourth s values are shown, while in Figure 2(b), the remaining
coefficients are shown using a different plot scale. We remark that, independently on
α, the coefficients vanish to zero very fast when s increases, so that a small number
of nodes K in (4.1) is sufficient at each pixel for an accurate approximation of the
fractional-order gradient.

For α = 1 and α = 2 the coefficients exactly vanish for s > 1 and s > 2, respectively,
and in fact they reduce to the classical finite difference discretizations of the first and
second order derivatives respectively. Finally, we point out that the coefficients sum
up to zero independently on α ∈ [1, 2].

In light of what said, we can make some considerations about the 2n2 × n2 matrix
Gα = (Gα

x , G
α
y )

T in (3.9) when implementing the fractional-order gradient operator. In
the simplest case of a non-adaptive α, clearly the computations in (4.1) are nothing more
than discrete convolutions of the image with two shift-invariant kernels discretizing the
fractional-order partial derivatives. Hence, assuming Dirichlet homogeneous boundary
conditions, the two n2 × n2 matrices Gα

x and Gα
y are block Toeplitz with Toeplitz blocks,

i.e.
Gα

x = In ⊗ U α, Gα
y = U α ⊗ In, (4.4)

where ⊗ denotes the Kronecker product, In is the nth-order identity matrix and Uα is
the n × n Toeplitz lower triangular banded matrix whose first column is (ωα

0 , ω
α
1 , . . .,

ωα
K−1, 0, . . . , 0)

T with K denoting the number of nodes used for the computation of
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the fractional derivatives. Different structured matrices can be obtained for different
boundary conditions, see [24].

In the case of variable α, the two matrices Gα
x and Gα

y retain the same sparsity

structure but are no longer Toeplitz: each row will contain different coefficients ω
αi,j
s

depending on the fractional-order of differentiation selected for the corresponding pixel.

Finally, to compute the matrix-vector product
(
(Gα)T Λ̂ D̂β G

α
)
u(k+1) in (3.9), let

m = nj + i be the lexicographical coordinate of a pixel (i, j), and let (A)m denote the
mth row of the matrix A, then the m-th element of the resulting vector is(

(Gα)T Λ̂ D̂β G
α
)
m
u(k+1)

= λi,j

[
K−1∑
s=0

ω
αi,j
s

(∆
αi,j
x u(k+1))i+s,j

|∇αi,ju
(k)
i+s,j |β

+
K−1∑
s=0

ω
αi,j
s

(∆
αi,j
y u(k+1))i,j+s

|∇αi,ju
(k)
i,j+s|β

]
, (4.5)

with the fractional finite difference operators ∆
αi,j
x and ∆

αi,j
y defined in (4.1).

5. Texture detection method

An automatic texture detection procedure was proposed in [10] where the noise is
assumed to be Gaussian with known variance, and the authors use the ℓ2-TV denoising
method to detect texture regions in noisy images. Here, we present a new strategy
for computing a measure of texture at each pixel of a degraded image based only on
the assumption that the additive noise e in (1.1) is the realization of a white random
process. We make no assumption about the noise distribution and the noise variance.
We only assume that the noise is not correlated to the image and to itself.

Our idea is to use the auto-correlation function to detect non-whiteness in data.

Inspired by [10], starting from the observed degraded image, i.e. u(0) = f , we apply
a simple TV-flow with Neumann homogeneous boundary conditions

u(k+1) = u(k) + τ ∇·

(
∇u(k)

|∇u(k)|

)
(5.1)

which approaches a piecewise constant image, so-called “cartoon model”, that we de-
note by u(k). The oscillatory parts removed by the TV flow are the noise e and the
“non-cartoon” part, that is the texture parts unc, which represent small-scale geometric
details in the image, see [28] for a detailed analysis of the ℓ1-TV model for decompos-
ing a real image into the sum of cartoon and texture. Under this decomposition, the
residual can be represented as

r(k) := f − u(k) = unc + e.

