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Abstract

In this paper, we consider the `p-`q minimization problem with 0 < p, q ≤ 2. The problem
has been studied extensively in image restoration and compressive sensing. In the paper, we first
extend the half-quadratic technique from `1-norm to `p-norm with 0 < p < 2. Based on this,
we develop a half-quadratic algorithm to solve the `p-`q problem. We prove that our algorithm
is indeed a majorize-minimize algorithm. From that we derive some convergence results of our
algorithm, e.g. the objective function value is monotonic decreasing and convergent. We apply
our algorithm to TV-`1 image restoration and compressive sensing in magnetic resonance (MR)
imaging applications. The numerical results show that our algorithm is fast and efficient in
restoring blurred images that are corrupted by impulse noise, and also in reconstructing MR
images from very few k-space data.

Key words. `p regularization, Half-quadratic, Majorize-minimize algorithm, Impulse noise,
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1 Introduction

In this paper, we consider the following `p-`q minimization problem

min
u

{λ
p
‖Ψu‖pp +

1

q
‖Au− f‖qq

}
(1)

where 0 < p, q ≤ 2 and u ∈ Rn is an image represented by a vector by concatenating the columns.
Here, Ψ can be a sparsifying operator such as a wavelet transform or a regularization operator such
as the discrete gradient operator; and A can be a sampling operator or a blurring operator. Problem
(1) has been studied extensively in image processing and compressive sensing. For example, if p = 1,
q = 2, and Ψ is the discrete gradient operator, then (1) is the TV-`2 minimization problem. It has
been successfully applied to image restoration [37, 39, 20] because of its good property in preserving
edges. TV-`1 model (i.e. q = 1) has also been successfully applied to applications such as impulse
noise removal [41, 26], image cartoon-texture decomposition [45], feature selection [45], multiscale
decomposition [46], and computer vision [10].
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When A is a sampling operator, model (1) with 0 ≤ p ≤ 1 and q = 2 has received a lot of
attention lately because of the introduction of compressive sensing techniques (‖u‖0 is defined to
be the number of nonzero entries in u). The techniques allow high resolution images and signals to
be reconstructed from a small amount of data [6, 7, 17]. There, the linear constrained minimization
problems are considered. Unfortunately, as p = 0, the constrained minimization problem is NP-hard
[1]. For this reason, different approaches are used to approximate the `0-norm [3, 14, 23, 29, 30, 34],
or alternatively one solves the `1-norm [5, 32, 47, 20] or the non-convex `p-norm [12, 13, 14] problem
with 0 < p < 1. The application of compressive sensing with p = 1 and q = 2 to magnetic resonance
(MR) image reconstruction can be found in [7, 27]. There it was shown that perfect reconstruction
of the Shepp-Logam phantom is possible from 22 radial lines or 9% of the k-space data. For real
images which are less sparse than the synthetic phantoms, one can obtain improved results by
having both a wavelet transform and a discrete gradient in the objective function. However, the
`1-norm regularized model can not get good results from fewer k-space data. See [27].

Problem (1) with 0 < p < 1 is a non-convex optimization problem. Theoretical work [15, 38] has
justified the non-convex approach as it guarantees perfect reconstruction under a less restrictive
condition than that would be needed by `1 minimization. There are quite a few algorithms for
solving the non-convex problem, see [12, 13, 14, 35, 4]. The numerical results in [12, 13] show that
the perfect MR image can be recovered from 10 radial lines (i.e. 3.8% of the k-space data) for
some 0 < p < 1. In [12], a fast algorithm based on the p-shrinkage reduces the number of lines
further to 9. For more details on p-shrinkage, one may consult [43] where the 1/2-theresholding
algorithm was studied. In [42], the author analyzed the effectiveness of problem (1) in recovering
sparse signals. The results showed that if p ∈ [1/2, 1), then the smaller the p is, the sparser the
`p-norm regularization solution will be; and if p ∈ (0, 1/2], there are no significant differences in
the sparsity of the solution.

In this paper, we propose a half-quadratic algorithm (HQA) to solve (1) for 0 < p, q ≤ 2. We
prove that our algorithm is indeed a majorize-minimize algorithm [11, 25, 24] for solving (1) and
from that some convergence results can be obtained immediately. For example, we show that the
objective function value is monotonically decreasing and convergent. We also give the convergence
rate of the method for 1 ≤ p, q ≤ 2. We test our algorithms on two applications: (i) TV-`1
minimization problem, and (ii) non-convex `p-`2 compressive sensing. Problem (i) is for restoring
blurred images that are corrupted by impulse noise, and our algorithm can reach high SNR value in
less CPU time than the augmented-Lagrangian method (ALM) in [41] and the fast total variation
deconvolution method (FTVDM) in [44]. Problem (ii) is for reconstructing MR images from few
k-space data, and our algorithm can get better results with less computational cost than the p-
shrinkage algorithm in [12].

The outline of the paper is as follows: In §2, we first derive our HQA for model (1) and
then adapt it to solve the TV-`1 minimization problem and non-convex `p-`2 compressive sensing
problem. In §3, we prove that our HQA is indeed a majorize-minimize algorithm, and hence we
derive some convergence results for the algorithm. Comparison with the ALM, FTVDM and the
p-shrinkage algorithm [12] are given in §3. Finally §4 is on some concluding remarks.

2 The Half-Quadratic Approach for `p-`q Minimization Problem

The half-quadratic regularization approach has been used in image processing [11, 19]. In [31], the
authors showed the equivalence of the HQ minimization and the gradient linearization iterations.
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The HQ technique is based on the fact that, if 0 6= t ∈ R, then

|t| = min
v>0
{vt2 +

1

4v
} (2)

and the minimum value is reached at v = 1
2|t| . Note that the function vt2 + 1/(4v) is quadratic in t

but not in v and hence the name half-quadratic. In this section, we first study the general form of
(2) for 0 < p < 2. Then we derive our HQA to solve (1) and adapt it to the TV-`1 minimization
problem and compressive sensing.

2.1 The Half-Quadratic Algorithm

The following lemma shows us the corresponding formula of (2) for | · |p with 0 < p < 2.

