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Abstract

In this paper� we consider solutions of Toeplitz systems Anu � b where the Toeplitz matrices
An are generated by nonnegative functions with zeros� Since the matrices An are ill�conditioned�
the convergence factor of classical iterative methods� such as the damped Jacobi method� will
approach � as the size n of the matrices becomes large� Here we propose to solve the systems by
the multigrid method� The cost per iteration for the method is of O�n log n� operations� For a
class of Toeplitz matrices which includes weakly diagonally dominant Toeplitz matrices� we show
that the convergence factor of the two�grid method is uniformly bounded below � independent
of n and the full multigrid method has convergence factor depends only on the number of levels�
Numerical results are given to illustrate the rate of convergence�

Key Words� Multigrid Method� Toeplitz Matrices�

� Introduction

In this paper we discuss the solutions of ill�conditioned symmetric Toeplitz systems Anu � b by the
multigrid method� The n�by�n matrices An are Toeplitz matrices with generating functions f that
are nonnegative even functions� More precisely� the matrices An are constant along their diagonals
with their diagonal entries given by the Fourier coe�cients of f �

�An	j�k �



��

Z �

��
f��
e�i�j�k��d�� � � j� k � n�

Since f are even functions� we have �An	j�k � �An	k�j and An are symmetric�
In �
�� pp������	� it is shown that the eigenvalues �j�An
 of An lie in the range of f��
� i�e�

min
��������

f��
 � �j�An
 � max
��������

f��
� 
 � j � n� �



Moreover� we also have

lim
n��

�max�An
 � max
��������

f��
 and lim
n��

�min�An
 � min
��������

f��
�
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Consequently� if f��
 is nonnegative and vanishes at some points �� � ���� �	� then the condition
number ��An
 of An is unbounded as n tends to in�nity� i�e� An is ill�conditioned� In fact� if the
zeros of f are of order 	� then ��An
 grows like O�n�
� see for instance ��	�

Superfast direct methods for Toeplitz matrices have been developed around 
���� They can
solve n�by�n Toeplitz systems in O�n log� n
 operations� see for instance �
	� However� their sta�
bility properties for ill�conditioned Toeplitz matrices are still unclear� Iterative methods based on
the preconditioned conjugate gradient method were proposed in 
���� see �

� 
�	� With circulant
matrices as preconditioners� the methods require O�n log n
 operations per iteration� For Toeplitz
systems generated by positive functions� these methods have shown to converge superlinearly� How�
ever� circulant preconditioners in general cannot handle Toeplitz matrices generated by functions
with zeros� see the numerical results in x�� The band�Toeplitz preconditioners proposed in ��� �	
can handle functions with zeros� but are restricted to the cases where the order of the zeros are
even numbers� Thus they are not applicable for functions like f��
 � j�j� We remark that the cost
per iteration of the preconditioned conjugate gradient method with band�Toeplitz preconditioners
is also of the order O�n logn
 operations�

Classical iterative methods such as the Jacobi or Gauss�Seidel methods are also not applicable
when the generating functions have zeros� Since limn�� ��An
 � �� the convergence factor is
expected to approach 
 for large n� In ��� �	� Fiorentino and Serra proposed to use multigrid method
coupled with Richardson method as smoother for solving Toeplitz systems� Their numerical results
show that the multigrid method gives very good convergence rate for Toeplitz systems generated by
nonnegative functions� The cost per iteration of the multigrid method is of O�n log n
 operations
which is of the same order as the preconditioned conjugate gradient methods with either circulant
preconditioners or band�Toeplitz preconditioners�

However� in ��� �	� the convergence of the two�grid method �TGM
 on �rst level is only proved for
the so�called band 
 matrices� These are band matrices that can be diagonalized by sine transform
matrices� A typical example is the 
�dimensional discrete Laplacian matrix diag��
� ���
	� In
general� 
 matrices are not Toeplitz matrices and vice versa� The proof of convergence of the TGM
for Toeplitz matrices was not given there�

