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Abstract. We consider the use of multigrid methods for solving cer-
tain differential-convolution equations which arise in regularized image
deconvolution problems. We first point out that the usual smoothing pro-
cedures (e.g. relaxation smoothers) do not work well for these types of
problems because the high frequency error components are not smoothed
out. To overcome this problem, we propose to use optimal fast-transform
preconditioned conjugate gradient smoothers. The motivation is to com-
bine the advantages of multigrid (mesh independence) and fast transform
based methods (clustering of eigenvalues for the convolution operator).
Numerical results for Tikhonov regularization with the identity and the
Laplacian operators show that the resulting method is effective. How-
ever, preliminary results for total variation regularization show that this
case is much more difficult and further analysis is required.

1 Introduction

In PDE based image processing, we often need to solve differential-
convolution equations of the form:

aR(u)(@) + / k@ - yuldy = (@), =i 2, (1)

where u(z) is the recovered image, k(z) is the kernel convolution function,
R(u) is a regularization functional and « is a positive parameter. Typical
forms of R(u) are:

m Tikhonov
R(u) =< —Au Isotropic Diffusion (ID)
-V (Vu/|Vu|) Total Variation (TV).

The discretization of (1) gives rise to a linear system of the form:
(@A + K)u=f, (2)

with the following properties. The matrix A, corresponding to the regu-
larization part, is typically sparse, symmetric and positive-definite (posi-
tive semi-definite for ID and TV because the boundary condition is Neu-
mann). The matrix K, corresponding to the convolution part, is typically
ill-conditioned, symmetric and dense but with a Toeplitz structure. In



this paper, we are interested in using iterative methods to solve a large
system of the form (2).

The effectiveness of iterative methods depends on the choice of precon-
ditioners. For matrix A, the commonly used preconditioners include [9]:
multigrid (MG), domain decomposition (DD), incomplete LU factoriza-
tion (ILU), successive over-relaxation (SOR) etc. MG or DD type pre-
conditioners have a characteristics of optimal convergence in the sense
that its convergence rate is independent of the mesh size.

For matrix K, various preconditioners have been proposed, for exam-
ple, circulant preconditioners [10, 6, 5], sine transform preconditioners
[4], cosine transform preconditioners [2] etc. For these types of precondi-
tioners, the eigenvalues of the preconditioned system typically clustered
around one which is a very desirable condition for the conjugate gradient
method. Recently, a MG preconditioner [3] has also been proposed and
optimal convergence is proved for a class of Toeplitz systems.

The construction of preconditioners for the sum of operators L = a A+ K,
however, is difficult. Suppose M4 and Mk are two efficient precondition-
ers for A and K respectively. Then M = aMs + Mg would be a good
approximation to L. Unfortunately, My, is not easily invertible in general
even if M4 and Mg are.

A simple strategy is to use either M4 or Mg alone to precondition L. In
[8,12], a MG preconditioner is constructed for I = a A+~I which in turn
is used to precondition L, hoping that the matrix K is well approximated
by vI. A potential drawback is that vI may be a poor approximation to
K.

In such situations, the operator splitting method of Vogel and Oman [13]
may be more effective. This preconditioner approximates the inverse of
L by a product of factors each involving only either A or K:

M = (K +~1)""*(aA +yI) (K +~1)"/7,

where «y is an appropriately chosen constant. This preconditioner is very
effective for both very large and very small values of a but the perfor-
mance can deteriorate for intermediate values of a.

To alleviate this problem, Chan-Chan-Wong [2] proposed a class of op-
timal fast-transform based preconditioners to precondition L. The main
idea is to select as preconditioner the best approximation to L from a
fast-transform invertible class of matrices by solving the following opti-
mization problem:

min ||M — L||F,
MecC

where C is the class of matrices diagonalizable by the cosine-transform.
Such optimal fast-transform based preconditioners have proven to be
very effective for convolution type problems [5] and they have also been
extended to elliptic problems [1]. It turns out that the optimal M for
L can be computed very efficiently by exploiting the Toeplitz structure
of K and the banded structure of A. Since L is not ”split” in arriving
at a preconditioner, the performance is not sensitive to the value of a.
However, even though the performance is very satisfactory for Tikhonov



and ID regularization, the convergence behavior for the TV regulariza-
tion case may still depend on the mesh size. This is caused by the highly
varying coefficient in the TV operator.