The sequence u(k) converges asymptotically to the constant image with value the mean
of the input image f (that we denote by f), so that the corresponding r(k) approaches
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(a) u(20) (b) u(80) (c) u(120) (d) u(180)

(a) r(20) (b) r(80) (c) r(120) (d) r(180)

(a) ρ̂r(20) (b) ρ̂r(80) (c) ρ̂r(120) (d) ρ̂r(180)

Figure 3: Some steps of the TV-flow applied to the Barbara image corrupted by a white Gaussian noise
with σ = 20 (first row); corresponding residual images (second row); corresponding sample auto-correlation,
restricted to the smaller lags [l,m] : l,m = 0, 1, . . . , 9 (third row).

to f − f , We want to stop the TV flow at a characteristic scale k̃ which allows us to
well detect textured parts unc in the image. Unlike the heuristic criterium adopted
in [10], we propose to consider the auto-correlation of the residue r(k) and to choose k̃
accordingly.

To describe the details of the approach, we briefly introduce some required statistical
concepts. Let E = {Ei,j : i, j = 1, 2, . . . n } be an n×n discrete random field with Ei,j

denoting the scalar random variable modeling noise at pixel (i, j). The auto-correlation
of E is a function ρE mapping pairs of pixel locations (i1, j1), (i2, j2) into a scalar value
that must lie in the range [−1, 1], which represents the Pearson’s correlation coefficient
between the two corresponding random variables Ei1,j1 , Ei2,j2 , i.e.

ρE [i1, j1, i2, j2] =
E
[(
Ei1,j1 − µi1,j1

)(
Ei2,j2 − µi2,j2

)]
σi1,j1 σi2,j2

(5.2)

where E is the expected value operator, µi,j and σi,j are the mean and standard devi-
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ation of the random variable Ei,j .

Since we assume that noise is white, i.e. wide-sense stationary, zero-mean, uncorre-
lated, the auto-correlation of E depends only on the lag between the two pixel locations
[l,m] = (i2 − i1, j2 − j1), and (5.2) can be rewritten as follows

ρE [l,m] =
1

σ2
E
[
Ei,jEi+l,j+m

]
=

{
1 if (l,m) = (0, 0),

0 otherwise,
l,m = 0, . . . , n− 1,

(5.3)
independently on i, j. That is, a white noise is characterized by zero values of the
auto-correlation function at all non-vanishing lags.

Moreover, assuming that the noise process is also ergodic, provided that the ob-
served realization e of the noise random field E is “sufficiently long”, implies that ρE in
(5.3) is well estimated by the sample auto-correlation function of e defined as

ρ̂e[l,m] =
1

n2 σ̂2

n∑
i, j=1

ei,jei+l,j+m (5.4)

where σ̂2 is the sample variance of the observed noise realization e. We remark that,
for a generic observed realization x, the sample auto-correlation ρ̂x[l,m] ∈ [−1, 1], with
1 indicating perfect correlation, and −1 indicating perfect anti-correlation.

In order to find a characteristic scale k̃ to detect textures, we propose to minimize
the following residual auto-correlation energy

Jr(k) := max
[l,m] ̸=[0,0]

∣∣ ρ̂r(k) [l,m]
∣∣ (5.5)

that, according to (5.4), for a cartoon image corrupted by white noise should be zero.
For a cartoon image without textures, the energy Jr(k) monotonically decreases and
vanishes. In the presence of textures, initially, the TV-flow makes the residual image
be essentially given by noise, so that the auto-correlation energy Jr(k) decreases. As
soon as the texture part unc initiates to contaminate the residual, the energy Jr(k) starts
increasing since textures are typically correlated.

Our proposal is based on the idea to find the characteristic scale k̃ which makes the
auto-correlation energy of the residual image Jr(k) minimal.

To validate this idea, in Figure 3 we report some steps of the TV-flow applied to the
Barbara image corrupted by additive white Gaussian noise with σ = 20. In particular,
in the first, second and third rows we show, respectively, the images filtered by the TV-
flow, u(k), the residual images, r(k), and a zoom of the auto-correlation function of the
residual images, ρ̂r(k) , restricted to the smaller lags [l,m] : l,m = 0, 1, . . . , 9. Moreover,
in Figure 4 we report the values of the standard deviation and auto-correlation energy of
the residual image versus iterations. Figure 4(b) shows clearly how the auto-correlation
energy exhibits a very well-defined first local minimum and looking at Figure 4(a) one
can notice that corresponding to this minimum the standard deviation of the residual
image is slightly greater than the standard deviation of the noise (horizontal blue line).
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Figure 4: Standard deviation (a) and auto-correlation energy (b) of the residue.

