
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

A multiplicative iterative algorithm for
box-constrained penalized likelihood image

restoration
Raymond H. Chan and Jun Ma

Abstract—Image restoration is a computationally intensive
problem as a large number of pixel values have to be determined.
Since the pixel values of digital images can attain only a finite
number of values (e.g. 8-bit images can have only 256 gray levels),
one would like to recover an image within some dynamic range.
This leads to the imposition of box constraints on the pixel values.
The traditional gradient projection methods for constrained
optimization can be used to impose box constraints, but they
may suffer from either slow convergence or repeated searching
for active sets in each iteration. In this paper, we develop a
new box-constrained multiplicative iterative (BCMI) algorithm
for box-constrained image restoration. The BCMI algorithm just
requires pixel-wise updates in each iteration, and there is no
need to invert any matrices. We give the convergence proof of
this algorithm and apply it to TV image restoration problems
where the observed blurry images contain Poisson, Gaussian or
salt-and-pepper noises.
Keywords: Box constraints, image restoration, penalized likeli-
hood optimization, box-constrained multiplicative iterative algo-
rithm, global convergence.

I. INTRODUCTION

Statistical image restoration methods provide effective ap-
proaches to denoise and deblur images contaminated with
noise and blur as they can accommodate accurate noise models
and blurring schemes into the restoration. Commonly used
noise models include Gaussian noise, Poisson noise and salt-
and-pepper (or impulsive) noise [1], where the salt-and-pepper
noise can be modeled by the Laplace distribution (e.g. [2]).

Since the pixel values of digital images can attain only a
finite number of values (e.g. 8-bit images can have only 256
gray levels), one would like to restore an image within some
dynamic range, e.g. in [0, 255]. This leads to the imposition
of box constraints. We will see later in the numerical section
that the box-constrained restored images can have as high as
1.1dB improvement in PSNR (see (27) for definition) over
the restorations obtained by simply projecting non-constrained
restorations onto the dynamic range. This paper considers the
box-constrained penalized likelihood (PL) (or, equivalently,
maximum a posteriori (MAP)) image restoration methods. We
will develop an efficient multiplicative iterative (MI) algorithm
for box-constrained PL image restoration.

R. H. Chan is with the Department of Mathematics, The Chinese University
of Hong Kong, Shatin, N.T., Hong Kong. The research was supported in
part by HKRGC Grant CUHK400510 and DAG Grant 2060408. Email:
rchan@math.cuhk.edu.hk

J. Ma is with the Department of Statistics, Macquarie University, Australia.
Email: jun.ma@mq.edu.au

Importance of box-constraints is also demonstrated in [3]
where the improvement in PSNR can be as high as 2dB. Of
course, the gain depends on the image: the more pixels with
values that are close to 0 or 255, the more gain will be in
signal-to-noise ratio. In this paper, we will demonstrate that
our constrained image restoration method has fast convergence
when compared with some of the existing solvers.

Box constraints have been considered for image restoration
by many authors, such as [3], [4] and [5], and the references
therein. However, most of these methods have the following
two major weaknesses: (i) they mostly consider the Gaussian
noise (equivalently least-squares restoration), and (ii) they
are developed based on gradient projection algorithms, which
can be either slow converging or require identification of the
active sets in every iteration. Identifying the active set in
each iteration can be a significant computational burden for
image processing. In contrast, the method developed in this
paper completely avoids active sets and is remarkably easy to
implement.

Our method is formulated from the general principle of PL,
where the unknown true image is estimated by minimizing
the penalized negative log-likelihood function. The penalty
function (equivalent to the negative log prior density function
in the context of MAP) is used to restrict the restored image
such that it satisfies certain local smoothness conditions. The
box-constrained problem is solved by a multiplicative iterative
(MI) algorithm extended from the MI algorithm in [6] which
has been applied successfully to positively constrained tomo-
graphic reconstruction [7]. This new MI algorithm can handle
a general noise distribution such as Gaussian, Poisson and
Laplace, and any penalty function as long as its first derivative
is available, making it feasible for many well known penalty
functions in image processing. Note that, however, for some
edge preserving penalties, such as the TV [8] and Gaussian
Markov random field (GMRF) [9] penalties, smoothing of their
first derivatives is necessary as they are not differentiable at
some points; see Section IV for TV regularization examples.

The new MI algorithm requires just pixel-wise updates in
each iteration, making it extremely easy to implement. There
is no need to invert any matrices, and hence there is no
need to impose any boundary conditions on the observed im-
ages. Boundary conditions are necessitated when fast Fourier
transformations or discrete cosine transforms are involved in
inverting matrices, such as in [10], [11], [5]. We will prove
that this algorithm is globally convergent under certain regular
conditions. We will demonstrate through a simulation study

IEEE TRANSACTIONS ON IMAGE PROCESSING 2

that this method is efficient for TV regularized problems under
the Gaussian, Poisson and slat-and-pepper noise models, and is
capable of producing better reconstructions than some existing
TV regularized image restoration algorithms.

The rest of this paper is organized as follows. Section
II develops the MI algorithm for box-constrained PL image
processing. Section III provides the convergence property of
this MI algorithm. Results of a simulation study are reported
in Section V and conclusions are included in Section VI.

II. THE METHOD

To simplify discussions, all images will be lexicographically
ordered into vectors. Thus any p×q image will be represented
as a column vector in Rn where n = pq. The true image
x = (x1, · · · , xn)

⊤ and the blurred and noisy observed image
y = (y1, · · · , yn)⊤ are related via

E(y) = Ax, (1)

where A is the blurring matrix of dimension n × n, E is the
expectation operator and ⊤ is the matrix transpose operator.
Matrix A is, in fact, the discretized point spread function,
which represents the response of the image system to a point
source.

For any true digital image x, its pixel can attain only a
finite number of values. Hence, it is natural to require all pixel
values of the restored image to lie in a certain interval [0, b].
Such a constraint is called the box constraint. For statistical
image restoration using PL and the box constraint, our aim
is to recover x by minimizing the following constrained
optimization problem:

min
0≤x≤b

Φ(x) ≡ min
0≤x≤b

{
−

n∑
i=1

li(µi) + λJ (x)

}
. (2)

Here li(µi) denotes the log-likelihood function (as a function
of µi = E(yi)) corresponding to observation yi, λ ≥ 0 is the
smoothing parameter, J (x) is the penalty function, and the
inequality on x is to be interpreted componentwise. Note that
J (x) is usually specified in a way so that it can describe the
underlying spatial structure of image x. Parameter λ is used to
balance two possibly conflicting image quality measurements:
data mismatch measured by the negative log-likelihood and
spatial dependence measured by the penalty function. Note
that from (1), µi = Aix, where Ai is the ith row of matrix A.

Let Φ′(x) denote the derivative of Φ with respect to x, and
Φ′

i(x) the derivative of Φ with respect to xi. The Karush-
Kuhn-Tucker (KKT) condition defining the solution of (2) is: Φ′

i(x) = 0 if 0 < xi < b,
Φ′

i(x) > 0 if xi = 0, i = 1, . . . , n.
Φ′

i(x) < 0 if xi = b,
(3)

These conditions lead to solving the equations

xiΦ
′
i(x) = 0, i = 1, . . . , n, (4)

when considering the xi ≥ 0 constraint, and solving the
equations

(b− xi)Φ
′
i(x) = 0, i = 1, . . . , n, (5)

when considering the xi ≤ b constraint. We propose to solve
equations (4) and (5) iteratively by adjusting the multiplicative
iterative (MI) algorithm developed in [6]. In each iteration,
our strategy is to first update all the xi’s using (4), ensuring
that all xi ≥ 0. Then for those xi > b, they are re-
calculated using (5) so that all xi ≤ b. The MI algorithm has
been successfully implemented to positively constrained tomo-
graphic reconstructions [7] for Poisson noise and to positively
constrained total variation penalized image restorations [12]
for different noises. In this paper, we extend this algorithm
to image restoration problems with box constraints under
different noise models.