In view of the effectiveness of MG for A and the fast transform pre-
conditioners for K, our idea is to combine the benefits of both. Specifi-
cally, we use fast-transform based preconditioned conjugate gradient as a
smoother for MG. Our analysis and numerical results show that this is an
effective smoother, whereas the standard relaxation type preconditioners
are totally ineffective for convolution type problems. In this paper, we
shall focus on two 1D cases: (1) A = I (identity) (2) A = —A (Laplacian
operator). In sections 2 and 3, we discuss the difficulties of using MG
for L = al + K and L = —aA + K and how we tackle it through the
use of fast transform based smoothers. In section 4, we discuss the total
variation case. It turns out that this case is much more difficult and al-
though we have some encouraging results, we still have not arrived at an
effective method. In 5, we shall estimate the complexity of some of the
methods discussed. Finally, some conclusions are made in section 6.

We remark that this paper is only a preliminary report of on-going work
and much further investigation remains to be done.

2 The Case A =1

In this section, we shall consider operators of the form L = ol + K,
where K arises from the discretization of an integral operator of the
first kind. It is well-known that K is very ill-conditioned and MG with
traditional smoothers does not work well for K. The regularization term
al improves the conditioning by shifting the spectrum a distance a away
from zero. It turns out that this is not enough to make MG work well.
The reason is that the set of eigenvectors remains the same independent
of a. We shall explain this phenomenon next.
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Fig. 1. Eigenvectors corresponding to (a) the smallest (b) the middle (c¢) the largest
eigenvalue of I = 10~ *T 4+ K. The oscillatory eigenvectors corresponding to the small
eigenvalues.
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Fig. 2. Error vectors after 0 iteration (top left), 1 iteration (top right), 5 iterations
(bottom left) and 10 iterations (bottom right) of Richardson smoothing applied to
L =10"%T 4+ K. Note that there is no smoothing effect.

Our observation is that common relaxation methods, for instance, Ric-
hardson, Jacobi or Gauss-Seidel method, fail to smooth the error in the
geometric sense. The reason is that, unlike in the elliptic case, eigenvec-
tors of al + K corresponding to small eigenvalues are highly oscillatory
while those corresponding to large eigenvalues are smooth. It is known
that relaxation methods reduce the error components corresponding to
large eigenvalues only and therefore they in fact remove the smooth error
components. We illustrate this using Richardson iteration as an example.
Let A be a symmetric positive definite matrix and let 0 < A1 < - < Ay,
be its eigenvalues and {v;} the corresponding eigenvectors. The error
e™ ! in the m + 1st iteration step of the Richardson method is given by

et = (1 — %A)em.

n

Let the eigendecomposition of e™ be e™ = ZZ:1 &rvy. Since {vy} are
orthogonal by the symmetry of A, we have

m - Ak
e = Do (1 - £5)7%€
k=1 "

Note that (I — Ax/An) = 0 when k is close to n and (1 — A\x/A) =
1 when k is close to 1. Hence, the components corresponding to large
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Fig. 3. Error vectors after 0 iteration (top left), 1 iteration (top right), 5 iterations
(bottom left) and 10 iterations (bottom right) of Richardson smoothing applied to
L =10"%T 4+ K. The smooth component is removed completetly after only 1 iteration
whereas the oscillatory components persist. All the plots are scaled so that the lo-norm
of the vector is equal to 1.

eigenvalues are reduced while those corresponding to small eigenvalues
remain essentially unchanged.

We illustrate the smoothing phenomenon of the Richardson iteration
applied to L = al+ K by a simple example. Choose & = 10~ and k(z) =
L exp(—2°/0.01) which is known as the Gaussian blurring operator in
image processing. Here C' = fnl exp(—x2/0.01)dz is the normalization
constant. Let 0 < Ay < --- < A, be the eigenvalues of L and v1,..., v,
be the corresponding eigenvectors. Figure 1 shows the plots of v, v, /2
and v, for n = 128. Relaxation methods, for example, the Richardson
method, essentially reduces the error components corresponding to large
eigenvalues, not necessary the high frequencies. Because of the special
spectrum of L, these methods do not reduce the high frequency errors.
Figure 2 shows the plots of the initial (oscillatory) error and the errors
after 1, 5, 10 number of Richardson iterations. No smoothing effect can
be seen. In fact, as shown in Figure 3, if the initial error consists of low
frequency and a small perturbation of high frequency vectors, after one
Richardson iteration, the low frequency components will be removed and
the error is left with high frequency only.

