
Multigrid for Di�erential-Convolution ProblemsArising from Image ProcessingRaymond H. Chan1, Tony F. Chan2 and W. L. Wan21 Department of Mathematics, Chinese University of Hong Kong, Shatin, HongKong. Email: rchan@math.cuhk.edu.hk.2 Department of Mathematics, University of Califonia at Los Angeles, Los Angeles,CA 90095-1555. Email: chan@math.ucla.edu, wlwan@math.ucla.edu.Abstract. We consider the use of multigrid methods for solving cer-tain di�erential-convolution equations which arise in regularized imagedeconvolution problems. We �rst point out that the usual smoothing pro-cedures (e.g. relaxation smoothers) do not work well for these types ofproblems because the high frequency error components are not smoothedout. To overcome this problem, we propose to use optimal fast-transformpreconditioned conjugate gradient smoothers. The motivation is to com-bine the advantages of multigrid (mesh independence) and fast transformbased methods (clustering of eigenvalues for the convolution operator).Numerical results for Tikhonov regularization with the identity and theLaplacian operators show that the resulting method is e�ective. How-ever, preliminary results for total variation regularization show that thiscase is much more di�cult and further analysis is required.1 IntroductionIn PDE based image processing, we often need to solve di�erential-convolution equations of the form:�R(u)(x) + Z
 k(x� y)u(y)dy = f(x); x in 
; (1)where u(x) is the recovered image, k(x) is the kernel convolution function,R(u) is a regularization functional and � is a positive parameter. Typicalforms of R(u) are:R(u) = (u Tikhonov��u Isotropic Di�usion (ID)�r � (ru=jruj) Total Variation (TV).The discretization of (1) gives rise to a linear system of the form:(�A+K)u = f; (2)with the following properties. The matrix A, corresponding to the regu-larization part, is typically sparse, symmetric and positive-de�nite (posi-tive semi-de�nite for ID and TV because the boundary condition is Neu-mann). The matrixK, corresponding to the convolution part, is typicallyill-conditioned, symmetric and dense but with a Toeplitz structure. In



this paper, we are interested in using iterative methods to solve a largesystem of the form (2).The e�ectiveness of iterative methods depends on the choice of precon-ditioners. For matrix A, the commonly used preconditioners include [9]:multigrid (MG), domain decomposition (DD), incomplete LU factoriza-tion (ILU), successive over-relaxation (SOR) etc. MG or DD type pre-conditioners have a characteristics of optimal convergence in the sensethat its convergence rate is independent of the mesh size.For matrix K, various preconditioners have been proposed, for exam-ple, circulant preconditioners [10, 6, 5], sine transform preconditioners[4], cosine transform preconditioners [2] etc. For these types of precondi-tioners, the eigenvalues of the preconditioned system typically clusteredaround one which is a very desirable condition for the conjugate gradientmethod. Recently, a MG preconditioner [3] has also been proposed andoptimal convergence is proved for a class of Toeplitz systems.The construction of preconditioners for the sum of operators L = �A+K,however, is di�cult. SupposeMA andMK are two e�cient precondition-ers for A and K respectively. Then ML = �MA +MK would be a goodapproximation to L. Unfortunately,ML is not easily invertible in generaleven if MA and MK are.A simple strategy is to use either MA or MK alone to precondition L. In[8, 12], a MG preconditioner is constructed for ~L = �A+
I which in turnis used to precondition L, hoping that the matrixK is well approximatedby 
I. A potential drawback is that 
I may be a poor approximation toK.In such situations, the operator splitting method of Vogel and Oman [13]may be more e�ective. This preconditioner approximates the inverse ofL by a product of factors each involving only either A or K:M = (K + 
I)1=2(�A+ 
I)(K + 
I)1=2;where 
 is an appropriately chosen constant. This preconditioner is verye�ective for both very large and very small values of � but the perfor-mance can deteriorate for intermediate values of �.To alleviate this problem, Chan-Chan-Wong [2] proposed a class of op-timal fast-transform based preconditioners to precondition L. The mainidea is to select as preconditioner the best approximation to L from afast-transform invertible class of matrices by solving the following opti-mization problem: minM2C jjM � LjjF ;where C is the class of matrices diagonalizable by the cosine-transform.Such optimal fast-transform based preconditioners have proven to bevery e�ective for convolution type problems [5] and they have also beenextended to elliptic problems [1]. It turns out that the optimal M forL can be computed very e�ciently by exploiting the Toeplitz structureof K and the banded structure of A. Since L is not "split" in arrivingat a preconditioner, the performance is not sensitive to the value of �.However, even though the performance is very satisfactory for Tikhonov