From the computational point of view� the matrix on the coarser grid in TGM is still too
expensive to invert� One therefore usually does not use TGM alone but instead applies the idea of
TGM recursively on the coarser grid to get down to the coarsest grid� The resulting method is the
full multigrid method �MGM
� We remark that the convergence of MGM for Toeplitz matrices or
for 
 matrices was not discussed in ��� �	�

In this paper� we consider the use of MGM for solving ill�conditioned Toeplitz systems� Our
interpolation operator is constructed according to the position of the �rst non�zero entry on the
�rst row of the given Toeplitz matrix and is di�erent from the one proposed by Fiorentino and
Serra ��� �	� We show that for a class of ill�conditioned Toeplitz matrices which includes weakly
diagonally dominant Toeplitz matrices� the convergence factor of TGM with our interpolation
operator is uniformly bounded below 
 independent of n� We also prove that for this class of
Toeplitz matrices� the convergence factor of MGM with V �cycles will be level�dependent� One
standard way of removing the level�dependence is to use �better� cycles such as the F � or the
W �cycles� see �
�	� We remark however that our numerical results show that MGM with V �cycles
already gives level�independent convergence� Since the cost per iteration is of O�n log n
 operations�
the total cost of solving the system is therefore of O�n logn
 operations�

We note that the class of functions that we can handle includes functions with zeros of order � or

�



less and also functions such as f��
 � j�j which cannot be handled by band�Toeplitz preconditioners
proposed in ��� �	� We will also give examples of functions that can be handled by multigrid method
with our interpolation operator but not with the interpolation operator proposed in ��	�

The paper is organized as follows� In x�� we introduce the two�grid method and the full multigrid
method� In x�� we analyze the convergence rate of two�grid method� We �rst establish in x��
 the
convergence of two�grid method on the �rst level for the class of weakly diagonally dominant
Toeplitz matrices� The interpolation operator for these matrices can easily be identi�ed� Then in
x���� we consider a larger class of Toeplitz matrices which are not necessarily diagonally dominant�
The convergence of full multigrid method is studied in x� by establishing the convergence of the two�
grid method on the coarser levels� In x�� we give the computational cost of our method� Numerical
results are given in x� to illustrate the e�ectiveness of our method� Finally� concluding remarks are
given in x��

� Multigrid Methods

Given a Toeplitz system Anu � b with u � IRn� we de�ne a sequence of sub�systems on di�erent
levels�

Amum � bm� um � IR
nm � 
 � m � q�

Here q is the total number of levels with m � 
 being the �nest level� Thus for m � 
� A� � An

and n� � n� For m � 
� nm are just the size of the matrix Am� We denote the interpolation and
restriction operators by Imm�� � IRnm�� �� IRnm and Im��

m � IRnm �� IRnm respectively� We will
choose

Im��
m � �Imm��


T �

The coarse grid operators are de�ned by the Galerkin algorithm� i�e�

Am�� � Im��
m AmImm��� 
 � m � q� ��


Thus� if Am is symmetric and positive de�nite� so is Am��� The smoothing operator is denoted
by Gm � IRnm �� IRnm � Typical smoothing operators are the Jacobi� Gauss�Seidel and Richardson
iterations� see for instance ��	� Once the above components are �xed� a multigrid cycling procedure
can be set up� Here we concentrate on the V �cycle scheme which is given as follows� see ��� p���	�

procedure MGM���� ��
�u
m� bm
�

if m � q�
then uq �� �Aq
��bq�

endif�

begin do i �� 
 to ��
um �� Gmum � �Inm �Gm
�Am
��bm�

endo�

dm�� �� Im��
m �Amum � bm
�

em��
� �� ��

em�� �� MGM���� ��
�e
m��
� � dm��
�

um �� um � Imm��e
m���

do i �� 
 to ��

�



um �� Gmum � �Inm �Gm
�Am
��bm�
endo�

MGM���� ��
 �� um�
end�

Here Inm is the nm�by�nm identity matrix� If we set q � �� the resulting multigrid method is the
two�grid method �TGM
�

� Convergence of TGM for Toeplitz Matrices

In this section� we discuss the convergence of TGM for Toeplitz matrices� We �rst give an estimate
of the convergence factor for Toeplitz matrices that are weakly diagonally dominant� Then we
extend the results to a larger class of Toeplitz matrices�

Let us begin by introducing the following notations� We say A � B �respectively A � B
 if
A�B is a positive �respectively semi�positive
 de�nite matrix� In particular� A � � means that A
is positive de�nite� The spectral radius of A is denoted by 
�A
� For A � �� we de�ne the following
inner products which are useful in the convergence analysis of multigrid methods� see �
�� p������	�

hu� vi� � hdiag�A
u� vi� hu� vi� � hAu� vi� hu� vi� � hdiag�A
��Au�Avi� ��


Here h�� �i is the Euclidean inner product� Their respective norms are denoted by k � ki� i � �� 
� ��
Throughout this section� we denote the �ne and coarse grid levels of the TGM as the h� and

H�levels respectively� For smoothing operator� we consider the damped�Jacobi iteration� which is
given by

Gh � Inh � � � �diag�Ah

��Ah ��


see ��� p�
�	� The following theorem shows that kGhk� � 
 if � is properly chosen�

Theorem � ����� p�	
�� Suppose A � �� Let � be such that




�
� 
�diag�A
��A
� ��


Then

G � I � � � diag�A
��A

satis�es

kGek�� � kek�� � �kek��� 	e � IRn� ��


Inequality ��
 is called the smoothing condition� We see from the theorem that the damped�Jacobi
method ��
 with � � � satis�es kGk� � 
�

For a Toeplitz matrix A generated by an even function f � we see from �

 that 
�A
 �
max�������� f��
� Moreover� diag�A
 is just a constant multiple of the identity matrix� Thus it
is easy to �nd an � that satis�es ��
� In applications where f is not known a priori� we can es�
timate a bound of 
�A
 by the Frobenius norm or matrix ��norm of A� The estimate can be
computed in O�n
 operations�

For TGM� the correction operator is given by

T h � Inh � IhH�AH
��IHh A
h

�



with the convergence factor given by k�Gh
��T h�Gh
��k�� see �
�� p���	� Here �� and �� are the
numbers of pre� and post�smoothing steps in the MGM algorithm in x�� For simplicity� we will
consider only �� � 
 and �� � �� The other cases can be established similarly as we have kGhk� � 
�
Thus the convergence factor of our TGM is given by kGhT hk�� The following theorem gives a general
estimate on this quantity�

Theorem � ����� p�	
�� Let A � Ah � � and let � � � be chosen such that Gh satis�es the

smoothing condition ���� i�e�

kGhehk�� � kehk�� � �kehk��� 	eh � IR
nh �

Suppose that the interpolation operator IhH has full rank and that there exists a scalar � � � such

that

min
eH�IRnH

keh � IhHe
Hk�� � �kehk��� 	eh � IR

nh � ��


Then � � � and the convergence factor of the h�H two�level TGM satis�es

kGhT hk� �

r

�

�

�
� ��


Inequality ��
 is called the correcting condition� From Theorems 
 and �� we see that if � is
chosen according to ��
 and that the damped�Jacobi method is used as the smoother� then we only
have to establish ��
 in order to get the convergence results� We start with the following class of
matrices�

��� Weakly Diagonally Dominant Toeplitz Matrices

In the following� we write n�by�n Toeplitz matrix A generated by f as A � Tn�f 	 and its j�th
diagonal as aj� i�e� �A	��j � aj is the j�th Fourier coe�cient of f � Let ID be the class of Toeplitz
matrices generated by functions f that are even� nonnegative and satisfy

a� � �

�X
j	�

jaj j� ��


Given a matrix A � ID� let l be the �rst non�zero index such that al 
� �� If al � �� we de�ne the
nh�by�nH interpolation operator as

IhH �

�
BBBBBBBBB�

�
�I

l

I l
�
�I

l �
�I

l

I l
� � �

�
�I

l � � �
� � �

�
CCCCCCCCCA
� �
�


�



Here I l is the l�by�l identity matrix� If al � �� we de�ne the interpolation operator as