In contrast, MG converges rapidly for integral operators of the second
kind of the form L = I — K and this can also be explained by the smooth-
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Fig. 4. Eigenvectors corresponding to (a) the smallest (b) the middle (c) the largest
eigenvalue of L = I — K. The oscillatory eigenvectors correspond to the largest eigen-

values.
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Fig. 5. Error vectors after 0 iteration (top left), 1 iteration (top right), 5 iterations
(bottom left) and 10 iterations (bottom right) of Richardson smoothing applied to
L =1 — K. The oscillatory components are quickly smoothed out.

ing argument. Figure 4 shows the eigenvectors of L = I — K with K as
before. Because of the minus sign, we see that eigenvectors corresponding
to small eigenvalues are smooth while those of large eigenvalues are oscil-
latory as in the standard elliptic case. Thus the Richardson iteration has
no trouble removing high frequency errors as shown in Figures 5 and 6.
We note that in Figure 6, the initial error consists of small perturbation
of high frequency vectors.
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Fig. 6. Error vectors after 0 iteration (top left), 1 iteration (top right), 5 iterations
(bottom left) and 10 iterations (bottom right) of Richardson smoothing applied to
L =1 — K. The smooth components remain after many iterations.

With the above understanding, it is clear that MG does not work well for
L = al+ K because the standard smoothers are not effective and we need
to devise smoothers which can remove high frequency error components
more effectively. Our approach is based on two observations. First, fast-
transform preconditioners are effective for clustering the eigenvalues of
L around one. Second, conjugate gradient annihilates efficiently error
components corresponding to clusters of eigenvalues, in addition to those
at both ends of the spectrum. Hence we propose to use PCG with fast
transform preconditioners as smoother in the MG cycle.

Figure 7 shows the eigenvectors of the preconditioned system using the
cosine transform preconditioner. It is interesting to note that low fre-
quency vectors are located at both ends of the spectrum while high fre-
quency vectors concentrate at the cluster. Figure 8 shows the smoothing
effect of PCG using the cosine-transform preconditioner (PCG(Cos)).
We remark that MG with the optimal circulant preconditioner also pro-
duces similar plots and hence we do not show it. Table 1 shows the MG
convergence (MG(*)) of different smoothers specified in the brackets.
The Richardson smoother is denoted by R and the PCG smoother with
the cosine-transform preconditioner is denoted by PCG(Cos). The con-
vergence of PCG(Cos) alone is also given for comparison. Here we use
two pre-smoothing and no post-smoothing step. The iteration is stopped
when the relative residual is less than 107!, The matrix K is the Gaus-
sian blurring operator as before. From the table, we see that PCG as
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Fig. 7. Eigenvectors corresponding to (a) the smallest (b) the middle (c) the largest
eigenvalue of the cosine transform preconditioned system of L = 107*I + K. The
oscillatory eigenvectors are clustered in the middle of the spectrum.
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Fig. 8. Error vectors after 0 iteration (top left), 1 iteration (top right), 5 iterations
(bottom left) and 10 iterations (bottom right) of PCG(Cos) smoothing applied to
L =10"*I 4+ K. The smoothing effect is much improved over Richardson in Figure 2.

smoother is much more efficient than standard relaxation methods in all
cases. For large a, MG with PCG as smoother is about as efficient as
PCG alone, taking into the account of two smoothing steps in each MG
iteration. But for small o, MG is significantly better. In fact, its perfor-
mance improves as the mesh size approaches zero whereas that of PCG
alone remains constant.




a |k 1/64]1/128[1/256]1/512
MG(R) * * x *

10~ 2|MG(PCG(Cos))| 5 4 4
PCG(Cos) 8 8 8 8
MG(R) * * * *

10~ 3[MG(PCG(Cos))| 6 5 4 4
PCG(Cos) |11 | 11 | 11
MG(R) * * * *

10~*[MG(PCG(Cos))| 11 6 6
PCG(Cos) 8| 18 | 18 | 18
MG(R) * * *

10" °IMG(PCG(Cos))| 40 | 18 | 14 | 11
PCG(Cos) 33 | 37 | 36 | 38

Table 1. Convergence of different MG and PCG with varying a and mesh size h.
L = ol + K. * indicates more than 100 iterations. The results show that PCG(Cos) is
an effective smoother.