and ID regularization, the convergence behavior for the TV regulariza-tion case may still depend on the mesh size. This is caused by the highlyvarying coe�cient in the TV operator.In view of the e�ectiveness of MG for A and the fast transform pre-conditioners for K, our idea is to combine the bene�ts of both. Speci�-cally, we use fast-transform based preconditioned conjugate gradient as asmoother for MG. Our analysis and numerical results show that this is ane�ective smoother, whereas the standard relaxation type preconditionersare totally ine�ective for convolution type problems. In this paper, weshall focus on two 1D cases: (1) A = I (identity) (2) A = �� (Laplacianoperator). In sections 2 and 3, we discuss the di�culties of using MGfor L = �I +K and L = ��� +K and how we tackle it through theuse of fast transform based smoothers. In section 4, we discuss the totalvariation case. It turns out that this case is much more di�cult and al-though we have some encouraging results, we still have not arrived at ane�ective method. In 5, we shall estimate the complexity of some of themethods discussed. Finally, some conclusions are made in section 6.We remark that this paper is only a preliminary report of on-going workand much further investigation remains to be done.2 The Case A = IIn this section, we shall consider operators of the form L = �I + K,where K arises from the discretization of an integral operator of the�rst kind. It is well-known that K is very ill-conditioned and MG withtraditional smoothers does not work well for K. The regularization term�I improves the conditioning by shifting the spectrum a distance � awayfrom zero. It turns out that this is not enough to make MG work well.The reason is that the set of eigenvectors remains the same independentof �. We shall explain this phenomenon next.
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Fig. 1. Eigenvectors corresponding to (a) the smallest (b) the middle (c) the largesteigenvalue of L = 10�4I +K. The oscillatory eigenvectors corresponding to the smalleigenvalues.
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Fig. 2. Error vectors after 0 iteration (top left), 1 iteration (top right), 5 iterations(bottom left) and 10 iterations (bottom right) of Richardson smoothing applied toL = 10�4I +K. Note that there is no smoothing e�ect.Our observation is that common relaxation methods, for instance, Ric-hardson, Jacobi or Gauss-Seidel method, fail to smooth the error in thegeometric sense. The reason is that, unlike in the elliptic case, eigenvec-tors of �I +K corresponding to small eigenvalues are highly oscillatorywhile those corresponding to large eigenvalues are smooth. It is knownthat relaxation methods reduce the error components corresponding tolarge eigenvalues only and therefore they in fact remove the smooth errorcomponents. We illustrate this using Richardson iteration as an example.Let A be a symmetric positive de�nite matrix and let 0 < �1 � � � � � �nbe its eigenvalues and fvkg the corresponding eigenvectors. The errorem+1 in the m+1st iteration step of the Richardson method is given byem+1 = (I � 1�nA)em:Let the eigendecomposition of em be em = Pnk=1 �kvk: Since fvkg areorthogonal by the symmetry of A, we havekem+1k22 = nXk=1(1� �k�n )2�2:Note that (1 � �k=�n) � 0 when k is close to n and (1 � �k=�n) �1 when k is close to 1. Hence, the components corresponding to large
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Fig. 3. Error vectors after 0 iteration (top left), 1 iteration (top right), 5 iterations(bottom left) and 10 iterations (bottom right) of Richardson smoothing applied toL = 10�4I +K. The smooth component is removed completetly after only 1 iterationwhereas the oscillatory components persist. All the plots are scaled so that the l2-normof the vector is equal to 1.eigenvalues are reduced while those corresponding to small eigenvaluesremain essentially unchanged.We illustrate the smoothing phenomenon of the Richardson iterationapplied to L = �I+K by a simple example. Choose � = 10�4 and k(x) =1C exp(�x2=0:01) which is known as the Gaussian blurring operator inimage processing. Here C = R 10 exp(�x2=0:01)dx is the normalizationconstant. Let 0 < �1 � � � � � �n be the eigenvalues of L and v1; : : : ; vnbe the corresponding eigenvectors. Figure 1 shows the plots of v1, vn=2and vn for n = 128. Relaxation methods, for example, the Richardsonmethod, essentially reduces the error components corresponding to largeeigenvalues, not necessary the high frequencies. Because of the specialspectrum of L, these methods do not reduce the high frequency errors.Figure 2 shows the plots of the initial (oscillatory) error and the errorsafter 1, 5, 10 number of Richardson iterations. No smoothing e�ect canbe seen. In fact, as shown in Figure 3, if the initial error consists of lowfrequency and a small perturbation of high frequency vectors, after oneRichardson iteration, the low frequency components will be removed andthe error is left with high frequency only.In contrast, MG converges rapidly for integral operators of the secondkind of the form L = I�K and this can also be explained by the smooth-
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Fig. 4. Eigenvectors corresponding to (a) the smallest (b) the middle (c) the largesteigenvalue of L = I �K. The oscillatory eigenvectors correspond to the largest eigen-values.