We first introduce some notations needed for the MI
algorithm. For a constant c, let [c]+ = max{0, c} and
[c]− = min{0, c}, so that c = [c]+ + [c]−. Similarly for a
function a(x), let a(x)+ and a(x)− be its positive and negative
components respectively, such that a(x) = a(x)+ + a(x)−.
Rearranging the terms in (4) such that both sides are non-
negative, we have

xi

−
n∑

j=1

ajil
′
j(µj)

− + λ[J ′
i (x)]

+

= xi

 n∑
j=1

ajil
′
j(µj)

+ − λ[J ′
i (x)]

−

 . (6)

This equation immediately provides an updating scheme for
x:

x
(k+ 1

2)
i = x

(k)
i

δ
(k)
1i

δ
(k)
2i

, i = 1, . . . , n. (7)

In (7),

δ
(k)
1i =

n∑
j=1

ajil
′
j(µ

(k)
j)+ − λ[J ′

i (x
(k))]− + ε ≡ g

(k)
1i + ε, (8)

δ
(k)
2i = −

n∑
j=1

ajil
′
j(µ

(k)
j)− + λ[J ′

i (x
(k))]+ + ε ≡ g

(k)
2i + ε,

(9)

where µ
(k)
j = Ajx

(k) and the constants ε ≥ 0 which is
included to avoid possible zero denominators in (7) or (11).
It will become clear later that the values for ε will not alter
where the algorithm will converge to, but they will change its
speed of convergence.

Clearly, if x
(k)
i ≥ 0 then x

(k+ 1
2)

i given by (7) satisfies
x
(k+ 1

2)
i ≥ 0. If all of these x

(k+ 1
2)

i are not greater than b,
then we move to the line search step given by (18); otherwise,
those x

(k+ 1
2)

i , whose values are greater than b, are re-computed
using (11) below. In fact, similar to (6), we can rearrange (5)
as

(b− xi)

 n∑
j=1

ajil
′
j(µj)

+ − λ[J ′
i (x)]

−

= (b− xi)

−
n∑

j=1

ajil
′
j(µj)

− + λ[J ′
i (x)]

+

 , (10)

IEEE TRANSACTIONS ON IMAGE PROCESSING 3

which gives

x
(k+ 1

2)
i = b− (b− x

(k)
i)

δ
(k)
2i

δ
(k)
1i

, (11)

where δ
(k)
1i and δ

(k)
2i are given by (8) and (9) respectively.

We comment that δ1i and δ2i in (7) and (11) must appear in
the order explicated above. These arrangements of δ1i and δ2i
ensure that the xi updates are proceeded along the down-hill
direction of Φ(x), and thus, the corresponding iteration can
converge to the minimum of Φ(x). Iteration (11) is performed
only if the corresponding (7) gives an estimate greater than
b. From (11), if x

(k)
i ≤ b then x

(k+ 1
2)

i ≤ b, but we must also
show that these x

(k+ 1
2)

i are non-negative. In fact we can prove
that if x(k)

i ∈ [0, b] then x
(k+1)
i ∈ [0, b] for all i. The statement

of this property is given in Lemma 1 of Section III.
The updates given by (7) and (11) need to be further

improved by a line search step to give an update x(k+1) such
that Φ(x) decreases when moving from the kth to the (k+1)th
iteration. We first unify the updating formulae (7) and (11) into
a single gradient formula. Combining (7) and (11) we have

x
(k+ 1

2)
i =

x
(k)
i

δ
(k)
1i

δ
(k)
2i

if x(k)
i δ

(k)
1i /δ

(k)
2i ≤ b,

b− (b− x
(k)
i)

δ
(k)
2i

δ
(k)
1i

otherwise,
(12)

which leads to the following gradient expression

x
(k+ 1

2)
i = x

(k)
i − s

(k)
i Φ′

i(x
(k)), (13)

where

s
(k)
i =

{
x
(k)
i /δ

(k)
2i if x(k)

i δ
(k)
1i /δ

(k)
2i ≤ b,

(b− x
(k)
i)/δ

(k)
1i otherwise.

(14)

Here, attention must be paid to the situation where x
(k)
i = 0

or x
(k)
i = b, as this leads to s

(k)
i = 0 so that xi cannot be

further improved. We adopt the following strategy to treat this
circumstance. We keep

s
(k)
i = 0

if x(k)
i = 0 and Φ′

i(x
(k)) ≥ 0,

or if x(k)
i = b and Φ′

i(x
(k)) ≤ 0

(15)

since they satisfy the KKT condition. For those i where
x
(k)
i = 0 with Φ′

i(x
(k)) < 0, we set s

(k)
i = k1/δ

(k)
2i with

a nonzero constant k1. We select k1 = 0.02b in this paper;
but this k1 must also ensure the corresponding x

(k+ 1
2)

i =
−k1Φ

′
i(x

(k))/δ2i < b, and so that

s
(k)
i = min{0.02b/δ(k)2i ,−b/Φ′

i(x
(k))}. (16)

Similarly, for the case of x
(k)
i = b with Φ′

i(x
(k)) > 0 we

set s
(k)
i = (b − k2)/δ1i. We choose k2 = 0.98b, and after

considering x
(k+ 1

2)
i > 0 we have

s
(k)
i = min{0.02b/δ(k)1i , b/Φ′

i(x
(k))}. (17)

Note that the constant ε only affects the si values, so it will
only change the convergence speed of the MI algorithm.

Thus, after incorporating a line search step we have

x(k+1) = x(k) − ω(k)S(k)Φ′(x(k)), (18)

where S(k) is a diagonal matrix with diagonal entries s(k)i ≥ 0,
and ω(k) is the step size determined by the line search. Since
S(k) is non-negative definite, iteration (18) with ω(k) = 1
(which is actually x(k+ 1

2)) cannot move along the uphill
direction. Thus if Φ(x(k+ 1

2)) > Φ(x(k)), it indicates the
necessity of reducing the step size. This explains that the line
search range of this MI algorithm is fixed at (0, 1] for all
ω(k). Moreover, this range ensures 0 ≤ x(k+1) ≤ b once x(k)

is in [0, b]. Due to the fixed search interval, this line search is
remarkably simple, and it demands that Ax(k+ 1

2) be calculated
only once in each iteration. Let d(k) = x(k+ 1

2) − x(k), which
defines the line search direction. One simple and efficient
search strategy is provided by Armijo’s rule (e.g. [13]). Armijo
line search is a finite terminating algorithm. Briefly, it starts
with ω = 1, and for each ω it checks if the following Armijo
condition is satisfied:

Φ(x(k) + ωd(k)) ≤ Φ(x(k))− ξωΦ′(x(k))Td(k), (19)

where 0 < ξ < 1 is a fixed parameter such as ξ = 10−2. If (19)
is true then stop; otherwise, reset ω = ρω (such as ρ = 0.6)
and reevaluate the Armijo condition (19). We name this MI
algorithm with Armijo’s line search the boxed-constrained
multiplicative iterative (BCMI) algorithm. A summary of
BCMI is given in Fig. 1.

We complete this section by making a comment on some
of the parameters required by BCMI. ε in equations (8) and
(9) only affects the speed of convergence, and we usually set
it to a small value, such as 10−3 for images with Poisson or
Gaussian noises. We find that k1 = 0.02b, k2 = 0.98b and
ρ = 0.6 always give good convergence properties.

III. CONVERGENCE PROPERTIES

In this section we study the convergence properties of the
BCMI algorithm. We first demonstrate that the BCMI update
x
(k+1)
i will be bounded by [0, b] if x

(k)
i is in [0, b]. We then

provide the convergence theorems of the BCMI algorithm.

Lemma 1: Consider the box-constrained optimization prob-
lem defined by (2). Assume that the first derivative of Φ(x)
exists for 0 ≤ x ≤ b. For the BCMI algorithm given by (18),
if x(k)

i ∈ [0, b] then also x
(k+1)
i ∈ [0, b] for i = 1, . . . , n.