IhH �

�
BBBBBBBBB�

��
�I

l

I l

��
�I

l ��
�I

l

I l
� � �

��
�I

l � � �
� � �

�
CCCCCCCCCA
� �




Theorem � Let A � ID and l be the �rst non�zero index where al 
� �� Let the interpolation

operator be chosen as in �	
� or �		� according to the sign of al� Then there exists a scalar � � �
independent of n such that ��� holds� In particular� the convergence factor of TGM is bounded

uniformly below 	 independent of n�

Proof� We will prove the theorem for the case al � �� The proof for the case al � � is similar
and is sketched at the end of this proof� We �rst assume that nh � ��k � 

l for some k� Then
according to �
�
� we have nH � kl� For any eh � �e�� e�� � � � � enh


t � IRnh � we de�ne

eH � ��e�� �e�� � � � � �enH 

t � IRnH �

where
�eil�j � e��i���l�j � � � i � k � 
� 
 � j � l�

For ease of indexing� we set ei � � for i � � and i � nh�
We note that with IhH as de�ned in �
�
 and the norm k � k� in ��
� we have

keh � IhHe
Hk�� � a�

k��X
i	�

lX
j	�

fe�il�j �



�
e��i���l�j �




�
e��i���l�jg

��

Thus ��
 is proved if we can bound the right hand side above by �heh� Aehi for some � independent
of eh� To do so� we observe that for the right hand side above� we have

a�

k��X
i	�

lX
j	�

fe�il�j �



�
e��i���l�j �




�
e��i���l�jg

�

� a�

k��X
i	�

lX
j	�

fe��il�j �



�
e���i���l�j �




�
e���i���l�j � e�il�je��i���l�j

�e�il�je��i���l�j �



�
e��i���l�je��i���l�jg

� a�

k��X
i	�

lX
j	�

fe��il�j �



�
e���i���l�j �




�
e���i���l�j � e�il�je��i���l�j

�e�il�je��i���l�j �



�
e���i���l�j �




�
e���i���l�jg

�



� a�

k��X
i	�

lX
j	�

fe��il�j �



�
e���i���l�j �




�
e���i���l�j � e�il�je��i���l�j � e�il�je��i���l�jg

� a�

nhX
m	�

�e�m � emem�l
 � a�he
h�Tnh �
� cos l�	ehi

where Tnh �
� cos l�	 is the nh�by�nh Toeplitz matrix generated by 
� cos l�� Thus

min
eH�IRnH

keh � IhHe
Hk�� � a�he

h� Tnh �
� cos l�	ehi� 	eh � IRnh � �
�


Hence to establish ��
� we only have to prove that

heh�Tnh �
� cos l�	ehi � �heh� Aehi� 	eh � IR
nh �
�


for some � independent of eh� To this end� we note that the nh�by�nh matrix A is generated by

fnh��
 � a� � �

nh��X
j	�

aj cos j��

But by ��
�

fnh��
 � ��al�
� cos l�
 � �a� � �al
 � �

nh��X
j��

j �	l

aj cos j� � ��al�
� cos l�
�

In particular� by �



A� �alTnh �
� cos l�	 � Tnh �fnh��
	 � �alTnh�
� cos l�	 � Tnh�fnh��
 � �al�
� cos l�
	 � �� �
�


Thus� by �
�
� we then have

�
a�
�al

kehk�� � �
a�
�al

heh� Aehi � a�he
h�Tnh �
� cos l�	ehi � min

eH�IRnH
keh � IhHe

Hk��� �
�


Hence ��
 holds with

� �
a�
�jalj

� �� �
�


Next we consider the case where nh is not of the form ��k�

l� In this case� we let k � bnh���l
c�
n
h � ��k �

l � nh and n 
H � kl � nH � We then embed the vectors eh and eH into longer vectors

e

h and e


H of size n
h and n 
H by zeros� Then since

keh � IhHe
Hk�� � ke


h � I

h

H
e

Hk��

and
he


h� Tn�h �
� cos l�	e

hi � heh� Tnh �
� cos l�	ehi

we see that the conclusion still holds�
We remark that the case where al � � can be proved similarly� We only have to replace the

function �
� cos l�
 above by �
� cos l�
� Since in this case� fnh��
 � �al�
� cos l�
� we then have