Lemma 2.1 For any 0 < p < 2, if 0 6= t ∈ R, then there exist positive constants α and ξ such that

|t|p = min
v>0

{
vt2 +

1

ξvα

}
. (3)

Proof: Let us first assume that α, ξ > 0 and define

f(v, t) := vt2 +
1

ξvα
. (4)

Then f(v, t) is convex with respect to v > 0 for any fixed t 6= 0. In addition, f(v, t)→∞ as v → 0
and v → ∞. The minimizer of f(v, t) with respect to v is therefore given by solving f ′v(v, t) = 0
and is equal to

v∗ =

(
α

ξt2

) 1
1+α

. (5)

Substituting (5) into (4), the minimum value is

f(v∗, t) =
[(α

ξ

) 1
1+α

+
1

ξ

(
ξ

α

) α
1+α ]

t
2α
1+α .

Since we want the minimum value to be |t|p for any t 6= 0, we set 2α/(1 + α) = p,(
α
ξ

) 1
1+α

+ 1
ξ

(
ξ
α

) α
1+α

= 1.

Solving the system for α and ξ, we have

α =
p

2− p
and ξ =

2
2

2−p

(2− p) · p
p

2−p
. (6)

Clearly both α and ξ are positive for any fixed 0 < p < 2. �

Remarks
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(a) As an example, for p = 1/2, we have ξ = 28/3/3 and α = 1/3. For p = 1, we have α = 1
and ξ = 4, and hence (3) reduces to (2). Note that we would like to have α > 0 so that the
functional f(v, t) is convex with respect to v for any fixed t 6= 0. By (5) and (6), we have

v∗ =
p

2
|t|p−2. (7)

(b) From the above lemma, we know that for fixed α, ξ > 0 of (6) and any t 6= 0, the minimum of
(3) is reached at the stationary point of f(v, t) w.r.t v, which is an inner point of the open,
convex, feasible set R+.

Next we apply (3) to solve (1). To simplify the discussions, we first consider the case where
0 < p, q < 2, and leave the case where p and/or q = 2 later.

Case 1: 0 < p, q < 2. Notice that Lemma 2.1 holds only for t 6= 0 as negative power of |t| appears
in v∗, see (7). Hence in order to apply (3), we need to smooth (1) first. In the following, we denote
|ρ|ε :=

√
ρ2 + ε for any ρ ∈ R and ε > 0. The smoothed `p-`q problem of (1) is

min
u

{λ
p
‖Ψu‖pp,β +

1

q
‖Au− f‖qq,γ

}
=: min

u
{Φβ,γ(u)} (8)

where ‖Ψu‖pp,β :=
∑n

i=1 |Ψiu|pβ and ‖Au − f‖qq,γ =:
∑n

i=1 |Aiu − fi|
q
γ , with β and γ being small

positive numbers, and Ψi and Ai are the ith rows of Ψ and A respectively. Applying (3) to (8),
problem (8) becomes

min
u

{
n∑
i=1

[
λ

p
min
vi>0

(
vi|Ψiu|2β +

1

ξpv
αp
i

)
+

1

q
min
wi>0

(
wi|Aiu− fi|2γ +

1

ξqw
αq
i

)]}

= min
u,v>0,w>0

{ n∑
i=1

[λ
p

(
vi|Ψiu|2β +

1

ξpv
αp
i

)
+

1

q

(
wi|Aiu− fi|2γ +

1

ξqw
αq
i

)]}
=: min

u,v>0,w>0
{L(u,v,w)}, (9)

where v,w > 0 mean that all the components of v,w are greater than 0. Here ξi and αi, i = p, q
are scalars given by (6).

To solve (9), we apply the alternating minimization procedure, namely,

vk+1 = arg min
v>0
L(uk,v,wk), (10)

wk+1 = arg min
w>0
L(uk,vk+1,w), (11)

uk+1 = arg min
u
L(u,vk+1,wk+1). (12)

By (7), we know that (10) and (11) have explicit component minimizers

vk+1
i =

p

2
|Ψiu

k|p−2
β and wk+1

i =
q

2
|Aiuk − fi|q−2

γ . (13)

Note that L(u,vk+1,wk+1) is continuously differentiable in u. Hence uk+1 in (12) is the solution
of

0 = ∇uL(u,vk+1,wk+1) = λΨ>Dβ(uk)Ψu +A>Dγ(uk)(Au− f), (14)
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where Dβ(uk) and Dγ(uk) are diagonal matrices with their i-th diagonal entries being

2

p
vk+1
i = |Ψiu

k|p−2
β and

2

q
wk+1
i = |Aiuk − fi|q−2

γ (15)

respectively. Equation (14) provides us an iterative scheme for finding the minimizer of (8).

Case 2: p and/or q = 2. In that case, the corresponding term in (1) is quadratic and differentiable.
So there is no need to apply the half-quadratic technique (3) to the term. However, one can easily
check by differentiation of (1) that (14) and (15) are still valid. More precisely, if p = 2, then
differentiation of the first term in (1) gives λΨ>Ψu. But by (15), Dβ(uk) ≡ I, the identity matrix
and hence the first term of (14) also reduces to λΨ>Ψu. Similarly, if q = 2, then Dγ(uk) ≡ I
and (14) still holds. In particular, if p = q = 2, then (14) reduces to the least-squares problem as
expected, and the minimizer u can be obtained in one iteration. In the following discussions, we
will exclude this trivial case p = q = 2.

Thus combining Case 1 and Case 2, we see that (14) holds for 0 < p, q ≤ 2. We summarize our
half-quadratic algorithm (HQA) for the smoothed `p-`q problem (8) below:

(1) Initialize u0;

(2) For l = 0, 1, · · · until convergent, find uk+1 by solving (cf (14))(
λΨ>Dβ(uk)Ψ +A>Dγ(uk)A

)
u = A>Dγ(uk)f , (16)

where Dβ(·) and Dγ(·) are diagonal matrices given in (15).