Proof: First consider 0 < x
(k)
i < b. According to (12), for

those i where x
(k)
i δ

(k)
1i /δ

(k)
2i ≤ b, the corresponding x

(k+ 1
2)

i ∈
[0, b]. For other i, their x(k+ 1

2)
i ≤ b are obvious from (12), and

their x(k+ 1
2)

i ≥ 0 can be obtained from the fact that

x
(k+ 1

2)
i = b

(
1− δ

(k)
2i

δ
(k)
1i

)
+ x

(k)
i

δ
(k)
2i

δ
(k)
1i

and the fact that 0 < δ
(k)
2i /δ

(k)
1i < 1. For x

(k)
i = 0 or b, the

way we select the corresponding s
(k)
i ascertains that x(k+ 1

2)
i ∈

[0, b]. Now from x
(k+ 1

2)
i ∈ [0, b] we have x

(k+1)
i ∈ [0, b] since

x
(k+1)
i = (1− ω(k))x

(k)
i + ω(k)x

(k+ 1
2)

i and 0 < ω(k) ≤ 1.
Lemma 1 explains that if the initial x(0) is in (0, b) then

all x(k) are in [0, b]. In the following, we show that BCMI
converges if Φ has the following property:

IEEE TRANSACTIONS ON IMAGE PROCESSING 4

Box-constrained MI (BCMI) image restoration algorithm

Let k be the iteration number, x be the n-vector representing the true but unknown image, y be the n-vector
representing the observed blurry and noisy image and Φ(x) be the objective function defined in (2).
Initialization:
Set k = 0. Choose an initial value 0 < x(0) < b such that Φ(x(0)) < +∞. Select an ε ≥ 0.
Iteration k + 1:
• For i = 1, . . . , n do Steps 1 – 3.
Step 1: Compute

g
(k)
1i =

n∑
j=1

ajil
′
j(µ

(k)
j)+ − λ[J ′

i (x
(k))]−, g

(k)
2i = −

n∑
j=1

ajil
′
j(µ

(k)
j)− + λ[J ′

i (x
(k))]+,

and then δ
(k)
1i = g

(k)
1i + ε and δ

(k)
2i = g

(k)
2i + ε. Compute g

(k)
i = δ

(k)
1i − δ

(k)
2i .

Step 2: For x(k)
i ̸= 0 and x

(k)
i ̸= b, compute s

(k)
i = x

(k)
i /δ

(k)
2i if x(k)

i /δ
(k)
2i ≤ b/δ

(k)
1i and s

(k)
i = (b− x

(k)
i)/δ

(k)
1i

if x(k)
i /δ

(k)
2i > b/δ

(k)
1i .

For x(k)
i = 0, compute s

(k)
i = min{0.02b/δ(k)2i ,−b/g

(k)
i } if g(k)i < 0 and s

(k)
i = 0 if g(k)i ≥ 0.

For x(k)
i = b, compute s

(k)
i = min{0.02b/δ(k)1i , b/g

(k)
i } if g(k)i > 0 and s

(k)
i = 0 if g(k)i ≤ 0.

Step 3: Compute x
(k+ 1

2)
i = x

(k)
i − s

(k)
i g

(k)
i .

• Line search: If Φ(x(k+ 1
2)) < Φ(x(k)) then x(k+1) = x(k+ 1

2); otherwise x(k+1) = x(k) +ω(k)S(k)g(k), where
g(k) = (g

(k)
1 , . . . , g

(k)
n)⊤ and ω(k) ∈ (0, 1) is the step size obtained using Armijo’s line search.

Fig. 1. The BCMI algorithm.

Property A:
1) Φ(x) is bounded, continuous and differentiable for 0 ≤

x ≤ b, and
2) Φ′

i(x) are bounded and continuous over 0 ≤ x ≤ b for
i = 1, . . . , n.

We will see in Section IV that image restoration problems
with TV penalty will have this property after smoothing the
TV norm.

Theorem 1: Assume that Property A holds for Φ(x) defined
in (2). Let Γ be the set of stationary points of Φ(x) satisfying
the box constraints. For sequences {x(k)} generated by the
BCMI algorithm, all the limit points of {x(k)} are in Γ. More-
over, there exist some x∗ ∈ Γ such that Φ(x(k)) converges
monotonically to Φ(x∗).

Proof: Let M(x) denote the iteration mapping for the
BCMI algorithm. Let Ω = {x : 0 ≤ xi ≤ b for i = 1, . . . , n}.
According to (18), mapping M is given by

M(x) = x− ω(x)S(x)Φ′(x). (20)

Clearly, M(x) : Ω → Ω is a one-to-many mapping as ω(x)
is not unique. Firstly, Lemma 1 shows that if the initial guess
satisfies 0 < x

(0)
i < b for all i, then x(k) ∈ Ω for any iteration

number k. Set Ω is closed and bounded, and thus is compact.
Secondly, due to the line search step of BCMI, its iteration
x(k+1) ∈ M(x(k)) satisfies: Φ(x(k+1)) ≤ Φ(x(k)), where
equality holds only when x(k) ∈ Γ. Finally, let z = M(x)
and d = S(x)Φ′(x). Assume x(k) → x0 /∈ Γ as k → ∞.
Since the expression xiδ1i(x)/δ2i(x) in (14) is continuous in
x, we have d(k) → d0 ̸= 0. Suppose {z(k)} is a sequence
obtained according to z(k) = M(x(k)) and that z(k) → z0 as
k → ∞. We wish to show that z0 ∈ M(x0), and so that M is

closed at points outside Γ. For the sequence {ω(k)} we have

ω(k) =
|| − z(k) + x(k)||

||d(k)||
→ || − z0 + x0||

||d0||
≡ ω0,

so that z0 = x0 − ω0S(x0)Φ
′(x0). As all ω(k) ≤ 1, and so

will ω0. On the other hand, as Φ(z(k)) < Φ(x(k)) for each
k and Φ is continuous, Φ(z0) < Φ(x0). Thus z0 ∈ M(x0),
and so that M is closed at x0 /∈ Γ. The above three properties
explain that {x(k)} satisfies the conditions of the Zangwill’s
global convergence theorem [14], and hence the results of this
theorem follow.

Theorem 1 mainly shows that the limit of any convergent
subsequence of {x(k)} is in the solution set Γ, and that Φ(x(k))
converges to Φ(x∗) for some x∗ ∈ Γ. It remains to prove that
the sequence {x(k)} is convergent itself. This result is acquired
through Theorems 2 and 3. Note that the proofs of Theorems
2 and 3 closely follow [15].

Theorem 2: Assume that Property A holds for Φ(x). Then
BCMI sequences {x(k)} satisfy ∥x(k+1) −x(k)∥ → 0 as k →
∞.

Proof: From Theorem 1 we can conclude that if Φ(x) is
bounded over the set Ω (Ω is defined in the proof of Theorem
1) then Φ(x(k+1)) − Φ(x(k)) → 0 when k → ∞. Now from
(18) we have

Φ′(x(k)) = − 1

ω(k)
[S(k)]−1(x(k+1) − x(k)). (21)

IEEE TRANSACTIONS ON IMAGE PROCESSING 5

Hence, according to Armijo condition (19), we have

− Φ(x(k+1)) + Φ(x(k))

≥ ξ

ω(k)
(x(k+1) − x(k))T [S(k)]−1(x(k+1) − x(k))

≥ ξ

s
(k)
(n)ω

(k)
∥x(k+1) − x(k)∥2, (22)

where s
(k)
(n) denotes the maximum diagonal values of S(k).

Clearly, we can safely assume s
(k)
(n) ̸= 0 as otherwise the

sequence {x(k)} has already converged.
Theorem 3: Assume that Property A holds for Φ(x). Ac-

cording to Theorem 1, for BCMI sequences {x(k)} there exist
some stationary points x∗ ∈ Γ such that Φ(x(k)) → Φ(x∗) as
k → ∞. Let Γ0 be the set of these stationary points. If Γ0 is
discrete then x(k) converges to an x∗ ∈ Γ0.

Proof: From Theorem 2 we have ∥x(k+1)−x(k)∥ → 0 as
k → ∞. Since all x(k) are bounded, x(k) is convergent, and
its limits are in a connected and compact subset of Γ0 [16,
Theorem 28.1]. Therefore there is a single stationary point.