Once the characteristic scale k̃ has been selected, we assign as a measure of tex-
ture at each pixel the auto-correlation energy of the residual image computed by (5.5)
locally in a surrounding neighborhood of the pixel. We name this procedure Compute-
TextureMeasure() in Algorithm 5.1.

In Figures 5(a) and 5(b) we illustrate the texture maps obtained by applying the
method in [10] and our proposal (with k̃ = 92), respectively, on the same corrupted
Barbara image used in producing the figures in Figure 3. In the implementation of
both [10] and our algorithm, we used a 21×21 local neighborhood centered at each pixel
for computing variance values and auto-correlation energy, respectively. We remark
that our approach does not require any information about the noise distribution and
variance, moreover the obtained texture map is of better quality than the one computed
by [10]. This can be due to the fact that in [10] the texture map is defined using only
the local variance information.

(a) (b)

Figure 5: Texture maps compute by [10] (a) and by our proposed strategy (b). The maps have been linearly
scaled so that the maximum value corresponds to the gray value 255.
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We finally summarize the proposed texture detection procedure in the following
Algorithm.

Algorithm 5.1. Texture Detection (TD) Algorithm

Input: degraded image f , number of texture classes C;

Output: texture-adaptive parameters λi, αi, i = 1, . . . , n2;

1. Initialize the iterative process by setting u(0) = f ;

2. Repeat

3. perform one step of the TV flow u(k+1) = TV (u(k)) by (5.1)

4. compute the residue image r(k+1) = f − u(k+1)

5. compute the residue auto-correlation ρr(k+1) by (5.4)

6. compute the residue auto-correlation energy Jr(k+1) by (5.5)

7. until Jr(k+1) > Jr(k)

8. k̃ := k characteristic scale found at the first local minimum;

9. T = ComputeTextureMeasure (u(k̃)) with T taking values in [0, 1];

10. partition T into C classes T1, T2, . . . , TC ;

11. assign (λi, αi) according to Ti for i = 1, . . . , C.

To conclude, we give some details about the computational complexity of Algorithm
(5.1). The most demanding steps are step 5 and step 8. As the residue auto-correlation
ρr(k) is computed by (5.4) using a two-dimensional FFT, step 5 exhibits a complexity of

O(k̃n2 logn2) for a characteristic scale k̃. Step 8 computes ρ
r(k̃)

for each pixels locally,
i.e. in a surrounding neighborhood of size w (we used w = 21), using FFT; hence its
complexity is O(n2w2 logw2).

6. Computed examples

This section illustrates the performance of the AF algorithm which solves (3.9)
when applied to both synthetic and real images that have been contaminated by blur
and noise. We compare the results of the AF algorithm with that of the ℓ1-TV method,
which solves (1.3), and ℓ2-TV method, the well-known Rudin-Osher-Fatemi model [25].
The ℓ1-TV algorithm solves (1.3) with λ = 0.1 and it is implemented as the AF algo-
rithm where we set αi = 1, and λi = 0.1, for all i in the difference matrix Gα and in
the diagonal matrix Λ, respectively. The ℓ2-TV algorithm is implemented as the ℓ1-TV
algorithm by setting the matrix Dγ in (3.9) to the identity matrix. In AF algorithm
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we fix the regularization parameters β = 10−3 and γ = 10−6 in (3.1), and the number
of nodes K = 8 in (4.1), for all tests. Neumann homogeneous boundary conditions
for the difference matrix Gα have been considered in all tests, which corresponds to a
reflection of the original image at the boundary [18].