To find the solution to the `p-`q problem (1), we can use a continuation method and apply HQA
to a sequence of {βl, γl} going to zero. We will discuss the implementation in more details in the
section on numerical tests, see Algorithm 1 in Section 4.

2.2 Half-Quadratic Algorithm for TV-`1 and Compressive Sensing

Let us consider HQA (16) for two specific examples: TV-`1 image restoration and compressive
sensing. The TV-`1 minimization problem is of the form:

min
u

{
λ‖∇u‖1 + ‖Au− f‖1

}
, (17)

where ‖∇u‖1 :=
∑n

i=1

√
[(G1)iu]2 + [(G2)iu]2 with (Gj)i representing the ith row of the finite

difference operator in the xj-coordinate. The smoothed version of (17) is

min
u

{
n∑
i=1

[λ|∇ui|β + |Aiu− fi|γ ]

}
, (18)

where |∇ui|β :=
√

[(G1)iu]2 + [(G2)iu]2 + β and β, γ → 0. Letting p = q = 1, Ψ = G in (15) and
(16), we see that (16) should be replaced by:

{
λ

2∑
j=1

[G>j Dβ(uk)Gj ] +A>Dγ(uk)A
}
u = A>Dγ(uk)f , (19)

where Dβ(uk) and Dγ(uk) are diagonal matrices with their ith diagonal entries being |∇uki |
−1
β and

|Aiuk − fi|−1
γ respectively.
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Next we consider HQA for MR image reconstruction problem. In [27], a regularization term
combining a discrete gradient ∇ and an orthogonal wavelet W [8] is considered for 0 < p ≤ 1:

min
u

{
‖∇u‖pp + δ‖Wu‖pp : RFu = f

}
. (20)

Here R is a selection matrix (a diagonal matrix) and F is the Fourier transform. As mentioned in
[12], it is sufficient to use δ = 1 in (20); and for gradient-sparse images, we can simply take δ = 0.
Problem (20) is equivalent to the minimization problem

min
u

{λ
p

(
‖∇u‖pp + δ‖Wu‖pp

)
+

1

2
‖RFu− f‖22

}
, (21)

where λ is the Lagrange multiplier. As before, since the data fitting term is quadratic, we keep it
intact, and we smooth only the p-norm terms. Hence we have the following smoothed problem:

min
u

{λ
p

n∑
i=1

(
|∇ui|pβ + δ|Wiu|pγ

)
+

1

2
‖RFu− f‖22

}
,

with β, γ → 0. Correspondingly, equation (16) should be replaced by:

[
λ
( 2∑
j=1

[G>j Dβ(uk)Gj ] + δW>Dγ(uk)W
)

+ F ∗RF
]
u = F ∗Rf , (22)

where F ∗ is inverse Fourier transform, Dβ(uk) and Dγ(uk) are diagonal matrices with their i-th

diagonal entries being |∇uki |
p−2
β and |Wiu

k|p−2
γ respectively.

3 Convergence Analysis

In this section, we analyze the convergence of the HQA (16) based on the convergence property
of the majorize-minimize algorithm (MMA) in [40, 11, 25, 24] for fixed β, γ. We first show that
Φβ,γ(uk) is monotonically decreasing and convergent for 0 < p, q ≤ 2. Then we show that uk is
convergent and linear convergent for 1 ≤ p, q ≤ 2.

3.1 Convergence of Φβ,γ(u
k) for 0 < p, q ≤ 2

The MM optimization technique [11, 24, 25] is to solve a minimization problem min
u

Φβ,γ(u) by

uk+1 = arg min
u
{Q(u,uk)}, (23)

where Q(u,uk), called a tangent majorant function of Φβ,γ(u) at uk, must satisfy

Q(u,uk) ≥ Φβ,γ(u), ∀ u ∈ Rn, (24)

Q(u,uk) = Φβ,γ(u), at u = uk, (25)

∇1Q(u,uk) = ∇Φβ,γ(u), at u = uk. (26)

Here, ∇1Q(u,uk) denotes the partial derivative with respect to the first vector variable. Conver-
gence analysis of the MMA can be found in [11, 24, 25].
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For the smoothed `p-`q problem (8), if we define Q(u,uk) := L(u,vk+1,wk+1), then our HQA
(12) can be written as

uk+1 = arg min
u
L(u,vk+1,wk+1) = arg min

u
{Q(u,uk)}, (27)

which is of the same form as (23). For 0 < p, q < 2, substituting (13) into (27), we obtain the
explicit form of Q(u,uk):

Q(u,uk) =
n∑
i=1

[
λ

p

(p
2
|Ψiu

k|p−2
β |Ψiu|2β +

2− p
2
|Ψiu

k|pβ
)

+

1

q

(q
2
|Aiuk − fi|q−2

γ |Aiu− fi|2γ +
2− q

2
|Aiuk − fi|pγ

)]
. (28)

We recall that when p or q is equal to 2, there is no need to smooth the corresponding term as it is
already differentiable. Hence if we use the convention that β = 0 (or respectively γ = 0) whenever
p = 2 (or respectively q = 2), then (28) holds for all 0 < p, q ≤ 2.

Lemma 3.1 Let 0 < p, q ≤ 2. For any fixed β, γ > 0, the HQA for the smoothed `p-`q problem (8)
is the same as an MMA with tangent majorant function Q(u,uk) defined by (28).

Proof: Since our HQA (12) is rewritten as (27) with Q(u,uk) given by (28), we only need to prove
that (24)–(26) holds for such Q. Substituting u = uk in (28) and using the definition of Φβ,γ(u) in
(8), we see that Q(uk,uk) = Φβ,γ(uk), which is (25). To prove that Q satisfying (24), we use the
Young inequality, which states that (xa/a+ yb/b) ≥ xy for all x, y ≥ 0, a, b ≥ 1 and 1/a+ 1/b = 1.
Let us consider the case where 0 < p < 2 first, and set

x = |Ψiu
k|

(p−2)p
2

β |Ψiu|pβ, y = |Ψiu
k|

(2−p)p
2

β , a =
2

p
, b =

2

2− p
.