A� �alTnh �
 � cos l�	 � Tnh�fnh��
� �al�
 � cos l�
	 � �� �
�


From this� we get �
�
 and hence ��
 with � de�ned as in �
�
�

�



��� More General Toeplitz Matrices

The condition on ID class matrices is too strong� For example� it excludes the matrix A � Tn��
�	�

However� from �
�
 and �
�
� we see that ��
 can be proved if we can �nd a positive number �
independent of n and an integer l such that

�A � a�Tn�
 � cos l�	 or �A � a�Tn�
� cos l�	� �
�


Since by �
�
 and �
�
� we see that �
�
 holds for any matrices B in ID� we immediately have the
following corollary�

Corollary � Let A be a symmetric positive de�nite Toeplitz matrix� If there exists a matrix B � ID

such that A � B� Then ��� holds provided that the interpolation operator for A is chosen to be the

same as that for B�

More generally� we see by �

 that if the generating function f of A satis�es

min
��������

f��



� cos l�
� �� �
�


for some l� then �
�
 holds� Thus we have the following theorem�

Theorem 
 Let A be generated by an even function f that satis�es �	�� for some l� Let the

interpolation operator be chosen as in �	
� or �		� according to the sign of al� Then ��� holds� In

particular� the convergence factor of TGM is uniformly bounded below 	 independent of the matrix

size�

It is easy to prove that �
�
 holds for any even� nonnegative functions with zeros that are of
order � or less� As an example� consider A � Tn��

�	 �� ID� Since

�� � � sin�
�
�

�

�
� ��
 � cos �
 ���


and Tn�
� cos �	 � ID� it follows from Theorem � that if the interpolation operator for A is chosen
to be the same as that for Tn�
 � cos �	� the convergence factor of the resulting TGM will be
bounded uniformly below 
� We note that Tn�
�cos �	 is just the 
�dimensional discrete Laplacian�
diag��
� �� 
	� Our interpolation operator here is the same as the usual linear interpolation operator
used for such matrices� see ��� p���	� However� we remark that the matrix A � Tn��

�	 is a dense
matrix�

As another example� consider the dense matrix Tn�j�j	� Since �j�j � �� on ���� �	� we have by
���


Tn�j�j	 �



�
Tn��

�	 �
�

�
Tn�
� cos �	�

Hence Tn�j�j	 can also be handled by TGM with the same linear interpolation operator used for
Tn�
� cos �	�

�



� Convergence Results for Full Multigrid Method

In TGM� the matrix AH on the coarse grid is inverted exactly� From the computational point of
view� it will be too expensive� Usually� AH is not solved exactly� but is approximated using the
TGM idea recursively on each coarser grid until we get to the coarsest grid� There the operator
is inverted exactly� The resulting algorithm is the full multigrid method �MGM
� In x�� we have
proved the convergence of TGM for the �rst level� To establish convergence of MGM� we need to
prove the convergence of TGM on coarser levels�

Recall that on the coarser grid� the operator AH is de�ned by the Galerkin algorithm ��
� i�e�
AH � IHh A

hIhH � We note that if nh � ��k � 

l for some k� then AH will be a block�Toeplitz�
Toeplitz�block matrix and the blocks are l�by�l Toeplitz matrices� In particular� if l � 
� then AH

is still a Toeplitz matrix� However� if nh is not of the form ��k � 

l� then AH will be a sum of a
block�Toeplitz�Toeplitz�block matrix and a low rank matrix �with rank less than or equal to �l
�

We will only consider the case where nh � ��j�

l for some j� For then on each level 
 � m � q�
nm � ��km � 

l for some integer km� Hence the main diagonals of the coarse�grid operators Am�

 � m � q� will still be constant� Recall that from the proof of Theorem � that �
�
 implies ��
�
We now prove that if �
�
 holds on a �ner level� it holds on the next coarser level when the same
interpolation operator is used�

Theorem � Let ah� and aH� be the main diagonal entries of Ah and AH respectively� Let the
interpolation operator IhH be de�ned as in �	
� or �		�� Suppose that