We compare the accuracy of the methods by the Signal-to-Noise Ratio (SNR) de-
fined by

SNR(u, û) := 10 log10
∥u−E(û)∥
∥u− û∥

dB,

where u is an available approximation of the desired blur- and noise-free image û, and
E(û) represents the mean gray-level value of the uncorrupted image. This measure
provides a quantitative measure of the quality of u. A large SNR-value indicates that u
is an accurate approximation of û; however, the SNR-values are not always in agreement
with visual perception.

The matrix B in (1.1) represents a Gaussian blurring operator and is generated by
the Matlab function blur.m in Regularization Tools [12]. This function has two param-
eters band and sigma. The former specifies the half-bandwidth of the Toeplitz blocks
and the latter the variance of the Gaussian point spread function. The larger sigma,
the more blurring. Enlarging band increases the storage requirement, the arithmetic
work required for the evaluation of matrix-vector products with B, and to some extent
the blurring.

The entries of f are contaminated either by additive Gaussian noise or by salt-and-
pepper noise. The noise is added to the blurred image to obtain the observed image f .
In the salt-and-pepper noise white and black pixels randomly occur, while unaffected
pixels always remain unchanged. The salt-and-pepper noise is usually quantified by the
percentage of pixels which are corrupted. In the case of Gaussian noise, let f̃ ∈ Rn2

be the associated vector with the unknown noise-free entries, i.e., f = f̃ + e where the
vector e represents the noise. We define the noise-level

ν =
∥e∥
∥f̃∥

(6.1)

in all the examples.

In these examples we partitioned the texture-map only into four classes, three tex-
ture classes and one non-texture class, with associated fractional order and regulariza-
tion parameter values α1 = 1.9, λ1 = 0.05, α2 = 1.8, λ2 = 0.05, α3 = 1.7, λ3 = 0.05
and α4 = 1.0, λ4 = 1.0, respectively. For this particular case, the diagonal entries of
the matrix Λ may assume one of the four different values λ1, λ2, λ3 and λ4.

All computations are carried out in MATLAB with about 16 significant decimal
digits.

As concerning the computational complexity of the AF algorithm, sketched in (3.1),
we have a preliminary texture detection step (see step 1. in (3.1)), whose complexity
has been discussed in Section 5. Then, the core of the algorithm consists of an outer
iteration loop (step 3. in (3.1)), and an inner iteration loop required by the iterative
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ν SNRi SNRAF SNRℓ1−TV SNRℓ2−TV

0.01 15.98 20.46 20.00 18.22
0.05 13.29 15.86 15.06 15.48
0.10 9.44 13.06 11.56 12.44

Table 1: Example 6.1. Results for restorations of test images that have been corrupted by spatially-invariant
Gaussian blur, defined by band = 3 and sigma = 1.5, and by noise corresponding to noise-level ν.

ν SNRi SNRAF SNRℓ1−TV SNRℓ2−TV

0.01 11.41 14.00 13.53 12.14
0.05 10.71 11.94 10.89 11.64
0.10 9.05 10.59 9.73 10.26

Table 2: Example 6.2. Results for restorations of barbara images that have been corrupted by spatially-
invariant Gaussian blur, defined by band = 3 and sigma = 1.5, and by additive Gaussian noise corresponding
to noise-level ν.

solver CG for the linear system in (3.9). From our experience very good results are
obtained by at most 10 outer iterations, while the number of inner iterations depends
on the required tolerance. In our experiments we used 10−4 as stopping tolerance for
the CG algorithm, that involves an average of 18 inner iterations. Each iteration in the
inner loop requires the evaluation of one matrix-vector product with the matrix which
is composed by the sum of two matrices, one related to the regularizer and the other
to the blur operator. The implementation details of the former are given in Section 4,
while the latter makes use of FFT convolutions.

Example 6.1. We consider the restoration of a blur- and noise-contaminated
test image represented by 255× 255 pixels. The desired blur- and noise-free image is
depicted in Figure 6(a). The image is contaminated by a spatially-invariant Gaussian
blur, determined by the parameters band = 3 and sigma = 1.5, and by 10% noise. The
resulting image is displayed in Figure 6(b).