Then Young’s inequality implies that

p

2
|Ψiu

k|p−2
β |Ψiu|2β +

2− p
2
|Ψiu

k|pβ ≥ |Ψiu|pβ.

Clearly, the inequality becomes a trivial equality when p = 2. Similarly, we can show that

q

2
|Aiuk − fi|q−2

γ |Aiu− fi|2γ +
2− q

2
|Aiuk − fi|pγ ≥ |Aiu− fi|qγ ,

for all 0 < q ≤ 2. Then by taking the summation, we immediately have Q(u,uk) ≥ Φβ,γ(u); and
hence (24) holds. Finally by taking the derivatives of Φβ,γ(u) and Q(u,uk) with respect to u, we
have

∇Φβ,γ(u) = λΨ>Dβ(u)Ψu +A>Dγ(u)(Au− f), (29)

∇1Q(u,uk) = λΨDβ(uk)Ψu +A>Dγ(uk)(Au− f), (30)

where Dβ(·) and Dγ(·) are defined as in (14). Substituting u = uk into (29) and (30), we immedi-
ately have (26). �

Based on Lemma 3.1, we can derive the following fundamental convergence theorem.
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Theorem 3.2 Let 0 < p, q ≤ 2. For the sequence {uk} generated by the HQA, we have that
{Φβ,γ(uk)} is monotonically decreasing and convergent.

Proof: The theorem is a direct result of Lemma 3.1. First, {Φβ,γ(uk)} is bounded from below by
0. In Lemma 3.1, we have shown that the HQA is an MMA, which implies that

Φβ,γ(uk+1) ≤ Q(uk+1,uk) ≤ Q(uk,uk) = Φβ,γ(uk). (31)

Here the first inequality and the last equality follows from (24) and (25), while the second inequality
holds because uk+1 is a minimizer of Q(u,uk). �

3.2 Convergence of uk for 1 ≤ p, q ≤ 2

Note that if 0 < p, q < 1, the `p-`q minimization problem is non-convex. Hence, in the following,
we discuss the convergence of uk for 1 ≤ p, q ≤ 2 only. In order that uk is solvable from (16) and
hence our HQA will not break down, we need the following assumption:

ker(Ψ>Ψ) ∩ ker(A>A) = {0}. (32)

We remark that this assumption is very general and usually satisfied. For example, in regularization
problems, Ψ is usually a difference operator, and hence is a high-pass filter; whereas A is a blurring
operator, and hence is a low-pass filter. Therefore, (32) holds. For compressive sensing, Ψ is usually
taken to be an orthogonal transform and we have Ψ>Ψ = I. Hence, ker(Ψ>Ψ) = {0} which implies
(32) holds for any A.

In [40, 11], the authors gave the convergence proof of general MMAs when the objective function
Φ and its corresponding tangent majorant function Q satisfy Hypotheses 4.1 and 4.2 there. The
convergence proof for our HQA will follow closely the proofs there. More precisely, we will show
that our Φβ,γ defined in (8) and our Q defined in (27) do satisfy the hypotheses, and hence the
convergence follows immediately. Let us write out the hypotheses below.

Hypothesis 1 [Hypothesis 4.1 in [11]]

1. Φ is twice continuously differentiable and strictly convex.

2. Φ is coercive, i.e., lim
‖u‖2→∞

Φ(u) =∞.

3. Φ is bounded from below.

Hypothesis 2 [Hypothesis 4.2 in [11]]

(a) There exists a properly defined function C : Rn → Rn×n such that

(i) Q(u,v) = Φ(v) + (u− v)>∇Φ(v) + 1
2(u− v)>C(v)(u− v) for all u,v ∈ Rn.

(ii) C is continuous.

(iii) There exists a constant η such that, for the smallest eigenvalue λmin(C(v)) of C(v), the
following inequality holdes: λmin(C(v)) ≥ η > 0, for all v ∈ Rn.

(b) Φ(u) ≤ Q(u,v) for all u,v ∈ Rn.

Lemma 3.3 Let 1 ≤ p, q ≤ 2 and ker(Ψ>Ψ) ∩ ker(A>A) = {0}. Then Φβ,γ(u) defined in (8)
satisfies Hypothesis 1. In particular, Φβ,γ(u) has a unique minimizer.
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Proof: By the definition of Φβ,γ in (8), it is obvious that Φβ,γ is twice continuously differentiable
and bounded from below by 0. We thus only need to prove the strict convexity and coercivity.

We start with the strict convexity. Taking derivatives on both sides of (29), we have

∇2Φβ,γ(u) = λΨ>Pβ(u)Ψ +A>Pγ(u)A,

where Pβ(u) and Pγ(u) ∈ Rn×n are the diagonal matrices with their i-th diagonal entries being

|Ψiu|p−4
β (β + (p− 1)|Ψiu|2) and |Aiu− fi|q−4

γ (γ + (q − 1)|Aiu− fi|2) respectively. Here recall our
convention that when p or q = 2, the corresponding β or γ should be set to 0 because there is no
need to smooth the term. Bounding each diagonal entry from below, we have

∇2Φβ,γ(u) � c1Ψ>Ψ + c2A
>A,

where

c1 =:

{
λβ

|‖Ψ‖∞‖u‖∞|4−pβ

, 1 ≤ p < 2,

λ, p = 2,
c2 =:

{
γ

|‖A‖∞‖u‖∞+‖f‖∞|4−qγ
, 1 ≤ q < 2,

1, q = 2.