Finally, we provide a theorem explaining that the limit of
{x(k)} meets the KKT condition.

Theorem 4: Assume that Property A holds for Φ(x). The
limit of BCMI sequence {x(k)} satisfies the KKT condition
(3).

Proof: Theorem 3 explains x(k) → x∗ as k → ∞. For any
0 < x∗

i < b it must satisfy x∗
i = x∗

i −ω∗s∗iΦ
′
i(x

∗) according to
(18), where s∗i denotes si at x∗. From the way we select s(k)i

explicated before, s∗i ̸= 0 in this case. Thus we have Φ′
i(x

∗) =
0 if 0 < x∗

i < b. For x∗
i = 0, there are two possibilities: (i)

x
(k)
i → 0 as k → ∞ but all x

(k)
i ̸= 0; (ii) there exists an

integer K > 0 such that x(k)
i = 0 and Φ′

i(x
(k)) > 0 for all

k > K. For case (i) it must have, according to (12), δ∗1i < δ∗2i,
where δ∗1i and δ∗2i are the limits (when k → ∞) of δ

(k)
1i and

δ
(k)
2i respectively, and thus the corresponding Φ′

i(x
∗) = −δ∗1i+

δ∗2i > 0. For case (ii), Φ′
i(x

∗) > 0 is obvious. Similarly, if any
x∗
i = b, the corresponding Φ′

i(x
∗) < 0.

IV. BOX-CONSTRAINED IMAGE RESTORATION WITH TV
PENALTY

Total variation (TV) [8] penalty has been widely used in
image restoration due to its remarkable ability to reserve edges.
However, most existing TV restoration algorithms, such as
[8], [10], [17], [18], [19], [20], [21], [22], and [23], ignore
the positivity or box constraints. We explain in this section
that the BCMI algorithm can be easily implemented to box-
constrained TV image restorations. The TV penalty term is
defined as

n∑
j=1

√
(Rjx)2 + (Cjx)2,

where Rj and Cj are respectively the jth row of the n × n
matrices R and C, which are defined such that entries of Rx
and Cx represent the first-order differences of the 2D version
of x along the row and column directions respectively. One
well-known numerical difficulty in using the TV penalty is

that its derivative can be singular. One way to get around this
is to consider the “smoothed” TV penalty; see, for example,
[8] and [21], where

J (x) =
n∑

j=1

√
(Rjx)2 + (Cjx)2 + β. (23)

The smoothing factor β > 0 is included to avoid degenerate
derivative of J (x). Note that

J ′
i (x) =

n∑
j=1

rjiRjx+ cjiCjx√
(Rjx)2 + (Cjx)2 + β

. (24)

Thus J ′(x) can be computed as the summation of the first or-
der row difference of Rx/

√
(Rx)2 + (Cx)2 + β and the first

order column difference of Cx/
√
(Rx)2 + (Cx)2 + β, where

squares represent element-wise squares of the corresponding
matrices. Clearly with β > 0, J (x) satisfies Property A.

Below, we demonstrate that BCMI can be easily imple-
mented to TV image restoration for the three most commonly
used noise models, namely Gaussian, Poisson and salt-and-
pepper noises.

A. Gaussian noise

For this noise model, the observed pixel image intensity
yj follows a Gaussian distribution with mean µj = Ajx
and variance σ2. The log-likelihood of yj (i.e. lj(µj)) con-
tains 1/σ2. After multiplying σ2 with Φ(x) of (2), and re-
defining λσ2 as λ, we have lj(µj) = −1

2 (yj − µj)
2. Thus

l′j(µj) = yj−µj . This gives l′j(µj)
+ = yj and l′j(µi)

− = −µj ,
and hence, δ

(k)
1i =

∑n
j=1 ajiyj − λ[J ′

i (x
(k))]− + ε and

δ
(k)
2i =

∑n
j=1 ajiµ

(k)
j + λ[J ′

i (x
(k))]+ + ε. Then image pixels

are updated according to

x
(k+1)
i = x

(k)
i − ω(k)s

(k)
i (δ

(k)
2i − δ

(k)
1i) (25)

for i = 1, . . . , n, where s
(k)
i values are computed according

to (14), (15), (16) and (17), and ω(k) is determined by Armijo
line search. When using the TV penalty, J ′

i (x
(k)) is given by

(24). Clearly, the iteration given by (25) is extremely easy to
implement.

B. Poisson noise

For the Poisson noise model, observed pixel image intensity
yj follows a Poisson distribution with mean µj = Ajx.
The log-likelihood of yj corresponding to this noise model
is lj(µj) = −µj + yj logµj , which gives l′j(µj) = −1 +

yj/µj . Thus δ
(k)
1i =

∑n
j=1 ajiyj/µ

(k)
j − λ[J ′

i (x
(k))]− + ε

and δ
(k)
2i =

∑n
j=1 aji + λ[J ′

i (x
(k))]+ + ε. Image pixels

are then updated by (25). We comment that when λ = 0,
ε = 0 and b = ∞, this algorithm coincides with the well
known Expectation-Maximization (EM) image reconstruction
algorithm in emission tomography [24].

IEEE TRANSACTIONS ON IMAGE PROCESSING 6

C. Salt-and-pepper noise

Salt-and-pepper noise removal has been considered by many
researchers, for example [25], [26] and [27]. This type of noise
can be effectively dealt with by the Laplace distribution [2].
More specifically, we can assume that image pixel intensity
yj follows a Laplace distribution with mean µj = Ajx and
variance σ2. Again, after multiplying σ2 with Φ(x), we can
express the log-likelihood of yj as lj(µj) = −|yj − µj |. An
immediate problem here is that lj(µj) is not differentiable at
µj = yj . Adopting the same idea of approximating the TV
penalty function in (23), we approximate lj(µj) by

lj(µj) ≈ −
√
(yj − µj)2 + γ, (26)

where γ is a small positive constant to smooth lj(µj) at µj =
yj . Thus

l′j(µj) ≈
yj − µj√

(yj − µj)2 + γ
,

and the corresponding

δ
(k)
1i =

n∑
j=1

ajiyj√
(yj − µ

(k)
j)2 + γ

− λ[J ′
i (x

(k))]− + ε

and

δ
(k)
2i =

n∑
j=1

ajiµ
(k)
j√

(yj − µ
(k)
j)2 + γ

+ λ[J ′
i (x

(k))]+ + ε.

Again, all the xi’s are then updated using (25).

V. RESULTS

In this section, we provide and discuss simulation results on
TV image restorations under the three noise models discussed
in the previous section, namely Gaussian, Poisson and salt-
and-pepper noises. This simulation study had five goals. 1) The
first goal was to show that the BCMI algorithm can effectively
solve the box-constrained TV image restoration problem with
these three noise distributions. 2) The second goal was to com-
pare our BCMI algorithm with another fast box-constrained
and TV-based image restoration algorithm, namely the fast
iterative shrinkage/thresholding algorithm (FISTA) of [5]. We
demonstrated that in general the BCMI iterations improved
signal-to-noise ratios much faster than FISTA. 3) Its third
goal was to demonstrate that box-constrained PL estimates
given by BCMI usually attain better signal-to-noise ratios
than the estimates given by simply projecting unconstrained
or only positively constrained TV restorations onto the box
constraints. The unconstrained algorithm used for comparison
was the Fast Total Variation Deconvolution (FTVD) algorithm
[10], and the positively constrained algorithm was the TV
Minimization by Augmented Lagrangian (TVAL) algorithm
from the the same research group. 4) The fourth goal was to
explain, through Monte-Carlo simulations, that over a range of
smoothing values, box constraints usually produce restorations
with better mean and variance properties of the signal-to-noise
ratio than projecting FTVD or TVAL onto the box constraints.
5) The last goal was to assess BCMI for image denoising.
This was accomplished by comparing BCMI with the kernel

regression method of [28], one of the state-of-the-art image
denoising methods.