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Fig. 5. Error vectors after 0 iteration (top left), 1 iteration (top right), 5 iterations(bottom left) and 10 iterations (bottom right) of Richardson smoothing applied toL = I �K. The oscillatory components are quickly smoothed out.ing argument. Figure 4 shows the eigenvectors of L = I �K with K asbefore. Because of the minus sign, we see that eigenvectors correspondingto small eigenvalues are smooth while those of large eigenvalues are oscil-latory as in the standard elliptic case. Thus the Richardson iteration hasno trouble removing high frequency errors as shown in Figures 5 and 6.We note that in Figure 6, the initial error consists of small perturbationof high frequency vectors.
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Fig. 6. Error vectors after 0 iteration (top left), 1 iteration (top right), 5 iterations(bottom left) and 10 iterations (bottom right) of Richardson smoothing applied toL = I �K. The smooth components remain after many iterations.With the above understanding, it is clear that MG does not work well forL = �I+K because the standard smoothers are not e�ective and we needto devise smoothers which can remove high frequency error componentsmore e�ectively. Our approach is based on two observations. First, fast-transform preconditioners are e�ective for clustering the eigenvalues ofL around one. Second, conjugate gradient annihilates e�ciently errorcomponents corresponding to clusters of eigenvalues, in addition to thoseat both ends of the spectrum. Hence we propose to use PCG with fasttransform preconditioners as smoother in the MG cycle.Figure 7 shows the eigenvectors of the preconditioned system using thecosine transform preconditioner. It is interesting to note that low fre-quency vectors are located at both ends of the spectrum while high fre-quency vectors concentrate at the cluster. Figure 8 shows the smoothinge�ect of PCG using the cosine-transform preconditioner (PCG(Cos)).We remark that MG with the optimal circulant preconditioner also pro-duces similar plots and hence we do not show it. Table 1 shows the MGconvergence (MG(*)) of di�erent smoothers speci�ed in the brackets.The Richardson smoother is denoted by R and the PCG smoother withthe cosine-transform preconditioner is denoted by PCG(Cos). The con-vergence of PCG(Cos) alone is also given for comparison. Here we usetwo pre-smoothing and no post-smoothing step. The iteration is stoppedwhen the relative residual is less than 10�10. The matrix K is the Gaus-sian blurring operator as before. From the table, we see that PCG as
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Fig. 7. Eigenvectors corresponding to (a) the smallest (b) the middle (c) the largesteigenvalue of the cosine transform preconditioned system of L = 10�4I + K. Theoscillatory eigenvectors are clustered in the middle of the spectrum.
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Fig. 8. Error vectors after 0 iteration (top left), 1 iteration (top right), 5 iterations(bottom left) and 10 iterations (bottom right) of PCG(Cos) smoothing applied toL = 10�4I +K. The smoothing e�ect is much improved over Richardson in Figure 2.smoother is much more e�cient than standard relaxation methods in allcases. For large �, MG with PCG as smoother is about as e�cient asPCG alone, taking into the account of two smoothing steps in each MGiteration. But for small �, MG is signi�cantly better. In fact, its perfor-mance improves as the mesh size approaches zero whereas that of PCGalone remains constant.