By the assumption (32), we have ∇2Φβ,γ(u) � 0, and the strict convexity of Φβ,γ(u) is proven.
Next we show the coercivity. Note that f(·) = | · |p is convex for p ≥ 1, which implies that

1

n

n∑
i=1

f(xi) ≥ f

(
1

n

n∑
i=1

xi

)
. (33)

We rewrite Φβ,γ in (8) into a summation form and then apply (33). Then we have

Φβ,γ(u) =
λ

p

n∑
i=1

|Ψiu|pβ +
1

q

n∑
i+1

|Aiu− fi|qγ

≥ λn

p

( 1

n

n∑
i=1

|Ψiu|β
)p

+
n

q

( 1

n

n∑
i=1

|Aiu− fi|γ
)q
. (34)

Next we apply the inequality
∑

i |ai| ≥
√∑

i |ai|2 to (34), then we have

Φβ,γ(u) ≥ λn1−p

p

(√
u>Ψ>Ψu + βn

)p
+
n1−q

q

(√
(Au− f)>(Au− f) + γn

)q
≥ c3

[(√
u>Ψ>Ψu + βn

)p
+
(√

(Au− f)>(Au− f) + γn
)q]

, (35)

where c3 = min{λn1−p/p, n1−q/q}. Now, we prove the coercivity of Φβ,γ(u) by contradiction.
Define

φβ,γ(u) = u>(ΨTΨ +A>A)u− 2f>Au + ‖f‖22 + (β + γ)n.

Since Ψ>Ψ + A>A � 0, σ2 =: λmin(Ψ>Ψ + A>A) > 0. Thus, if ‖u‖2 → ∞, we see that

lim‖u‖2→∞
φβ,γ(u)

‖u‖22
≥ σ2. Hence, φβ,γ(u) is coercive, i.e. for any M0 > 0, there exists M1 > 0,

for any ‖u‖2 ≥M1, then we have φβ,γ(u) > M0. Suppose that Φβ,γ(u) is non coercive, i.e.

lim
‖u‖2→∞

Φβ,γ(u) 6=∞.

9



Thus, for the above M0, for any M2 ≥ M1, there exists ‖u0‖2 ≥ M2, but yet Φβ,γ(u0) ≤
c3 min{(M0/2)p, (M0/2)q}. Together with (35), we have

u>0 Ψ>Ψu0 + βn ≤ M0

2
,

(Au0 − f)>(Au0 − f) + γn ≤ M0

2
.

Summing these two inequalities up, we have φβ,γ(u0) ≤ M0, which is a contradiction to the coer-
civity of φβ,γ(u). �

Regarding Hypothesis 2, in fact, we cannot show that Hypothesis 2 holds for arbitrary vectors
v. We can only show that it holds for v = uk, the sequence generated by HQA. However, as we
will see later in Theorem 3.5, it will be enough for us to prove the convergence of HQA.

Lemma 3.4 Let 1 ≤ p, q ≤ 2 and ker(Ψ>Ψ) ∩ ker(A>A) = {0}. Then Φβ,γ(u) defined in (8) and
Q(u,uk) defined in (27) satisfy Hypothesis 2 at v = uk. In particular, the coefficient matrix of the
linear system (16) is invertible.

Proof: By definition of Q(u,uk) in (28), Q(u,uk) is quadratic in u and its Hessian matrix is given
by

∇2
1Q(u,uk) = λΨ>Dβ(uk)Ψ +A>Dγ(uk)A, (36)

which is independent of u. Taking the Taylor expansion for Q(u,uk) at uk, we have

Q(u,uk) = Q(uk,uk) + 〈∇1Q(uk,uk),u− uk〉+
1

2
(u− uk)>∇2

1Q(uk,uk)(u− uk).

Since we have proven that the HQA is indeed an MMA in Lemma 3.1, we can replace Q(uk,uk)
and ∇1Q(uk,uk) by Φβ,γ(uk) and ∇Φβ,γ(uk) respectively in the equality above and then we obtain

Q(u,uk) = Φβ,γ(uk) + 〈∇Φβ,γ(uk),u− uk〉+
1

2
(u− uk)>∇2

1Q(uk,uk)(u− uk).

Notice that {Φβ,γ(uk)} is bounded from below by 0 from the definition in (8). In addition, recalling
that {Φβ,γ(uk)} is monotonically decreasing and bounded from above by Φβ,γ(u0) by (31). There-

fore, by coercivity, see Hypothesis 1(b), {‖uk‖2} must be bounded from above. Denote the bound
by M . Recalling the definition of Dβ(uk), Dγ(uk) in (16), we have

λmin

(
∇2

1Q1(uk,uk)
)
≥ λmin

(
c4Ψ>Ψ + c5A

>A
)

:= η, (37)

where

c4 =

{
λ

|||Ψ||∞M |β , 1 ≤ p < 2,

λ, p = 2,
c5 =

{ 1
|M‖A‖∞+‖f‖∞|γ , 1 ≤ q < 2,

1, q = 2.

By (32), η > 0. Hypothesis 2(a)(iii) holds.
Hypothesis 2(b) is just (24), and hence is true. Finally notice that the coefficient matrix of the

linear system in (16) is precisely ∇2
1Q(uk,uk) in (36) and hence by (37), it is invertible. �

Since Hypothesis 2 is only valid for uk and not for arbitrary vectors v, we cannot directly apply
the convergence theorems in [11]. However, the proof in [11] can easily be adapted to prove the
following two convergence theorems for HQA.

10



Theorem 3.5 Let 1 ≤ p, q ≤ 2 and ker(Ψ>Ψ)∩ker(A>A) = {0}. For the sequence {uk} generated
by HQA, we have

(a) lim
k→∞

‖uk − uk+1‖2 = 0;

(b) {uk} converges to the unique minimizer u∗ of Φβ,γ(u) from any initial guess u0.

Proof:

(a) We see from (36) that Q(u,uk) is quadratic in u. Taking Taylor expansion of Q(u,uk) at
uk+1, we have

Q(u,uk) = Q(uk+1,uk) + 〈∇1Q(uk+1,uk),u− uk+1〉

+
1

2
(u− uk+1)>∇2

1Q(uk,uk)(u− uk+1). (38)

By (23), we have ∇1Q(uk+1,uk) = 0. By taking u = uk in (38) and using (37), we thus have

Q(uk,uk) ≥ Q(uk+1,uk) +
η

2
‖uk − uk+1‖22,

where η > 0. Together with (31), we obtain that

Φβ,γ(uk)− Φβ,γ(uk+1) ≥ Q(uk,uk)−Q(uk+1,uk) ≥ η

2
‖uk − uk+1‖22. (39)

By Theorem 3.2, the convergence of {Φβ,γ(u)} implies that

lim
k→0

Φβ,γ(uk)− Φβ,γ(uk+1) = 0

Together with (39) and η > 0, we have lim
k→∞

‖uk − uk+1‖2 = 0.