These goals are elaborated and demonstrated in details
through Sections V-A – V-E below. All simulation compu-
tations were conducted using MATLAB.

FISTA is a gradient-based backward-forward splitting
algorithm for box-constrained image deblurring and
is supposed to converge fast. FTVD uses variable-
splitting and penalty techniques, together with fast
Fourier transform (FFT), to deconvolve and denoise
images. TVAL adopts the augmented Lagrangian
method with an alternating minimization approach (e.g.
[20]) to produce estimates with positive constraint.
MATLAB programs for FISTA are available at
“http://iew3.technion.ac.il/˜becka/papers/tv fista.zip”, for
FTVD at “http://www.caam.rice.edu/˜optimization/L1/ftvd/”
and for TVAL at “http://www.caam.rice.edu/
˜optimization/L1/TVAL3/”. FISTA can only process images
containing Gaussian noises. The TVAL MATLAB program
has an option for the positivity constraint, and it again
can only be used to remove Gaussian noises. The FTVD
algorithm can remove Gaussian and salt-and-pepper noises,
but it cannot impose the positivity constraint. Nevertheless,
FISTA, FTVD and TVAL cannot address Poisson noise, and
we, hence, only applied BCMI to Poisson noise examples in
the simulation.

FTVD achieves best results if applied to images with pixel
values in [0, 1] (see [10]), so we applied FTVD to the
simulated blurry and noisy images as described below. We
first divided pixel values of a simulated image by 255 and
then applied FTVD to the rescaled image. The obtained FTVD
restoration, however, might have pixel values outside [0, 1].
Instead of linearly scaling the range of pixels to [0,1], we
projected all pixels back to [0, 1] by setting any pixel value
less than 0 or greater than 1 to 0 or 1 respectively. We
then multiplied the result by 255. We found this scaling-
FTVD-projection procedure gave better signal-to-noise ratio
for FTVD. For applying TVAL, we first turned the positivity
option on so that its estimates were non-negative. After TVAL,
we projected the TVAL results to [0, 255] by setting any pixel
value greater than 255 to 255. For the rest of this paper, these
projected FTVD and TVAL are still called FTVD and TVAL
respectively when there is no confusion.

Three 512×512 (Lena, Bridge and Boat) and two 256×256
(Satellite and Church) test images were included in this
simulation. Lena, Bridge and Boat images can be viewed
in Fig. 2, while Satellite and Church images are displayed
in Fig. 3. When comparing BCMI with FISTA we used
Lena image and a blurring filter given by the 9 × 9 Gaus-
sian (standard deviation 4) blur, created in MATLAB by
“H=fspecial(‘Gaussian’,[9, 9], 4)”, and this is the same blur
as in [5]. In all other examples, we used a motion blur
created by “H=fspecial(‘motion’,15, 30)”. Poisson, Gaussian
and salt-and-pepper noises were added to the blurry images
by MATLAB function “imnoise”.

In the simulation we assessed the quality of a restoration
by peak signal-to-noise ratio (PSNR). Assuming all pixel
intensities of the restored (x̂) and the original (x) images are

IEEE TRANSACTIONS ON IMAGE PROCESSING 7

Lena image Bridge image Boat image

Fig. 2. Lena, Bridge and Boat images.

Satellite image Church image

Fig. 3. Satellite and Church images.

in [0, 255], PSNR is then defined as

PSNR , 10 log10
2552

1
n∥x̂− x∥22

(db), (27)

where n is the number of pixels of x (or x̂). All the images in
the figures are displayed over the [0, 255] interval by MATLAB
function “imshow(x, [0, 255])”.

A. Evaluate BCMI

We first use Lena image to explore the BCMI algorithm,
focusing on demonstrating that BCMI is successful in TV
regularized image restorations with box constraints, where
image noises are Poisson, Gaussian and salt-and-pepper. After
motion blurring the Lena image we added Poisson, Gaussian
(mean 0 and variances σ2 = 5 and 40), and salt-and-pepper
(60%) noises. For every simulated noisy and blurry Lena
image, we experimentally found the “optimal” smoothing
value for the BCMI algorithm. Here “optimal” means it gave
the best restoration judged by PSNR. These smoothing values
are displayed in Table I. Table I also contains the optimal
smoothing values for other algorithms (i.e. FVTD, TVAL and
FISTA) and other images; all were obtained by trial-and-error.
Other optional parameters of BCMI were set as: ε = 10−3

(see (8) and (9)) for Poisson and Gaussian noises and ε = 10
for salt-and-pepper noises, β = 3 (see (23)) for Poisson
and Gaussian noises and β = 10 for salt-and-pepper noises,
and γ = 1 (see (26)) for salt-and-pepper noises. Note that
these ε values gave good convergence speed of BCMI but
they might not be optimal. The β and γ values gave visually
good restorations, but they were not fine-tuned as the final
restorations were not very sensitive to β and γ. We conceived

BCMI to have been converged if reconstructions in consecutive
iterations differed by less than 10−4 for all pixels. When using
the BCMI algorithm, we selected the upper limit b = 255 for
all the test images.

Panel (a) of Fig. 4 exhibits the plots of (Φ(x(k)) −
Φ(x(K)))/(Φ(x(1)) − Φ(x(K))) (here K is the maximum
iteration number) against iteration numbers (both in log scale)
for the BCMI restorations of Lena image, with Poisson,
Gaussian (two variances) and salt-and-pepper noises. This
display uses K = 500 iterations for all the noises. Clearly,
BCMI monotonically decreased all Φ(x) along the iterations,
which agrees with Theorem 1. Panel (b) of Fig. 4 displays the
plots of PSNR versus iteration number. From these plots we
observe that BCMI for Gaussian (σ2 = 40) stabilized quickly
in less than 200 iterations, while BCMI for Gaussian (σ2 = 5)
and salt-and-pepper took longer iterations to converge.

Apart from testing Lena image with Poisson noise, we also
tested Bridge and Boat images with Poisson noise; results are
given in Fig. 5.

B. Compare BCMI with FISTA

Lena image was again used to compare BCMI with FISTA.
Since FISTA demands the reflexive boundary condition in the
blurring operation (see [5]), we created a blurry Lena image by
“imfilter(x, H, ’symmetric’)”, where blur filter H was a 9× 9
Gaussian blur with standard deviation 4 as explained before.
We also set accordingly the boundary option for BCMI to
“symmetric”.

In this study, only Gaussian noises were used due to the
limitation of FISTA. We used three variances: 2552× 10−6, 5
and 40, where the first variance was equivalent to the variance

IEEE TRANSACTIONS ON IMAGE PROCESSING 8

Algorithm Noise Smoothing value λ
Lena Bridge Boat Satellite Church

BCMI Poisson 0.018 0.012 0.012
Gaussian (σ2 = 5) 0.19 0.12 0.15 0.084 0.15
Gaussian (σ2 = 30) 0.36 0.53
Gaussian (σ2 = 40) 0.8 0.59 0.64
Gaussian (σ2 = 50) 0.52 0.71
salt-and-pepper (60%) 0.18 0.17 0.16 0.24 0.15

FTVD Gaussian (σ2 = 5) 1300 2000 1600 2500 1700
Gaussian (σ2 = 30) 630 500
Gaussian (σ2 = 50) 430 360
salt-and-pepper (60%) 5 5.5 5 3.6 4.6

TVAL Gaussian (σ2 = 40) 38 41 46
FISTA Gaussian (σ2 = 2552 × 10−6) 0.006

Gaussian (σ2 = 5) 0.11
Gaussian (σ2 = 40) 0.7

TABLE I
OPTIMAL SMOOTHING VALUES FOR DIFFERENT TEST IMAGES, NOISE MODELS AND ALGORITHMS.