3 The Case A = —A

In the following, we shall assume Neumann boundary condition for the
Laplacian operator. The situation of L = —aA + K is much more com-
plicated. First of all, the regularization term aA does not simply shift
the spectrum; it actually alters the spectrum. For large a, the eigenvec-
tors of L resemble those of A and for small o, they resemble those of K,
where the high and low frequency vectors are flipped over each other.
For a in between, it is a mixture but the precise nature of the mixing
is not known. We pick three different size of « to illustrate the changing
spectrum of L in Figures 9, 10 and 11.
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Fig. 9. Eigenvectors corresponding to (a) the smallest (b) the middle (c¢) the largest
eigenvalue of L = —A + K. When « is large, the eigenvectors of L resemble those of
—A.

The numerical results for this case is given in Table 2. As expected,
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Fig. 10. Eigenvectors corresponding to (a) the smallest (b) the middle (c) the largest
eigenvalue of L = —107*A + K. For intermediate value of o, the eigenvectors corre-
sponding to large eigenvalues resemble those of —A and the eigenvectors corresponding
to small eigenvalues are oscillatory and resemble those of K.
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Fig. 11. Eigenvectors corresponding to (a) the smallest (b) the middle (c) the largest
eigenvalue of L = —107%A + K. When a is small, the eigenvectors of I resemble those
of K.

MG with standard relaxation methods as smoother deteriorates when
« decreases because L approaches the convolution operator K which
we have shown in section 2 that standard smoothers do not work well.
Again, MG(PCG(Cos)) shows better performance over PCG(Cos) alone
for small values of a and h.

4 MG for TV deblurring

In this section, we shall discuss our preliminary experience in solving the
TV deblurring problem [7] by MG. The governing differential-convolution
equation is slightly different from (1) and is given here:

aR(u)(z) + K'K(u) = K™z,

where R(u) = —V - (1/|Vu|)Vu, Ku = [0 k(z — y)u(y)dz, K* is the
adjoint operator of K and z is the observed blurred and noisy image.



a |k 1/64]1/128[1/256]1/512
MG(R) 18| 19 | 20 | 21

10" 2[MG(PCG(Cos))| 3 3 3 3
PCG(Cos) 6 6 6 6
MG (R) 17 18 [ 19 | 20
10" 3[MG(PCG(Cos))| 3 3 3 3
PCG(Cos) 7 7 7 7
MG(R) 32 | 32 | 32 | 32
107*[MG(PCG(Cos))| 4 | 4 3 3
PCG(Cos) 8 8 8 8
MG(R) * * * *
1073[MG(PCG(Cos))| 4 4 3 3
PCG(Cos) 9 9 9 9

Table 2. Convergence of different MG and PCG with varying a and mesh size h.
L = —aA + K. The results show that PCG(Cos) is an effective smoother.

Basically, the convolution operator is replaced by a product of itself with
its adjoint. The corresponding linear system is:

(aA+KTK)u=f, (3)

which is similar to (2) with K replaced by K7 K. The additional chal-
lenges of solving (3) are two fold. First, the matrix A now comes from
an elliptic operator with highly varying coefficient (which is 1/|Vul). It
is not known if MG can handle this case efficiently. Second, the product
KTK is no longer Toeplitz which complicates the implementation issue.
For instance, while it is trivial to construct the Jacobi preconditioner for
K, it is not so for KT K at first glance, although it turns out that it can
also be done in O(n) operations. Moreover, the conditioning of KT K is
worse than K alone.