(b) By the proof for Lemma 3.4, we know that the sequence {‖uk‖2} is bounded from above.
Hence it converges to the unique minimizer u∗ if and only if all convergent subsequences
of {uk} converge to u∗. Let {ukj} be an arbitrary convergence subsequence of {uk} that
converges to ū. To finish the proof for the theorem, we only need to prove that ū = u∗. Since
Q(u,ukj ) is quadratic in u, we have

Q(u,ukj ) = Q(ukj ,ukj ) + 〈∇1Q(ukj ,ukj ),u− ukj 〉+
1

2
(u− ukj )>∇2

1Q(ukj ,ukj )(u− ukj ).

By taking the partial derivative with respect to u and substituting (26), we then have

∇1Q(u,ukj ) = ∇Φβ,γ(ukj ) +∇2
1Q(ukj ,ukj )(u− ukj ).

∇1Q(u,v) is continuous since Φβ,γ is twice continuously differentiable by Hypothesis 1(a),
and C(v) = ∇2

1Q(v,v) is continuous by Hypothesis 2(a)(ii). Letting u = ukj+1 and using
(23), we then have

0 = ∇1Q(ukj+1,ukj ) = ∇Φβ,γ(ukj ) +∇2
1Q(ukj ,ukj )(ukj+1 − ukj ). (40)

By (a), we know that lim
j→∞

‖ukj+1 − ukj‖2 = 0. This implies that lim
j→∞

ukj+1 = ū. Taking

limits to the both sides of (40), we obtain

0 = lim
j→∞

∇1Q(ukj+1,ukj ) = ∇1Q( lim
j→∞

ukj+1, lim
j→∞

ukj )

= ∇1Q(ū, ū) = ∇Φβ,γ(ū) +∇2
1Q(ū, ū)(ū− ū) = ∇Φβ,γ(ū).

By the uniqueness of the minimizer, see Lemma 3.3, we can conclude that ū = u∗. �
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Theorem 3.6 Let 1 ≤ p, q ≤ 2 and ker(Ψ>Ψ) ∩ ker(A>A) = {0}. Let u∗ be the unique minimizer
of Φβ,γ(u) and

Λ := 1− λmin

(
∇2

1Q(u∗,u∗)−1∇2Φβ,γ(u∗)
)
.

Then Λ < 1 and the sequence {Φβ,γ(uk)} has a linear convergence rate of at most Λ while the
sequence {uk} is r-linearly convergent with a convergence rate of at most

√
Λ.

To prove Theorem 3.6, we can follow the proof of Theorem 6.1 in [11].

4 Numerical Results

In this section, we test our algorithm on deblurring images corrupted by impulse noise and restoring
MR images from few k-space data. Recall that the HQA given in (16) is for solving the smoothed
`p-`q problem (8) for a fixed pair of smoothing parameters β and γ. To solve the original `p-`q
problem (1), we apply the idea of continuation method on HQA for a sequence of {βl, γl} going to
zero. We note that continuation methods has been used in solving TV problems before, see [9, 44].
We summarize the HQA for (1) below:

Algorithm 1. The HQA for solving (1) with 0 < p, q ≤ 2:

(1) Initialize β0, γ0,u0;

(2) For l = 0, 1, · · · until stopping criteria are met, do:

(a) For k = 0, 1, · · · until stopping criteria are met, do:

(i) Initialize ul,0 = ul−1;

(ii) Get ul,k+1 by solving(
λΨ>Dβl(u

l,k)Ψ +A>Dγl(u
l,k)A

)
u = A>Dγl(u

l,k)f , (41)

where Dβl(·) and Dγl(·) are diagonal matrices given as in (14) with β = βl, γ = γl.

(b) Set ul to be the final solution from part (a).

(c) Update βl, γl to βl+1, γl+1.

In all the following tests, we take the stopping criteria for the inner loop as

τ =: ‖∇Φβl,γl(u
l,k)‖2 > 0.2,

where ∇Φβ,γ(u) has been given in (29).

4.1 Numerical Results on the TV-`1 Image Restoration

In this section, we apply Algorithm 1 to deblur images that are corrupted by impulse noise. Here,
(41) is replaced by (19) with ul,k replacing uk. The deblurring problem has been discussed recently
in many papers, see for examples [16, 44, 41]. Among all these methods, the FTVDM and the ALM
are the most efficient linear algorithms; and according to the numerical results in [41], ALM is the

12



fastest one. Hence in this paper, we compare our HQA with FTVDM and ALM only. The FTVDM
and ALM codes we used here are provided by the authors in [41] and we use the same parameters
as in [41]. For more details on the algorithms and the parameters, please consult [41, 44].

We test three 256 × 256 images: Barbara, Bridge and Goldhill. The matrix A is the blurring
matrix corresponds to the Gaussian blur generated by the MATLAB command

fspecial(’Gaussian’, [7 , 7], 5).

Then salt-and-pepper noise is added to the blurred image to obtain the observed image f . The
noise levels are taken to be 30%, 40%, 50%, 60%. For all methods, the regularization parameter
λ is set to 1/13, 1/10, 1/8, 1/4 for noise level 30%, 40%, 50%, 60% respectively. In our algorithm,
we initialize u0 = rand(size(f)). As in the FTVDM, to speed up the convergence and improve the
resolution quality, we take large β, γ at the beginning and reduce them gradually to smaller ones
respectively. We set βl to be 10−3, 10−4, · · · , 10−16 and γl = (βl)2. Equation (19) is solved by the
conjugate gradient (CG) method. Considering that more iterations for CG are needed with the
decreasing of β, therefore we fix the iteration number in the inner loop to be 10 × l at βl. In all
tests, we consider periodic boundary condition for the difference matrix A, as it is the boundary
condition used in the tests in [41]. We compare the accuracy of the methods by the signal-to-noise
ratio (SNR) used in [41]. It is defined by

SNR =: 10 log10

‖u− E(u)‖22
‖û− u‖22

(dB).