Blur, Poisson, psnr=22.45 Blur, Poisson, psnr=20.23 Blur, Poisson, psnr=21.32

BCMI, psnr=27.44, cpu=102.2s BCMI, psnr=23.13, cpu=88.73s BCMI, psnr=25.14, cpu=88.55s

Fig. 5. BCMI restorations of Poisson noisy images. Top row: Blurred with Poisson noises for Lena, Bridge and Boat images; bottom row: the corresponding
BCMI restorations.

used in [5]. From the generated Lena noisy images we found
the optimal smoothing values of FISTA by trial-and-error and
they can be found in Table I. We also applied these smoothing
values in BCMI although they might not be optimal for BCMI.
Our objective function Φ(x) and the objective function used by
FISTA (equation (1.1) in [5]) are basically equivalent, where
only the penalties differ slightly due to the approximation (23).
Hence the optimal smoothing values of these two algorithms
must be close to each other. Images processed by BCMI and
FISTA were all assumed in the range [0, 255].

We compare BCMI and FISTA by showing their plots of
PSNR values against CPU time in Fig. 6. Clearly, BCMI
converged faster and achieved higher PSNR than FISTA for
both the σ2 = 5 and σ2 = 40 cases (panels (b) and (c)). Only
in the case of extremely small variance (i.e. σ2 = 2552×10−6)

did FISTA eventually surpassed BCMI in the PSNR value after
nearly 100 CPU seconds.

C. Compare BCMI with projected FTVD and projected TVAL

Here we used Lena, Bridge and Boat images to compare
BCMI with projected FTVD and projected TVAL. We com-
pared BCMI and FTVD using Gaussian (σ2 = 5) and salt-and-
pepper (60%) noises, and compared BCMI and TVAL using
Gaussian (σ2 = 40) noise.

FTVD is one of the state-of-the-art deblurring and denoising
methods. Since FTVD adopts FFT in solving linear equa-
tions, it demands the “circular” boundary condition on the
blurry image for accurate results. Thus, the blurry images for
comparing BCMI and FTVD were generated by “imfilter(x,
H, ’circular’)”. However, the “imfilter” function for creating

IEEE TRANSACTIONS ON IMAGE PROCESSING 9

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

Φ(x) v.s. iteration (both in log scale)

Iteration number

(Φ
(x

)−
Φ

(x
50

0))
/(

Φ
(x

1)−
Φ

(x
50

0))

Poisson

Gaussian (σ2=5)

Gaussian (σ2=40)
salt−and−pepper (60%)

(a)

0 100 200 300 400 500
14

16

18

20

22

24

26

28

30

32

Iteration number

P
S

N
R

 (
dB

)

PSNR against iteration number

Poisson

Gaussian (σ2=5)

Gaussian (σ2=40)
salt−and−pepper (60%)

(b)
Fig. 4. The BCMI algorithm results for Lena image. Panel (a) contains
the plots of scaled objective functions (Φ(x(k))− Φ(x(500)))/(Φ(x(0))−
Φ(x(500))) (log scale) against iteration number (log scale). Panel (b) contains
the plot of PSNR versus iteration number.

blurry images for comparing BCMI and TVAL did not have
any boundary conditions (i.e. the zero boundary condition).
When applying BCMI to image with a circular boundary,
we also had to set BCMI boundary option to “circular”. We
emphasize, however, that there is no need to impose such a
condition in BCMI in general as there is no FFT (for matrix
inversion) involved in BCMI. We set the maximum iteration
number for BCMI to 300 for Gaussian (σ2 = 40) noise, and
to 1000 for Gaussian (σ2 = 5) and salt-and-pepper noises.

Fig. 7 presents the plots of PSNR against CPU time (log
scale) for processing Lena images with Gaussian noises. We
observe that BCMI produced monotonic increments in PSNR
for both variances. Plots in panel (a) explain that FTVD was
really fast for Gaussian (σ2 = 5); it took only 0.5 CPU
seconds to produce an image with the PSNR value which
required about 60 CPU seconds for BCMI. This fast speed
of FTVD, however, depends heavily on the correctness of the
FFT operations which require the circular boundary condition.
For example, FTVD was extremely poor if applied to an image
with the zero boundary (plot not shown) and in this case, its
PSNR was more than 3dB less than BCMI. Although TVAL
was terminated within 40 CPU seconds, its PSNR values were
not at all stabilized.

Figures 8 – 10 contain the restored Lena, Bridge and Boat
images by BCMI, projected FTVD and projected TVAL; all
were created using the optimal smoothing values provided
in Table I. Some of their zoomed in images, in fact those
corresponding to the Gaussian (σ2 = 5) cases for BCMI and
FTVD, are displayed in Fig. 11. Clearly, box constraints can,

20 40 60 80 100
25

26

27

28

29

30

31

CPU (seconds)

P
S

N
R

 (
dB

)

PSNR versus CPU (Gaussian σ2=2552×10−6)

BCMI
FISTA

(a)

20 40 60 80 100
25

26

27

28

29

CPU (seconds)

P
S

N
R

 (
dB

)

PSNR versus CPU (Gaussian σ2=5)

BCMI
FISTA

(b)

20 40 60 80 100
25

25.5

26

26.5

27

27.5

28

CPU (seconds)

P
S

N
R

 (
dB

)
PSNR versus CPU (Gaussian σ2=40)

BCMI
FISTA

(c)
Fig. 6. PSNR versus CPU time plots for comparing BCMI and FISTA.
Computations were based on restorations of Lena image with Gaussian
noises . Panels (a), (b) and (c) contain the plots corresponding to Gaussian
(σ2 = 2552 × 10−6), Gaussian (σ2 = 5) and Gaussian (σ2 = 40) noises
respectively.

10
−1

10
0

10
1

23

24

25

26

27

28

29

30

31

CPU time (log scale)

P
S

N
R

 (
dB

)

PSNR against CPU time (Gaussian σ2=5)

BCMI
FTVD

10
−1

10
0

10
1

23

24

25

26

27

28

29

CPU time (log scale)

P
S

N
R

 (
dB

)

PSNR against CPU time (Gaussian σ2=40)

BCMI
TVAL

(a) (b)
Fig. 7. Plots of PSNR versus CPU time for Lena image with Gaussian noises.
Panel (a) contains the plots for BCMI and FTVD with Gaussian (σ2 = 5)
noise. Panel (b) contains the plots for BCMI and TVAL with Gaussian (σ2 =
40) noise.

IEEE TRANSACTIONS ON IMAGE PROCESSING 10

Blur, Gaussian (σ2=5), psnr=23.96 BCMI, psnr=30.64, cpu=153.5s FTVD, psnr=30.57, cpu=1.59s

Blur, Gaussian (σ2=40), psnr=23.18 BCMI, psnr=28.05, cpu=64.9s TVAL, psnr=27.75, cpu=41s

Blur, Salt & Pepper 60%, psnr=8.56 BCMI, psnr=27.31, cpu=258s FTVD, psnr=27.23, cpu=68.1s

Fig. 8. Lena image reconstructions from blurred and noisy images with optimal smoothing values. Noises considered are Gaussian and salt-and-pepper, and
estimation algorithms included are BCMI for the correct box-constrained MPL, projected FTVD and projected TVAL for approximate solutions.

in general, help to produce better (i.e. higher PSNR) restora-
tions than methods based on simple projections. Although
the improvements on PSNR were not huge, their zoomed in
images demonstrate that the BCMI restorations are clearer.

We observed more significant improvements of BCMI over
projected FTVD when using Satellite and Church images. A
special feature of these two images is that they contain many
black or white pixels, making box constraints more informa-
tive. Gaussian noises with mean 0 and variances 5, 30 and 50
were added to the motion blurred Satellite and Church images.
Then BCMI and projected FTVD were applied to process these
images using the optimal smoothing values given in Table I.
Table II contains PSNR values and CPU seconds achieved
by BCMI and projected FTVD when restoring Satellite and
Church images. In all the cases BCMI outperformed projected
FTVD, with PSNR improvements ranging from 0.1dB to
1.1dB.

D. Optimal solution improves mean and variance of PSNR

Here, we wished to establish that the optimal constrained
reconstructions from BCMI are generally superior, judged by
mean and variance of PSNR, than the estimates obtained from
projected FTVD or projected TVAL.