It turns out MG even with PCG as smoother does not work well in this
case. A natural way to improve its performance is to use it as a precon-
ditioner for conjugate gradient. However, this is not feasible as MG with
PCG as smoother gives rise to a nonstationary preconditioner. One solu-
tion to this problem is based on the following observation. The success of
PCG as smoother is that CG takes advantage of the clustered eigenval-
ues of the cosine-transform preconditioned system. We notice that it is
probably advantageous but not necessary to apply CG (which gives rise
to a nonstationary preconditioner) to the preconditioned system. An al-
ternative is to use standard relaxation methods on the cosine-transform
preconditioned system.

We have tried out several possibilities and the results are shown in Tables
3, 4 and 5 for a TV deblurring example. The original and the blurred
noisy 1D image together with the recovered image are shown in Figure
12. The signal-to-noise ratio SNR=13. Here we have used the Gaussian
blur again. For each grid size h, we use the optimal aop: for L which
is chosen so that the recovered image has the specified SNR. We test
three cases: @ = 10 * Qopt, @ = qopt and a = 0.1 % qope, corresponding



Fig. 12. (a) Original image (b) Blurred and noisy image (c¢) Recovered image. Gaussian
blur is used and SNR=13.

to Tables 3-5 respectively. In each table, the second to fourth column
show the convergence in the first fixed point iteration and the fifth to
seventh ones show the convergence at the 11th fixed point iteration.
(For our examples, the fixed point iteration has already converged at the
11th iteration.) We show these two sets of results because the coefficient
1/|Vu| is quite different for the two cases; see Figure 12. In the first fixed
point iteration, the coefficient is very oscillatory whereas at the eleventh
iteration, it is almost piecewise constant. With the same notation as
before, the bracket right after PCG specifies the preconditioner used for
CG and the bracket right after MG specifies the smoother. Here GS+Cos
denotes the Gauss-Seidel (GS) method applied to the cosine-transform
preconditioned system. Similarly for J+Cos where J denotes the Jacobi

method.
1st fixed pt. iter.||11th fixed pt. iter.
10 % Qopt 1/64]1/128]1/256(|1/64]1/128] 1/256
PCG(Cos) 42 | 85 | 108 || 13 | 49 75
PCG(MG(GS)) 20 | 29 35 12 | 17 21
PCG(MG(GS+Cos))| 14 | 28 | 37 || 4 | 11 | 12
PCG(MG(J+Cos)) 17 | 51 79 13 | 17 22

Table 3. Convergence of PCG with varying h. a = 10 * aops.

We see that PCG(MG(GS)) and PCG(MG(GS+Cos)) are the best. They
are not sensitive to @ and deterioration with smaller h is slow. Be-
sides, PCG(MG(GS+Cos)) is better than PCG(MG(GS)) for smaller
a which shows that cosine transform is effective in dealing with K. How-
ever, we have not come up with an efficient implementation for these
two methods. For PCG(MG(GS)), Vogel [11] has also made this ob-
servation independently. PCG(MG(J+Cos)) shows a degradation over
PCG(MG(GS+Cos)), similar to that of the ordinary GS over Jacobi. We
should also remark that PCG(Cos) is quite effective among the methods



1st fixed pt. iter. ||[11th fixed pt. iter.
Copt 1/64]1/128]1/256([1/64]1/128] 1/256
PCG(Cos) 38 | 81 98 42 | 92 106
PCG(MG(GS)) 17 | 28 37 16 | 21 24
PCG(MG(GS+Cos))| 14 | 26 | 34 || 13 | 15 | 14
PCG(MG(J+Cos)) 17 | 45 73 20 | 28 28

Table 4. Convergence of PCG with varying h. & = aop:.

1st fixed pt. iter. ||[11th fixed pt. iter.

0.1 % ctops 1/64[1/128[1/256][1/64[1/128] 1/256
PCG(Cos) 35| 75 | 93 || 55 | 90 | 128
PCG(MG(GS)) 19| 35 | 54 || 15 | 21 | 25
PCG(MG(GS+Cos))| 13 | 24 | 33 |[ 15 | 19 | 17
PCG(MG(J+Cos)) | 16 | 43 | 67 | 22| 35 | 36

Table 5. Convergence of PCG with varying h. a = 0.1 % aop:.

we have tried.