In Table 1 the second column with header SNRi reports SNR values for images test
that have been corrupted by the spatially-invariant Gaussian blur, characterized by
band = 3 and sigma = 1.5, and by noise of different noise-levels ν defined in (6.1). The
value of ν are shown in the first column. Column three, labeled SNRAF, shows the SNR
values for restorations by AF algorithm, and column four and fifth, labeled SNRℓ1−TV,
and SNRℓ2−TV show the SNR values for restorations by TV method, implemented by
(1.3) with ℓ1 and ℓ2 data fidelity terms, respectively.

The adaptive regularization process applies different levels of denoising in different

n SNRi SNRAF SNRℓ1−TV SNRℓ2−TV

5% 3.89dB 14.12 13.39 7.56
10% 1.42dB 13.17 12.93 6.61

Table 3: Example 6.2. Results for restorations of barbara images that have been corrupted by spatially-
invariant Gaussian blur, defined by band = 3 and sigma = 1.5, and by salt-and-pepper noise corresponding
to noise-level n.
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image regions. This improves the result visually, in terms of texture preservation and
smoothing of the homogeneous regions, and in terms of signal-to noise-ratio. Figure
6(d) shows the restoration by AF algorithm and Figure 6(f) depicts the texture-map
used for the restoration. The texture measures are obtained on the corrupted image in
Figure 6(b) and the four texture classes are shown using gray-level values. In particular,
in black regions the AF algorithm is applied with α4 = 1.0, α2 = 1.7, and α3 = 1.8 in
the gray regions, and α1 = 1.9 in white regions. The restoration by ℓ1-TV is illustrated
in Figure 6(c) using λ = 0.1 and it preserves textures but it does not remove the noise.
However, when we apply ℓ2-TV restoration with λ = 1.0 it does the opposite, that is,
it preserves very well the edges but it destroys the textures. The restoration by ℓ2-TV,
illustrated in Figure 6(e), shows less sharpness and smoothing of the texture regions.

Example 6.2. We demonstrate how well our adaptive method performs on natural
images by processing a noisy version of the barbara image. The noise- and blur-
free 510 × 510 image barbara used in this example is shown in Figure 7(a). The
corresponding image corrupted by the Gaussian blur, defined by band = 3 and sigma =
1.5, and by 10% of Gaussian noise, is shown in Figure 7(b).

Table 2 reports the SNR values for the contaminated images and for the restorations
by the three methods. The table is analogous to Table 1. Figures 7(c) shows the best
restoration by the ℓ1-TV method using λ = 1.0. Figure 7(d) shows the restoration by
AF algorithm using the texture-map depicts in Figure 7(f) which is computed from
the observed image in Figure 7(b). Some texture parts of the image are lost in the
texture-map, i.e. parts of the pants, and thus these regions cannot benefit from the
fractional order restoration. A well-defined texture-map is obtained, and illustrated in
Figure 7(e), when the texture-map is computed on the blur- and noise- free image in
Figure 7(a). In case severe blur or noise levels corrupt the image, the texture-map can
present both erroneously detected texture parts and missing textures. In these cases
the performance of AF algorithm reduces to that of a fractional order image restoration
without spatial adaptivity.

Table 3 provides a comparison of the three methods when applied to a small part
of the barbara image corrupted by a salt-and-pepper noise of level n (given in the first
column). The ℓ2-TV algorithm performs well when applied to Gaussian noise removal,
as shown in Table 2, but it fails when applied to salt-and-pepper noise removal, as
shown in the fifth column in Table 3. Both ℓ2-TV and ℓ1-TV implementation used the
regularization parameter λ = 0.1 which produced the best results. The best quality in
SNR is obtained with the AF algorithm and it is shown in the third column of Table
3. The image in Fig. 8(a) has been degraded by %5 salt-and-pepper noise and by
Gaussian blur, defined by the parameters band = 3 and sigma = 1.5, the restored
image determined by AF algorithm is illustrated in Fig. 8(b). In Section 5 we showed
the texture map obtained by applying the proposed texture detection strategy to an
image corrupted by additive Gaussian noise. In Fig. 8(c), the texture map computed
on the corrupted image in Fig. 8(a) is illustrated, together with the four textured
classes computed from it (Fig. 8(d)).