We conducted a Monte-Carlo simulation with Boat image
and Gaussian (σ2 = 40) noise. In particular, we computed
and compared the mean and standard deviation (std) of PSNR
values for BCMI, FTVD and TVAL corresponding to different
smoothing values. Since smoothing values for BCMI, FTVD
and TVAL are totally different in magnitude, comparison of
their restorations must be performed with care. We confronted
this problem with the following strategy. Fifty noisy and blurry
Boat images with Gaussian (σ2 = 40) noise were generated
using the same motion blur as before, and they were used to
compare BCMI with FTVD. The circular boundary condition
were included in these images. From the first five of these

IEEE TRANSACTIONS ON IMAGE PROCESSING 11

Blur, Gaussian (σ2=5), psnr=21.21 BCMI, psnr=26.04, cpu=159.2s FTVD, psnr=26.02, cpu=1.5s

Blur, Gaussian (σ2=40), psnr=20.78 BCMI, psnr=23.91, cpu=60s TVAL, psnr=23.72, cpu=41.7s

Blur, Salt & Pepper 60%, psnr=7.532 BCMI, psnr=22.89, cpu=263s FTVD, psnr=22.77, cpu=80.1s

Fig. 9. Bridge image reconstructions from blurred and noisy images with optimal smoothing values. Noises considered are Gaussian and salt-and-pepper
and estimation algorithms included are BCMI for the correct box-constrained MPL, projected FTVD and projected TVAL for approximate solutions.

images, we found by trial-and-error that the best smoothing
parameter λ∗ for BCMI and FTVD were 0.6 and 400 re-
spectively. Now we chose nine equally-spaced points in the
interval [0.5λ∗, 1.5λ∗] (including the end-points) as possible
smoothing values for the respective restoration method. For
each of these nine smoothing values fifty restorations were
obtained for each algorithm, thus resulted in fifty PSNR
values. We calculated their mean and std; results are displayed
in Fig. 12 (a) and (b) respectively. We then repeated the whole
experiment to compare BCMI with TVAL, now with the zero
boundary. Again, from the first five of the fifty simulated
images, the best λ∗ for BCMI and TVAL were 0.62 and 40
respectively. Mean and std of their PSNR values are displayed
in Fig. 12 (c) and (d) respectively. We comment that the small
differences in BCMI optimal smoothing values were caused
by different boundary conditions.

Clearly, BCMI had better mean PSNR than both FTVD and

TVAL over nearly all the selected smoothing values. FTVD
however performed reasonably well in both mean and standard
deviation: most of its mean PSNR were slightly less than
BCMI and all of its standard deviation PSNR were nearly
identical to BCMI. If we compare the best mean PSNR of the
respective method, BCMI could give a 0.1dB improvement
over both FTVD and TVAL. BCMI consistently produced
smaller standard deviations in PSNR than TVAL. These find-
ings suggest that the optimal box-constrained solutions can
provide more accurate and stable restorations.

E. Compare BCMI with iterative steering kernel regression

The above studies establish that BCMI is fast and effective
for image restoration from blurry and noisy images, and it
can manipulate different noise models. Finally, we wished
to compare this method with one of the state-of-the-art
image denoising algorithms called iterative steering kernel

IEEE TRANSACTIONS ON IMAGE PROCESSING 12

Blur, Gaussian (σ2=5), psnr=23.19 BCMI, psnr=28.93, cpu=160.6s FTVD, psnr=28.79, cpu=1.53s

Blur, Gaussian (σ2=40), psnr=22.21 BCMI, psnr=26.25, cpu=61s TVAL, psnr=26.11, cpu=34.2s

Blur, Salt & Pepper 60%, psnr=8.3 BCMI, psnr=25.07, cpu=253s FTVD, psnr=24.86, cpu=80.5s

Fig. 10. Boat image reconstructions from blurred and noisy images with optimal smoothing values. Noises considered are Gaussian and salt-and-pepper and
estimation algorithms included are BCMI for the correct box-constrained MPL, projected FTVD and projected TVAL for approximate solutions.

regression (ISKR). The details of this method can be
found in [28] and its MATLAB package is available at
”http://users.soe.ucsc.edu/˜htakeda/KernelToolBox.htm”.
ISKR is data adapted kernel regression method for
image processing and it is effective to clear noise from
a contaminated image; see the experiment results reported
in [28]. ISKR, however, cannot deblur images so we only
compared BCMI and ISKR on their abilities to denoise
images.

The test images used were Lena and Church. We added
Gaussian noises to these images with variances 5, 20, 225 and
625. Then BCMI (with a TV penalty) and ISKR (with order
N = 2) were applied to remove the noises. Table III compares
their PSNR. It also includes information on smoothing values,
number of iterations and CPU times. Note that the smoothing
value for ISKR is called the “global smoothing parameter”
in [28]. The BCMI smoothing values were optimal as they

gave the best PSNR. The smoothing value for ISKR was less
sensitive and it had to be combined with the iteration number
to achieve the best PSNR.

We ran BCMI to the maximum of 1000 iterations unless
it converged earlier (see Section V-A for the definition of
convergence of BCMI). For BCMI, we used β = 1 and ε = 3
for both images. We ran ISKR to a number of iterations so
that it gave the best PSNR at that iteration.

From Table III we observe that BCMI achieved higher
PSNR than ISKR only when σ2 = 5 or 20 (low noise level)
for Lena image. In other cases, ISKR reached slightly higher
PSNR than BCMI, particularly for heavy noises (i.e. σ2 = 225
or 625). The CPU time demanded by BCMI is much smaller
than ISKR for Lena image, but BCMI took longer CPU time
than ISKR for Church image, mainly because BCMI did not
converge in 1000 iterations in most cases.

The comparison in this example shows that, judged by

IEEE TRANSACTIONS ON IMAGE PROCESSING 13

BCMI (Gaussian σ2=5) BCMI (Gaussian σ2=5) BCMI (Gaussian σ2=5)

FTVD (Gaussian σ2=5) FTVD (Gaussian σ2=5) FTVD (Gaussian σ2=5)

Fig. 11. Zoomed in Lena, Bridge and Boat images corresponding to the Gaussian (σ2 = 5) cases. Algorithms included are BCMI and projected FTVD.

Algorithm Satellite Church
PSNR CPU PSNR CPU

(dB) (sec) (dB) (sec)
Gaussian
σ2 = 5 BCMI 31.7 53.7 30.9 53.2

FTVD 31.2 0.59 29.9 0.59
σ2 = 30 BCMI 28.7 16.0 27.4 15.8

FTVD 28.3 0.42 26.3 0.53
σ2 = 50 BCMI 27.8 17.8 26.5 17.0

FTVD 27.5 0.58 25.4 0.69
salt-and-pepper(60%) BCMI 25.8 107.0 25.0 99.9

FTVD 25.7 10.0 24.5 13

TABLE II
COMPARING BCMI AND PROJECTED FTVD USING SATELLITE AND CHURCH IMAGES, WITH GAUSSIAN AND SALT-AND-PEPPER NOISES.

PSNR of the restored images, BCMI with TV penalty is
reliable for image denoising, and it is competitive with ISKR
which uses a kernel regression to smooth.

VI. CONCLUSION

We developed a multiplicative iterative algorithm for the
box-constrained image restoration problem. We showed that
this algorithm converges to a stationary point under very gen-
eral regularity conditions. Our numerical experiments demon-
strated that this algorithm is effective for box-constrained
TV deblurring denoising problems under three very general
noise models, namely Gaussian, Poisson and salt-and-pepper.
This experiment also demonstrated that our algorithm in
general converges faster and can reach higher PSNR values
than another fast box-constrained TV restoration algorithm
called FISTA. We observed that a correct constrained solution
can have as high as 1.1dB improvement over approximate
solutions given by the projected FTVD or TVAL methods.

However, we also noticed that for some images a correct
box-constrained method can be trivial when compared with
restorations obtained with projecting an unconstrained result
to box constraints.

Finally, we comment that research on other box-constrained
optimization methods for large scale problems, such as the
conjugate gradient algorithm (for example see [29, Chapter
10]) and the spectral projected gradient algorithm [30], may
also be useful for image deblurring and denoising with box
constraints. But it requires further assessments to confirm the
effectiveness of these algorithms.