5 Computation complexity

Here we estimate the complexity of one iteration of some of the methods
that we have described in Sections 2 and 3.

PCG(Cos): This method has been estimated in [2]. The construction
of the preconditioner is O(n) and the cost of the preconditioning is
O(nlog, n).

MG (R): On each level, the cost of a Richardson smoothing is essentially
the cost of matrix-vector multiply. For the sparse matrix A, it can be
done in O(n,;) operations and for the Toeplitz matrix, it can be done in
O(ni log, mi), where n; is the size of the matrix at level I. Here we assume
that K is Toeplitz at all levels. In fact, this is proved to be true in [3] if
linear interpolation is used. The construction of the coarse grid matrices
can also be done in O(n). Thus the overall complexity of an iteration of
MG(R) is O(nlog, n).

MG (PCG(Cos)): The method is almost the same as MG(R) but with
different smoother. The cost of applying the PCG(Cos) is O(nlog, n)
and hence the overall complexity is O(nlog, n).

We remark that we have not come up with an efficient implementation

of the methods in the TV case and so we do not discuss the complexity
issue of those methods here.



6 Conclusions

We have shown in section 2 that standard smoothers do not work for
matrices of the form al + K arising from convolution operators. We
have proposed to use PCG as smoother and demonstrated numerically
that it is effective to reduce oscillatory errors. We have also tested the
matrices of the form —aA + K and the PCG smoother works as well.
For the TV image deblurring, the situation is complicated by the highly
varying coefficient and the product of convolution operators. We have
proposed several multigrid preconditioners and the numerical results are
satisfactory. However the implementation issue is still left open. Further
investigation is needed to devise a practical and efficient multigrid pre-
conditioner in this case.

7 Acknowledgment

Research of R. Chan has been partially supported by HKRGC Research
Grant CUHK 178/93E. Research of Tony F. Chan has been partially
supported by the ONR under Contract N00014-96-1-0277 and the NSF
under contract DMS-9626755. Research of W. L. Wan has been partially
supported by the grants listed under the second author and the Alfred
P. Sloan Foundation as a Doctoral Dissertation Fellow.

References

1. R. Chan and T. Chan. Circulant preconditioners for elliptic prob-
lems. Numer. Linear Algebra Appl., 1:77-101, 1992.

2. R. Chan, T. Chan, and C. Wong. Cosine transform based precondi-
tioners for total variation minimization problems in image process-
ing. Technical Report 95-23, Dept. of Mathematics, UCLA, 1995.

3. R. Chan, Q. Chang, and H. Sun. Multigrid method for ill-condit-
ioned symmetric Toeplitz systems. SIAM J. Sci. Comp., to appear.

4. R. Chan, K. Ng, and C. Wong. Sine transform based preconditioners
for symmetric Toeplitz systems. Linear Algebra Appls., 232:237-260,
1996.

5. R. Chan and M. Ng. Conjugate gradient methods for Toeplitz sys-
tems. SIAM Review, 38:427-482, 1996.

6. T. Chan. An optimal circulant preconditioner for Toeplitz systems.
SIAM J. Sci. Stat. Comput., 9:766 771, 1988.

7. T. Chan and P. Mulet. Iterative methods for total variation image
restoration. Technical Report 96-38, Dept. of Mathematics, UCLA,
1996.

8. M. Omen. Fast multigrid techniques in total variation-based image
reconstruction. In Proceedings of the 1995 Copper Mountain Con-
ference on Multigrid Methods, 1995.

9. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Kent
Publishing Co., 1995.



All in-text references

10

11.
12.

13.

. G. Strang. A proposal for Toeplitz matrix calculations. Stud. Appl.
Math., 74:171-176, 1986.

C. R. Vogel. Private communication. March 97.

C. R. Vogel. A multigrid method for total variation-based image de-
noising. In K. Bowers and J. Lund, editors, Computation and Con-
trol IV. Birkhauser, 1995.

C. R. Vogel and M. Oman. Fast, robust total variation-based re-
construction of noisy, blurred images. 1996. Submitted to IEEE
Transactions on Image Processing.

This article was processed using the ITEX macro package with LLNCS
style

are linked to publications on ResearchGate, letting you access and read them immediately.