Ah �
ah�
�h

Tnh�
� cos l�	� ��



for some �h � � independent of n� Then

AH �
aH�
�H

TnH �
� cos l�	 ���


with

�H � �
aH� �

h

ah�
� ���


Proof� We �rst note that if we de�ne the �nH � l
�by�nH matrix

K �



�

�
B�

I l I l

I l I l

� � �
� � �

�
CA � ���


then there exists a permutation matrix P such that

IhH � P

�
InH

�K

�
� ���


�cf �
�
 and �



� Moreover� for the same permutation matrix P � we have

Tnh �
� cos l�	 � P

�
InH �Kt

�K InH�l

�
P� ���


�



By ��
 and ��

� we have

AH � IHh A
hIhH �

ah�
�h

IHh Tnh �
� cos l�	IhH � ���


But by ���
 and ���
� we have

ah�
�h

IHh Tnh �
� cos l�	IhH �
ah�
�h

�InH ��Kt


�
InH �Kt

�K InH�l

��
InH

�K

�
�

ah�
�h

�InH �KtK
 ���


By the de�nition of K in ���
� we have

ah�
�h

�InH �KtK
 �
ah�
��h

TnH �
� cos l�	�

Combining this with ���
� we get

ah�
�h

IHh Tnh �
� cos l�	IhH �
ah�
��h

TnH �
� cos l�	� ���


Hence ���
 implies ���
 with ���
�

Recall by ��
 that we can choose �h such that

�hAh � ah�I
nh �

Notice that KtK � Inh and therefore

�hAH � �hIHh A
hIhH � ah�I

H
h I

h
H � ah��I

nH �KtK
 � �ah�I
nH �

Thus on the coarser level� we can choose �H as

�H �
�haH�
�ah�

� ���


According to ��
� ���
 and ���
� we see that

kGHTHk� �

s

�

�H

�H
�

s

�

�haH� ���a
h
� 


�aH� �
h�ah�

�

s

�

�h

��h
�

Recursively� we can extend this result from the next coarser�level to the q�th level and hence obtain
the level�dependent convergence of the MGM�

kGqT qk� �

r

�

�q

�q
�

s

�

�h

�q���h
�

We remark that this level�dependent result is the same as that of most MGM� see for instance
�
�� �	� One standard way to overcome level�dependent convergence is to use �better� cycles such
as the F � or W �cycles� see �
�	� We note however that our numerical results in x� shows that MGM
with V �cycles already gives level�independent convergence�

We remark that we can prove the level�independent convergence of MGM in a special case�


�



Theorem � Let f��
 be such that

c��
� cos l�
 � f��
 � c��
� cos l�
� ��



for some integer l and positive constants c� and c�� Then for any 
 � m � q�

kGmTmk� �

r

�

c�
�c�

�

Proof� From ��

� we have

c�Tn�
� cos l�	 � A � c�Tn�
� cos l�	�

Recalling the Galerkin algorithm ��
 and using ���
 recursively� we then have

c�
�m��

Tnm �
� cos l�	 � Am �
c�

�m��
Tnm �
� cos l�	� ���


By the right�hand inequality and �
�
� we see that

�m �
�m��

c�am�
�

Since � � �
� cos l�
 for all �� we have

c�
�m��

Inm �
c�

�m��
Tnm�
� cos l�


and hence by the left hand side of ���


c�
�m��

Inm � Am�

Therefore by the de�nition of � in ��
� we see that

�m �
�m��

c�a
m
�

�

According to ��
� we then conclude that

kGmTmk� �

r

�

�m

�m
�

r

�

c�
�c�

�

As an example� we see that MGM can be applied to Tn��
�	 with the usual linear interpolation

operator and the resulting method will be level�independent� To illustrate how the method works�
we now display the sequence of projected matrices in each coarser level for A�� � T����

�	� Since
a� � �� � � for this example� we use the interpolation operator in �
�
 with l � 
� Then
Am � Um � Lm� where Um are Toeplitz matrices and Lm are rank 
 matrices of the form