Here u and û denote the original image and the restored image respectively, and E(u) is the mean
gray-level value of the original image.

First we compare the speed of the three methods. Figures 1–3 show the timing comparison of
the three algorithms. Each point in the figures show the accumulated CPU time until that iteration
and the corresponding SNR. The results show that our method is the fastest amongst the three
methods. It is also the most accurate one.

Image Method
Salt-and-pepper noise

30% 40% 50% 60%

Barbara
ALM 13.93 13.35 12.45 11.37
HQA 14.24 13.59 12.83 11.72

Bridge
ALM 11.85 10.95 10.13 8.52
HQA 12.03 11.12 10.27 9.00

Goldhill
ALM 16.08 15.03 13.78 12.05
HQA 16.50 15.32 14.10 12.72

Table 1: SNR of the restored images.

From Figures 1–3, it is clear that FTVDM is the slowest amongst the three. In order to compare
the accuracy of the two faster methods ALM and HQA more precisely, we list in Table 1 the average
SNR of the recovered images in five trials by the two methods. To compare the timing fairly, we
first run ALM until its stopping criteria [41] is satisfied, say with t0 CPU seconds. Then we let
HQA run until the CPU time of the kth iteration is just greater than t0. Then we record the SNR
of the (k − 1)th iteration as our result for HQA. We see from Table 1 that HQA is more accurate
than ALM. Recovered images taking Barbara for example are shown in Figure 7 for “eyeball”
illustration.
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Figure 1: SNR versus CPU time in seconds for “Barbara” with salt-and-pepper noise.
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Figure 2: SNR versus CPU time in seconds for “Bridge” with salt-and-pepper noise.

We illustrate the convergence rate of {Φβ,γ(uk)} and {uk} in our HQA as mentioned in Theorem
3.6. We use the Barbara image as example. Since we do not have the true minimizer, we use
RkΦ =: [Φβ,γ(uk+1)− Φβ,γ(uk)]/[Φβ,γ(uk)− Φβ,γ(uk−1)] and Rku =: [‖uk+1 − uk‖2/‖uk − uk−1‖2]
to estimate the convergence rate for {Φβ,γ(uk} and {uk} respectively. In Figure 4, we plot the
ratio RkΦ against the iteration number. We see that the ratios are all less than 1, indicating that
{Φβ,γ(uk)} is linearly convergent as stated in Theorem 3.6. In Figure 5, we plot Rku against the
iteration number. We see that Rku < c (c is a positive constant less than 1), indicating that {uk}
indeed is linearly convergent.

In [44], the original energy functional (17) is a non-differentiable functional of u, hence aux-
iliary variables w, z and regularization parameters θw, θz are taken to approximate (17). The
approximated problem is

min
w,z,u
{λ(‖|w|‖1 +

θw
2
‖w −∇u‖22) + ‖z‖1 +

θz
2
‖z− (Bu− f)‖22}

The parameters θw and θz are upper limited to be θw = 210, θz = 215 in the approximate problem.
To speed up the convergence, θw and θz are both implemented in a continuous scheme; that is,
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Figure 3: SNR versus CPU time in seconds for “Goldhill” with salt-and-pepper noise.

let θw and θz take small values at the beginning and gradually increase their values to 210 and 215

respectively. Specially, a θw-sequence 20, 22/3, 24/3, · · · , 210 is tested. Accordingly, θz is set to be
20, 21, 22, · · · , 215.

A similar continuation scheme is also taken in our HQA. We take β = 10−1, 10−2, · · · , 10−17,
correspondingly, γ = β2 and compare the FTVDM and the HQA. Figure 6 shows their comparison
results on the SNR versus CPU time and SNR versus iteration number. The jump shows the
improvements in SNR as θkw, θ

k
z , β

k, γk change to θk+1
w , θk+1

z , βk+1, γk+1.

4.2 Numerical Results on the MR Image Reconstruction

In this section, we apply Algorithm 1 to reconstruct MR image from few k-space data. Here (41)
is replaced by (22) with ul,k replacing uk. To test the efficiency of our algorithm, we compare our
algorithm and the p-shrinkage algorithm by Chartrand in [12]. As in [12], we take p = 1/2. In
addition, we also give the numerical results by `1-norm regularized model for comparison. We test
our algorithm on the two images: 256× 256 Shepp-Logan phantom and 224× 224 Brain image. In
all the tests, we set β to be 10−4, 10−5, · · · , 10−14, and γ = β correspondingly. Moreover, we just
use the simple CG method to solve the corresponding linear system (22).

We begin with the Shepp-Logan phantom. As in [12], because the phantom has a very sparse
gradient, we do not use the wavelet regularization, and let δ = 0 in (20). We show the comparison
results on the MR image reconstruction from 10 radial lines (3.85% sampling), 22 radial lines
(8.36% sampling), and 30 radial lines (11.32% sampling) respectively. In all the three tests, we
take λ = 0.0002. When p = 1, the p-shrinkage [12] is actually the soft-thresholding. The results are
shown in Figure 8–10. In all three figures, we see that our HQA can reach better reconstruction (at
least 13–16dB better) using less computational time (at least 1/2 of the time) than the p-shrinkage
algorithm. Among all the results, the `1-norm regularization model takes the most time to obtain
a suitable reconstruction image, especially when the k-space data is very few.

Next, we apply our algorithm to recover the MR brain image in the presence of noise. We set
that the image is corrupted by the white Gaussian noise with noise level σ = 5. Here, by error
and trials, we take λ = 0.002. Our results show that the recovered images have higher quality by
the ‖∇u‖pp regularization model than by the ‖∇u‖pp + ‖Wu‖pp. Hence, here, we show the recovered
results from (22) with δ = 0. The comparison results are shown in Figure 11. For the brain
image, we take 40 views (16.97% sampling). The results show that our HQA can reach the best
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Figure 4: The ratio RkΦ :=
Φβ,γ(uk+1)−Φβ,γ(uk)

Φβ,γ(uk)−Φβ,γ(uk−1)
versus iteration number for “Barbara”. The ratios

are less than 1, illustrating the linear convergence of {Φβ,γ(uk)}.

reconstruction with the clearest background in the least amount of time.