� h 1/64 1/128 1/256 1/512MG(R) � � � �10�2 MG(PCG(Cos)) 5 4 4 4PCG(Cos) 8 8 8 8MG(R) � � � �10�3 MG(PCG(Cos)) 6 5 4 4PCG(Cos) 11 11 11 11MG(R) � � � �10�4 MG(PCG(Cos)) 11 7 6 6PCG(Cos) 18 18 18 18MG(R) � � � �10�5 MG(PCG(Cos)) 40 18 14 11PCG(Cos) 33 37 36 38Table 1. Convergence of di�erent MG and PCG with varying � and mesh size h.L = �I +K. � indicates more than 100 iterations. The results show that PCG(Cos) isan e�ective smoother.3 The Case A = ��In the following, we shall assume Neumann boundary condition for theLaplacian operator. The situation of L = ���+K is much more com-plicated. First of all, the regularization term �� does not simply shiftthe spectrum; it actually alters the spectrum. For large �, the eigenvec-tors of L resemble those of � and for small �, they resemble those of K,where the high and low frequency vectors are 
ipped over each other.For � in between, it is a mixture but the precise nature of the mixingis not known. We pick three di�erent size of � to illustrate the changingspectrum of L in Figures 9, 10 and 11.
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Fig. 9. Eigenvectors corresponding to (a) the smallest (b) the middle (c) the largesteigenvalue of L = �� +K. When � is large, the eigenvectors of L resemble those of��. The numerical results for this case is given in Table 2. As expected,
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Fig. 10. Eigenvectors corresponding to (a) the smallest (b) the middle (c) the largesteigenvalue of L = �10�4� +K. For intermediate value of �, the eigenvectors corre-sponding to large eigenvalues resemble those of �� and the eigenvectors correspondingto small eigenvalues are oscillatory and resemble those of K.
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Fig. 11. Eigenvectors corresponding to (a) the smallest (b) the middle (c) the largesteigenvalue of L = �10�8�+K. When � is small, the eigenvectors of L resemble thoseof K. MG with standard relaxation methods as smoother deteriorates when� decreases because L approaches the convolution operator K whichwe have shown in section 2 that standard smoothers do not work well.Again, MG(PCG(Cos)) shows better performance over PCG(Cos) alonefor small values of � and h.4 MG for TV deblurringIn this section, we shall discuss our preliminary experience in solving theTV deblurring problem [7] by MG. The governing di�erential-convolutionequation is slightly di�erent from (1) and is given here:�R(u)(x) +K�K(u) = K�z;where R(u) = �r � (1=jruj)ru, Ku = R
 k(x � y)u(y)dx, K� is theadjoint operator of K and z is the observed blurred and noisy image.



� h 1/64 1/128 1/256 1/512MG(R) 18 19 20 2110�2 MG(PCG(Cos)) 3 3 3 3PCG(Cos) 6 6 6 6MG(R) 17 18 19 2010�3 MG(PCG(Cos)) 3 3 3 3PCG(Cos) 7 7 7 7MG(R) 32 32 32 3210�4 MG(PCG(Cos)) 4 4 3 3PCG(Cos) 8 8 8 8MG(R) � � � �10�5 MG(PCG(Cos)) 4 4 3 3PCG(Cos) 9 9 9 9Table 2. Convergence of di�erent MG and PCG with varying � and mesh size h.L = ���+K. The results show that PCG(Cos) is an e�ective smoother.Basically, the convolution operator is replaced by a product of itself withits adjoint. The corresponding linear system is:(�A+KTK)u = f; (3)which is similar to (2) with K replaced by KTK. The additional chal-lenges of solving (3) are two fold. First, the matrix A now comes froman elliptic operator with highly varying coe�cient (which is 1=jruj). Itis not known if MG can handle this case e�ciently. Second, the productKTK is no longer Toeplitz which complicates the implementation issue.For instance, while it is trivial to construct the Jacobi preconditioner forK, it is not so for KTK at �rst glance, although it turns out that it canalso be done in O(n) operations. Moreover, the conditioning of KTK isworse than K alone.It turns out MG even with PCG as smoother does not work well in thiscase. A natural way to improve its performance is to use it as a precon-ditioner for conjugate gradient. However, this is not feasible as MG withPCG as smoother gives rise to a nonstationary preconditioner. One solu-tion to this problem is based on the following observation. The success ofPCG as smoother is that CG takes advantage of the clustered eigenval-ues of the cosine-transform preconditioned system. We notice that it isprobably advantageous but not necessary to