Lm �

�
� �cm
�

cm �m

�
�







with cm being row vectors and �m being scalars� Let um be the �rst row of the Toeplitz matrix
Um� Then the sequence of vectors in � di�erent levels are given approximately by

u� � ���������
�� ����������� ����������� � � � ����
��
�

c� � ��� � � � � �
�

�� � ��

u� � �
�
�������� ����� ����
� ������� �������� ����������������
�

c� � ���������
����������������������
��������
�������

�

�� � �������

u� � ���������������� �����
� �����

�

c� � ��������������
��������
�

�� � 
�
����

� Computational Cost

Let us �rst consider the case where n � ��j � 

l for some j� Then on each level� nh � ��k�

l for
some k� From the MGM algorithm in x�� we see that if we are using the damped�Jacobi method
��
� the pre�smoothing and post�smoothing steps become

um �� �Inm � � � diag�Am
��Am
um � � � diag�Am
��bm�

Thus the main cost on each level depends on the matrix�vector multiplication Amy for some vector
y� If we are using one pre�smoothing step and one post�smoothing step� then we require two such
matrix vector multiplications � one from the post�smoothing and one from the computation of the
residual� We do not need the multiplication in the pre�smoothing step since the initial guess um is
the zero vector�

On the �nest level� A is a Toeplitz matrix� Hence Ay can be computed in two �n�length FFTs�
see for instance �
�	� If l � 
� then on each coarser level� Am will still be a Toeplitz matrix� Hence
Amy can be computed in two �nm�length FFTs� When l � 
� then on the coarser levels� Am will
be a block�Toeplitz�Toeplitz�block matrix with l�by�l Toeplitz sub�blocks� Therefore Amy can also
be computed in roughly the same amount of time by using ��dimensional FFTs� Thus the total
cost per MGM iteration is about eight �n�length FFTs�

In comparison� the circulant�preconditioned conjugate gradient methods require two �n�length
FFTs and two n�length FFTs per iteration for the multiplication of Ay and C��y respectively�
Here C is the circulant preconditioner� see �
�	� The cost can be further reduced to only two �n�
length FFTs if we �rst diagonalize the circulant preconditioner� The band�Toeplitz preconditioned
conjugate gradient methods require two �n�length FFTs and one band�solver where the band�width
depends on the order of the zeros� see ��	� Thus the cost per iteration of using MGM is about � times
as that required by the circulant preconditioned conjugate gradient methods or the band�Toeplitz
preconditioned conjugate gradient methods�

Next we consider the case when n is not of the form ��j �

l� In that case� on the coarser level�
Am will no longer be a block�Toeplitz�Toeplitz�block matrix� Instead it will be a sum of such a
matrix and a low rank matrix �with rank less than �l
� Thus the cost of multiplying Amy will be
increased by O�ln
�


�



� Numerical Results

In this section� we apply the MGM algorithm in x� to ill�conditioned real symmetric Toeplitz
systems Anu � b� We choose as solution a random vector u such that � � ui � 
� The right hand
side vector b is obtained accordingly� As smoother� we use the damped�Jacobi method ��
 with
� chosen as a��max f��
 for pre�smoother and � � �a��max f��
 for post�smoother� We use one
pre�smoothing and one post�smoothing on each level� When the coarse grid size is less than �� we
solve the coarse grid system exactly�

The zero vector is used as the initial guess and the stopping criterion is krjk��kr�k� � 
��
�
where rj is the residual vector after j iterations� In the following tables� we give the number
of iterations required for convergence using our method� see column under M � For comparison�
we also give the number of iterations required by the preconditioned conjugate gradient method
with no preconditioner �I
� the Strang �S
 circulant preconditioner� the T� Chan �C
 circulant
preconditioner and also the band �B
 preconditioners� see ��� �� �	� The double asterisk �� signi�es
more than ��� iterations are needed�

For the �rst example� we consider functions with single zero at the point � � �� The functions
we tried are f��
 � �� � cos �� � cos �� and f��
 � ��� We note that Tn��� � cos �� � cos ��	 � ID

whereas Tn��
�	 �� ID� However� we have �� � ��� cos � and Tn���� cos �	 � ID� Therefore� according

to Corollary 
� we can use the interpolation operator �
�
 with l � 
 for Tn��
�	�

f��
 �� � cos � � � cos �� ��

n I S C B M I S C B M

�� �� �� 
� 
� � �� � 
� 
� 
�

�� 
�� �� 
� 
� � 
�� � 
� 
� 
�
��� �� �� �
 
� � �� � �� 
� 
�
�
� �� �� �� 
� � �� � �� 
� 
�

��� �� �� �� 
� � �� 
� �� 
� 
�
���� �� �� �� 
� � �� 
� �� 
� 
�

Table �� Iteration numbers for functions with single zero of even order�

Next we consider a family of functions with jumps and a single zero at the point � � ��

J���
 �

�
j�j� if j�j � ����

 if j�j � ����

where 
 � � � � is a parameter� Since the zero is not of even order� band�Toeplitz preconditioners
cannot be constructed� We note that matrices Tn�J���
	 are not in ID� However� since J���
 �
�
 � cos �
����
 for all � when 
 � � � �� we can still use the interpolation operator de�ned by

� cos � for the Tn�J���
	� We note that the Fourier coe�cients aj of J���
 are given by

aj �
�

�

�Z ���

�
�� cos j�d� �

Z �

���
cos j�d�

	
�

�

�

�



j���

jX
k	�

Z k�
�

�k����
�

�� cos �d��
sin j�

�

j

	
�

for j � 
� �� � � �� Since the integrand �� cos � is very smooth in the interval ��k � 

���� k���	� we
have used Simpson�s rule with 
��
 quadrature points to compute the integrals for each interval�
The following table of iteration numbers clearly show the advantage of using multigrid methods
over the circulant preconditioned conjugate gradient methods�


�



J���
 � � 
�� � � 
�� � � 
��

n I S C M I S C M I S C M

�� �� � 

 � �� 

 
� � �� 
� 
� �

�� �� 
� 
� � �� 
� 
� � �� 
� 
� �
��� 

� 

 
� � 
�� 
� 
� � 
�� �� 
� �
�
� 
�� 
� 
� � �� 
� 
� � �� �� �� �

��� �� 
� 
� � �� �� �� � �� �� �� �
���� �� 
� �
 � �� �� �� � �� �� �� �
���� �� �� �� � �� �
 �� � �� �� �� �
�
�� �� �� �� � �� �
 �� � �� 
�� �� �

Table �� Iteration numbers for functions with jump and a zero of fractional order�

Finally� we consider two functions with multiple zeros� They are f��
 � � � � cos �� � � cos ��
and f��
 � ����� � ��
� with Tn�� � � cos �� � � cos ��	 � ID and Tn��

���� � ��
�	 �� ID� But we
note that ����� � ��
 � 
� cos �� for all �� Thus both matrices can use the interpolation operator
in �
�
 with l � �� In particular� our interpolation operator will be di�erent from that proposed
in ��	� which in this case will use the interpolation operator in �
�
 with l � 
� Their resulting
MGM converges very slowly with convergence factor very close to 
 �about ���� for both functions
when n � ��
� For comparison� we list in Table �� the number of MGM iterations required by such
interpolation operator under column F �

f��
 ����� � ��
� �� � cos �� � � cos ��

n I S C B M F I S C B M F

�� �� � 
� 
� � �� �� �� 
� 

 � ��

�� 

� 
� �� 
� � �� �� �� 
� 
� � ��
��� �� 
� �� 
� � �� �� �� 
� 
� � ��
�
� �� 
� �� 
� � �� 
�� �� �� 
� � ��

��� �� 
� �� 
� � �� �� �� �� 
� � ��

Table �� Iteration numbers for functions with multiple zeros�

� Concluding Remarks

We have shown that MGM can be used to solve a class of ill�conditioned Toeplitz matrices� The
resulting convergence rate is linear� The interpolation operator depends on the location of the �rst
non�zero diagonals of the matrices and its sign�

Here we have only proved the convergence of multigrid method with damped�Jacobi as smooth�
ing operator� However� our numerical results show that multigrid method with some other smooth�
ing operators� such as the red�black Jacobi� block�Jacobi and Gauss�Seidel methods� will give better
convergence rate� As an example� for the function f��
 � ����� � ��
� the convergence factors of
MGM with the point� and block�Jacobi methods as smoothing operator are found to be about ���

and ���� respectively for �� � n � 
����
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