ACKNOWLEDGEMENT

The authors are grateful to the comments provided by
the referees and the associate editor. Their help has greatly
enhanced the quality of this paper.

IEEE TRANSACTIONS ON IMAGE PROCESSING 14

Algorithm Lena Church
smoothing iter PSNR CPU smoothing iter PSNR CPU

value # (dB) (sec) value # (dB) (sec)
Gaussian
σ2 = 5 BCMI 0.6 45 42.08 9.42 0.9 1000 44.12 76.86

ISKR 1.7 1 39.96 84.05 1.7 1 44.22 22.03
σ2 = 20 BCMI 2 82 37.56 22.35 2.3 1000 39.23 81.54

ISKR 1.7 1 37.42 88.80 1.7 1 39.44 22.46
σ2 = 225 BCMI 11 528 31.49 164.19 10 1000 31.25 87.39

ISKR 2.4 5 32.61 410.44 2.4 4 32.06 84.05
σ2 = 625 BCMI 20 693 29.24 214.69 18 791 27.71 72.73

ISKR 2.4 11 30.62 882.09 2.4 8 28.40 167.75

TABLE III
COMPARING BCMI AND ISKR USING THE LENA AND CHURCH IMAGES WITH GAUSSIAN NOISES.

1 2 3 4 5 6 7 8 9
24.5

25

25.5

26

26.5

Smoothing values

M
ea

n
P

S
N

R
 (

dB
)

Plot of mean PSNR (Gaussian σ2=40)

BCMI
FTVD

1 2 3 4 5 6 7 8 9

0

0.05

0.1

0.15

0.2

0.25

0.3

Smoothing values

st
d

P
S

N
R

 (
dB

)

Plot of std PSNR (Gaussian σ2=40)

BCMI
FTVD

(a) (b)

1 2 3 4 5 6 7 8 9
24.5

25

25.5

26

26.5

Smoothing values

M
ea

n
P

S
N

R
 (

dB
)

Plot of mean PSNR (Gaussian σ2=40)

BCMI
TVAL

1 2 3 4 5 6 7 8 9

0

0.05

0.1

0.15

0.2

0.25

0.3

Smoothing values

st
d

P
S

N
R

 (
dB

)

Plot of std PSNR (Gaussian σ2=40)

BCMI
TVAL

(c) (d)
Fig. 12. Plots of the mean (panels (a) and (c)) and standard deviation (panels
(b) and (d)) of PSNR corresponding to nine smoothing values. Panels (a) and
(b) compare BCMI with projected FTVD, and panels (c) and (d) compare
BCMI with projected TVAL.

REFERENCES

[1] A.K. Jains, Fundamentals of Digital Image Processing, Prentice Hall.
[2] R. J. Marks, G. L. Wise, D. G. Haldeman, and J. L. Whited, “Detection

in Laplace noise,” IEEE Trans. on Aeros. and Elect. Syst., vol. 14, pp.
866–872, 1978.

[3] D. Kim, S. Sra, and I. Dhillon, “Tackling box-constrained optimization
via a new projected quasi-newton approach,” SIAM J. Sci. Comput., vol.
32, pp. 3548–3563, 2010.

[4] B. Morini, M. Pocelli, and R. H. Chan, “A reduced Newton method for
constrained linear least-squares problems,” J. of Comp. and Appl. Math,
vol. 233, pp. 2200–2212, 2010.

[5] A. Becky and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems,” IEEE
Trans. Image Processing, vol. 18, pp. 2419–2434, 2009.

[6] J. Ma, “Multiplicative algorithms for maximum penalized likelihood in-
version with nonnegative constraints and generalized error distributions,”
Communications in Statistics - Theory and Methods, vol. 35, Issue 5,
pp. 831–848, 2006.

[7] J. Ma, “Positively constrained multiplicative iterative algorithm for
maximum penalized likelihood tomographic reconstruction,” IEEE
Trans. Nuc. Scie., vol. 57, pp. 181–192, 2010.

[8] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D, vol. 60, pp. 259–268, 1992.

[9] C. Bouman and K. Sauer, “A generalized Gaussian image model for
edge-preserving MAP estimation,” IEEE Trans. Image Proc., vol. 2, pp.
296–310, 1993.

[10] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating mini-

mization algorithm for total variation image reconstruction,” SIAM J.
IMAGING SCIENCES, vol. 1, pp. 248–272, 2008.

[11] J. Yang, Y. Zhang, and W. Yin, “An efficient TVL1 algorithm for
deblurring multichannel images corrupted by impulsive noise,” SIAM J.
Sci. Comput., vol. 31, pp. 2842–2865, 2009.

[12] R. H. Chan, H. Liang, and J. Ma, “Positively constrained total variation
penalized image restoration,” Advances in Adaptive Data Analysis, vol.
3, pp. 187–201, 2011.

[13] D. Luenberger, Linear and Nonlinear Programming (2nd edition), J.
Wiley, 1984.

[14] W. Zangwill, Nonlinear Programming: A Unified Approach, Prentice-
Hall, New Jersey, 1969.

[15] C. F. Wu, “On the convergence properties of the EM algorithm,” The
Annals of Statistics, vol. 11, pp. 95–103, 1983.

[16] J. M. Ostrowski, Solution of equations and system of equations (2nd
edition), Academic, New York, 1966.

[17] J. Yang, W. Yin, and Y. Wang, “Fast algorithm for edge-preserving vari-
ational multichannel image restoration,” SIAM J. IMAGING SCIENCES,
vol. 2, pp. 569–592, 2009.

[18] A. Chambolle, “An algorithm for total variation minimization and
applications,” J. Mathematical Imaging and Version, vol. 20, pp. 89–97,
2004.

[19] K. Bredies, “A forwardbackward splitting algorithm for the minimization
of non-smooth convex functionals in banach space,” Inverse Problems,
vol. 25, pp. 1–20, 2009.

[20] C. Wu, J. Zhang, and X. C. Tai, “Augmented lagrangian method for
total variation restoration with non-quadratic fidelity,” Inverse Problems
and Imaging, vol. 5, pp. 237–261, 2011.

[21] C. R. Vogel and M. E. Oman, “Fast, robust total variation-based
reconstruction of noisy, blurred images,” IEEE Trans. Image Processing,
vol. 7, pp. 813–824, 1998.

[22] M. Lysaker and X. C. Tai, “Iterative image restoration combining total
variation minimization and a second-order functional,” Internation J. of
Comp. Vision, vol. 66, pp. 5 – 18, 2006.

[23] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Model. Simul., vol. 4, pp. 1168–1200,
2005.

[24] Y. Vardi, L.A. Shepp, and A. Kaufman, “A statistical model for positron
emission tomography (with discussion),” J. Amer. Stat. Assoc., vol. 80,
pp. 8–37, 1985.

[25] R. Chan, C. H. Ho, and M. Nikolova, “Salt-and-pepper noise removal by
median-type noise detectors and detail-preserving regularization,” IEEE
Trans. Image Processing, vol. 14, pp. 1479–1485, 2005.

[26] V. R. Vijaykumar, P. T. Vanathi, P. Kanagasabapathy, and D. Ebenezer,
“Robust statistics based algorithm to remove salt and pepper noise in
images,” Int. J. of Info. and Commu. Eng., vol. 5, pp. 164–173, 2009.

[27] E. Abreu, M. Lightstone, and S.K. Mitra, “A new efficient approach
for the removal of impulse noise from highly corrupted images,” IEEE
Trans. Image Processing, vol. 5, pp. 1012–1025, 1996.

[28] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image
processing and reconstruction,” IEEE Trans. Image Processing, vol. 16,
pp. 349 – 366, 2007.

[29] R. Pytlak, Conjugate gradient algorithms in nonconvex optimization,
Springer Verlag, Berlin.

[30] E. G. Birgin and J. M. Martinez, “Large-scale active-set box-constrained
optimization method with spectral projection gradients,” Computational
Optimization and Applications, vol. 22, pp. 101 – 125, 2002.