Example 6.3. As a final example, we show the performance of AF algorithm
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when applied to a photographic image, skyscraper, of size 256× 256, which presents
large textured parts. The original unperturbed image is shown in Figure 9(a), and the
degraded version of it by the Gaussian blur, defined by band = 3 and sigma = 1.5,
and by 10% of Gaussian noise, is shown in Figure 9(b). The perturbed image has a
qualitative measure SNR = 8.17. The restored image determined by AF algorithm is
illustrated in Fig. 9(c) and provides a SNR value of 9.79, the ℓ1-TV restored image
is reported in in Fig. 9(d), with SNR equal to 8.44. The λ regularization parameter
used in ℓ1-TV algorithm is 0.5 and we kept the same value for the λi corresponding
to pixels belonging to the non-textured class when the AF algorithm is applied. The
best ℓ2-TV restoration has been obtained for λ = 0.05 which gives a restored image
with SNR = 8.65. The corresponding restored image is visually similar to Fig. 9(d),
therefore is not reported. In Fig. 9(f), which illustrates the four classes used, pixels
belonging to the non-textured class are black colored. Fig. 9(e) illustrates the texture
map computed on the corrupted image shown in Fig. 9(b), which well highlights the
textured zones. Consequently, the details present in these textured parts are well
reconstructed by AF algorithm as shown in Fig. 9(c).

7. Conclusion remarks

This paper describes a new adaptive method for image deblurring and denoising.
The regularization operator is constructed by using fractional order derivatives, where
the choice of the fractional order for each pixel in the image is driven by the texture
map of the image. Moreover, the regularization parameters are also chosen adaptively
according to the texture map. This makes the proposed algorithm an efficient tool to
preserve texture well in the texture regions while removing noise and staircase effects
in the image. We have developed a simple iterative algorithm to solve the model which
is based on the half-quadratic strategy. Numerical results showed that the proposed
algorithm yields better signal-to-noise ratio and visual effects than using non-adaptive
fractional order image restorations based on TV regularization and ℓ1 or ℓ2 data fitting
terms.

Increasing the number of texture classes would maintain the same computational
cost of the AF algorithm while improving the accuracy in terms of SNR value. We will
investigate this important aspect in future experiments.
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(a) true image (b) observed image

(c) ℓ1-TV (d) AF

(e) ℓ2-TV (f) texture map

Figure 6: Example 6.1. test images: (a) blur- and noise-free image; (b) the corrupted image produced by
Gaussian blur, defined by the parameters band = 3 and sigma = 1.5, and by 10% of Gaussian noise; (c)
restoration with ℓ1-TV with λ1 = 0.1; (d) restored image determined by AF algorithm; (c) restoration with
ℓ2-TV with λ1 = 0.1; (f) texture classes computed on (b).
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(a) true image (b) observed image

(c) l1-TV (d) AF

(e) texture map from (a) (f) texture map from (b)

Figure 7: Example 6.2. barbara images: (a) blur- and noise-free image; (b) the corrupted image produced
by Gaussian blur, defined by the parameters band = 3 and sigma = 1.5, and by Gaussian additive 10%
noise; (c) restoration with ℓ1- TV with λ1 = 0.1; (d) restored image determined by AF algorithm; (e)
texture classes computed on (a); (f) texture classes computed on (b).



22 NM

(a) observed image (b) AF

(c) texture map (d) texture classes

Figure 8: Example 6.2. barbara images: (a) the corrupted image produced by Gaussian blur, defined by
the parameters band = 3 and sigma = 1.5, and by 5% salt & pepper additive noise; (b) restored image
determined by AF algorithm; (c) texture map computed on (a); (d) texture classes from (c).
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(a) true image (b) observed image

(c) AF (d) ℓ1-TV

(e) texture map (f) texture classes

Figure 9: Example 6.3. skyscraper images: (a) original unperturbed image (b) corrupted image produced
by Gaussian blur, defined by the parameters band = 3 and sigma = 1.5, and by 10% Gaussian additive
noise; (c) restored image determined by AF algorithm; (d) restoration with ℓ1- TV with λ1 = 0.5; (e) texture
map computed on (b); (f) texture classes computed on (e).