apply CG (which gives riseto a nonstationary preconditioner) to the preconditioned system. An al-ternative is to use standard relaxation methods on the cosine-transformpreconditioned system.We have tried out several possibilities and the results are shown in Tables3, 4 and 5 for a TV deblurring example. The original and the blurrednoisy 1D image together with the recovered image are shown in Figure12. The signal-to-noise ratio SNR=13. Here we have used the Gaussianblur again. For each grid size h, we use the optimal �opt for L whichis chosen so that the recovered image has the speci�ed SNR. We testthree cases: � = 10 � �opt, � = �opt and � = 0:1 � �opt, corresponding
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Fig. 12. (a) Original image (b) Blurred and noisy image (c) Recovered image. Gaussianblur is used and SNR=13.to Tables 3-5 respectively. In each table, the second to fourth columnshow the convergence in the �rst �xed point iteration and the �fth toseventh ones show the convergence at the 11th �xed point iteration.(For our examples, the �xed point iteration has already converged at the11th iteration.) We show these two sets of results because the coe�cient1=jruj is quite di�erent for the two cases; see Figure 12. In the �rst �xedpoint iteration, the coe�cient is very oscillatory whereas at the eleventhiteration, it is almost piecewise constant. With the same notation asbefore, the bracket right after PCG speci�es the preconditioner used forCG and the bracket right after MG speci�es the smoother. Here GS+Cosdenotes the Gauss-Seidel (GS) method applied to the cosine-transformpreconditioned system. Similarly for J+Cos where J denotes the Jacobimethod. 1st �xed pt. iter. 11th �xed pt. iter.10 � �opt 1/64 1/128 1/256 1/64 1/128 1/256PCG(Cos) 42 85 108 13 49 75PCG(MG(GS)) 20 29 35 12 17 21PCG(MG(GS+Cos)) 14 28 37 4 11 12PCG(MG(J+Cos)) 17 51 79 13 17 22Table 3. Convergence of PCG with varying h. � = 10 � �opt.We see that PCG(MG(GS)) and PCG(MG(GS+Cos)) are the best. Theyare not sensitive to � and deterioration with smaller h is slow. Be-sides, PCG(MG(GS+Cos)) is better than PCG(MG(GS)) for smaller� which shows that cosine transform is e�ective in dealing with K. How-ever, we have not come up with an e�cient implementation for thesetwo methods. For PCG(MG(GS)), Vogel [11] has also made this ob-servation independently. PCG(MG(J+Cos)) shows a degradation overPCG(MG(GS+Cos)), similar to that of the ordinary GS over Jacobi. Weshould also remark that PCG(Cos) is quite e�ective among the methods



1st �xed pt. iter. 11th �xed pt. iter.�opt 1/64 1/128 1/256 1/64 1/128 1/256PCG(Cos) 38 81 98 42 92 106PCG(MG(GS)) 17 28 37 16 21 24PCG(MG(GS+Cos)) 14 26 34 13 15 14PCG(MG(J+Cos)) 17 45 73 20 28 28Table 4. Convergence of PCG with varying h. � = �opt.1st �xed pt. iter. 11th �xed pt. iter.0:1 � �opt 1/64 1/128 1/256 1/64 1/128 1/256PCG(Cos) 35 75 93 55 90 128PCG(MG(GS)) 19 35 54 15 21 25PCG(MG(GS+Cos)) 13 24 33 15 19 17PCG(MG(J+Cos)) 16 43 67 22 35 36Table 5. Convergence of PCG with varying h. � = 0:1 � �opt.we have tried.5 Computation complexityHere we estimate the complexity of one iteration of some of the methodsthat we have described in Sections 2 and 3.PCG(Cos): This method has been estimated in [2]. The constructionof the preconditioner is O(n) and the cost of the preconditioning isO(n log2 n).MG(R): On each level, the cost of a Richardson smoothing is essentiallythe cost of matrix-vector multiply. For the sparse matrix A, it can bedone in O(nl) operations and for the Toeplitz matrix, it can be done inO(nl log2 nl), where nl is the size of the matrix at level l. Here we assumethat K is Toeplitz at all levels. In fact, this is proved to be true in [3] iflinear interpolation is used. The construction of the coarse grid matricescan also be done in O(n). Thus the overall complexity of an iteration ofMG(R) is O(n log2 n).MG(PCG(Cos)): The method is almost the same as MG(R) but withdi�erent smoother. The cost of applying the PCG(Cos) is O(n log2 n)and hence the overall complexity is O(n log2 n).We remark that we have not come up with an e�cient implementationof the methods in the TV case and so we do not discuss the complexityissue of those methods here.
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