5 Conclusion

In this paper, we study the half-quadratic technique for `p-norm and propose an algorithm for
solving `p-`q (0 < p, q ≤ 2) minimization problem. We show that the algorithm is equivalent to a
majorize-minimize algorithm. Weak convergence result for 0 < p or q < 1, and linear convergence
rate for 1 ≤ p, q ≤ 2 are obtained immediately. Next, we compare our algorithm with standard
ones in the TV-`1 minimization problem and the MR image reconstruction. The results show that
our algorithm can reach better reconstruction results with less computational cost.
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30%, Salt & Pepper 40%, Salt & Pepper 50%, Salt & Pepper 60%, Salt & Pepper

By ALM, 
SNR = 13.9857dB,

     Cputime=12.52s         

By ALM, 
SNR = 13.3577dB

     Cputime=11.07s        

By ALM, 
SNR = 12.3986dB,

     Cputime=12.46s         

By ALM, 
SNR = 11.4804dB

    Cputime=16.54s         

By FTVDM, 
SNR = 13.9477dB,

      Cputime=11.06s           

By FTVDM, 
SNR = 13.3776dB,

       Cputime=19.08s           

By FTVDM, 
SNR = 12.376dB,

       Cputime=17.46s          

By FTVDM, 
SNR = 11.3799dB,

      Cputime=16.19s           

By HQA, 
SNR = 14.2404dB,

      Cputime=12.96s         

By HQA, 
SNR = 13.6344dB,

     Cputime=11.6s          

By HQA, 
SNR = 12.8735dB,

     Cputime=12.82s         

By HQA, 
SNR = 11.7274dB,

      Cputime=16.74s         

Figure 7: Restored images.
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Shepp−Logan phantom Samlpling pattern Min energy, SNR=5.3374dB

By Chartrand, p = 0.5,λ = 0.0002, βD = 0.0002

SNR = 47.8936dB, Cputime=94.26s

By Chartrand, p = 1,λ = 0.0002, βD = 0.0002

SNR = 45.0594dB, Cputime=177.23s

By HQA, p = 0.5,λ = 0.0002

SNR = 68.5059dB, Cputime=28.25s

Figure 8: The figure shows the reconstruction for the 256× 256 Shepp-Logan phontom. Top (left):
the original Shepp-Logan image; Top (middle): the 30 radial lines on the white pixels (11.32%
sampling); Top (right): the backprojection reconstruction with 30 views, which is poor; Bottom
(left): the reconstruction from 30 views by p-shrinkage algorithm with p = 1; Bottom (middle):
the reconstruction by the p-shrinkage algorithm with p = 1/2; Bottom (right): the reconstruction
by HQA with p = 1/2.
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Shepp−Logan phantom Samlpling pattern Min energy, SNR=4.1622dB

By Chartrand, p = 0.5,λ = 0.0002, βD = 0.0002

SNR = 44.523dB, Cputime=88.43s

By Chartrand, p = 1,λ = 0.0002, βD = 0.0002

SNR = 42.0413dB, Cputime=270.22s

By HQA, p = 0.5,λ = 0.0002

SNR = 64.9791dB, Cputime=33.72s

Figure 9: The figure shows the reconstruction for the 256× 256 Shepp-Logan phontom. Top (left):
the original Shepp-Logan image; Top (middle): the 22 radial lines on the white pixels (8.36%
sampling); Top (right): the backprojection reconstruction with 22 views, which is poor; Bottom
(left): the reconstruction from 22 views by p-shrinkage algorithm with p = 1; Bottom (middle):
the reconstruction by the p-shrinkage algorithm with p = 1/2; Bottom (right): the reconstruction
by HQA with p = 1/2.
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Shepp−Logan phantom Samlpling pattern Min energy, SNR=2.6279dB

By Chartrand, p = 0.5,λ = 0.0002, βD = 0.0002

SNR = 30.8118dB, Cputime=395.75s

By Chartrand, p = 1,λ = 0.0002, βD = 0.0002

SNR = 16.0182dB, Cputime=591.54s

By HQA, p = 0.5,λ = 0.0002

SNR = 43.7625dB, Cputime=209.1s

Figure 10: The figure shows the reconstruction for the 256×256 Shepp-Logan phontom. Top (left):
the original Shepp-Logan image; Top (middle): the 10 radial lines on the white pixels (3.85%
sampling); Top (right): the backprojection reconstruction with 10 views, which is poor; Bottom
(left): the reconstruction from 10 views by p-shrinkage algorithm with p = 1; Bottom (middle):
the reconstruction by the p-shrinkage algorithm with p = 1/2; Bottom (right): the reconstruction
by HQA with with p = 1/2. From the results, we find that it will take more time to reach a good
reconstruction from fewer k-space data. By `1-norm regularized model, it is still difficult to obtain
a good result even with much time, while the `p-norm regularized models (0 < p < 1) do.
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Noisy Brain, SNR = 20.4391 Samlpling pattern Min energy, SNR=9.8788dB

By Chartrand, p = 0.5,λ = 0.002, βD = 0.002

SNR = 14.2263dB, Cputime=32.82s

By Chartrand, p = 1,λ = 0.002, βD = 0.002

SNR = 14.1887dB, Cputime=43.63s

By HQA, p = 0.5,λ = 0.002

SNR = 14.4792dB, Cputime=21.42s

Figure 11: The figure shows the reconstruction for the 224 × 224 real brain image. Top (left):
the noisy brain image with noise level σ = 5, which is generated with the Matlab command:
“imnoise(x,′ gaussian′, 0, σ2)”; Top (middle): the 40 radial lines on the white pixels (16.97%
sampling); Top (right): the backprojection reconstruction with 40 views, which is poor; Bottom
(left): the reconstruction from 40 views by p-shrinkage algorithm with p = 1; Bottom (middle):
the reconstruction by the p-shrinkage algorithm with p = 1/2; Bottom (right): the reconstruction
by HQA with p = 1/2.
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