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Abstract

In this papers we analyze the minimization of seminorms ‖L · ‖ on R
n under the con-

straint of a bounded I-divergence D(b,H ·) for rather general linear operators H and
L. The I-divergence is also known as Kullback-Leibler divergence and appears in many
models in imaging science, in particular when dealing with Poisson data. Often H rep-
resents, e.g., a linear blur operator and L is some discrete derivative or frame analysis
operator. We prove relations between the the parameters of I-divergence constrained
and penalized problems without assuming the uniqueness of their minimizers. To solve
the I-divergence constrained problem we apply first-order primal-dual algorithms which
reduce the problem to the solution of certain proximal minimization problems in each
iteration step. One of these proximation problems is an I-divergence constrained least
squares problem which can be solved based on Morosov’s discrepancy principle by a New-
ton method. Interestingly, the algorithm produces not only a sequence of vectors which
converges to a minimizer of the constrained problem but also a sequence of parameters
which convergences to a regularization parameter so that the corresponding penalized
problem has the same solution as our constrained one. We demonstrate the performance
of various algorithms for different image restoration tasks both for images corrupted by
Poisson noise and multiplicative Gamma noise.

1 Introduction

Regularized ill-posed problems were rigorously investigated by mathematicians since the early
60s of the last century, see for example the seminal book [46] and the survey paper [41]. One
of the best examined models in R

n is

argmin
x∈Rn

{
λ

2
‖b−Hx‖22 + ‖Lx‖22

}
, λ > 0, (1)

where b ∈ R
n is the H-transformed and perturbed signal. The known linear transform

operator H ∈ R
n,n is in general ill-conditioned or not invertible. The linear operator L ∈ R

m,n

in the regularization term enforces some regularity of the minimizer. Examples are discrete
derivative operators or nonlocal operators as considered in [39, 63]. A key issue of this
model is the determination of a suitable regularization parameter λ, which balances the data
fidelity with the regularity of the solution. Several techniques were developed to address this
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topic, e.g., Morozov’s discrepancy principle [51], the L-curve criterion [48], the generalized
cross-validation [69], normalized cumulative or residual periodogram approaches [42, 58] and
variational Bayes’ approaches [2, 53]. In this paper, we will adapt the idea of the discrepancy
principle which chooses the ’optimal’ regularization parameter λ̂ such that the norm of the
defect ‖b−Hx̂(λ̂)‖22 between the corrupted data b and the minimizer x̂(λ̂) of (1) equals some
known error τ , i.e., solves the discrepancy equation ‖b−Hx̂(λ)‖22 = τ . To efficiently compute
λ̂ it is important that x̂(λ) is given by an explicit analytical expression.
When dealing with image processing applications the above model is often replaced by

argmin
x∈Rn

{λΦ(b,Hx) + ‖Lx‖} , λ > 0 (2)

with an appropriate data fidelity term Φ(b,H·) and certain norms ‖ · ‖ on R
m to get an edge-

preserving restoration model. Note that any seminorm on R
n can be written in the form ‖L ·‖

with an appropriate linear operator L ∈ R
m,n. The frequently applied approach of Rudin,

Osher and Fatemi [57] involves for example TV (x) := ‖ |∇x| ‖1 as regularization term, where
L = ∇ denotes a discrete gradient operator and ‖ | · | ‖1 the mixed ℓ1-norm. Other models use
discrete frame operators L together with the (mixed) ℓ1-norm to enforce (group) sparsity of
the frame coefficients.
Recently, also constrained optimization models were successfully applied in imaging and spar-
sity tasks, see, e.g., [18, 24, 27, 35, 52, 66, 70]. Such constrained models can have the ad-
vantage that some knowledge on the noise allows to estimate its parameter τ better than the
regularization parameter λ of the penalized model. In particular,

argmin
x∈Rn

{
TV (x) subject to ‖Hx− b‖22 ≤ τ

}
(3)

was considered in [52, 71], where the authors in [16] consider the problem from the point
of view of the penalized problem (2). But rather than fixing λ in all iterations, they tune
λ in each iteration step such that the corresponding parameter sequence converges to some
optimal λ̂ with the property that the minimizer x̂(λ̂) of the corresponding penalized problem
fulfills the discrepancy equation.
In this paper, we are interested in the I-divergence D(b,H·) instead of the squared ℓ2-norm
‖H · −b‖22 as data fidelity term, which is more appropriate if the data is corrupted, e.g.,
by Poisson noise or multiplicative noise, see, e.g., [4, 14, 21, 47, 49, 63, 72]. Poisson data
typically occurs in imaging processes where the images are obtained by counting particles,
e.g., photons, that hit the image domain, see [7]. Multiplicative noise often appears as speckle
in applications like laser, ultrasonic [15, 68] or synthetic aperture radar (SAR) imaging [13, 50].
We want to analyse the I-divergence constrained problem

argmin
x≥0

{‖Lx‖ subject to D(b,Hx) ≤ τ} (4)

under rather general assumptions on H and L and to examine the relation to the penalized
problem

argmin
x≥0

{‖Lx‖+ λD(b,Hx)} . (5)

Discrepancy principles for these problems were discussed in [3, 4, 8, 18], where it was proposed
e.g., in [8] that, under certain conditions, the ’optimal’ regularization parameter λ̂ in (5)
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should be the solution of the discrepancy equation

D(b, x̂(λ)) = τ (6)

where τ := n
2 . However, since there is no explicit expression for the minimizer x̂(λ) of (5) the

’optimal’ parameter λ̂ cannot be efficiently computed from (6).
In this paper we use the same basic idea as recently proposed by Carlavan and Blanc-Feraud
in [17, 18] for blur operators H and the frame operator L of the dual-tree complex wavelet
transform [59]: First order primal-dual algorithms restrict the minimization of the constrained
problem (16) to the iterative solution of certain simpler proximal minimization problems. One
of these problems appears to be an I-divergence constrained least squares problem

argmin
t∈Rn

{
1

2
‖t− a‖22 subject to D(b, t) ≤ τ

}
.

The corresponding I-divergence penalized least squares problem

argmin
t∈Rn

{
1

2
‖t− a‖22 + λD(b, t)

}
, λ > 0

has an analytical solution t̂(a, λ) which can be used in the least squares - related discrepancy
equation

D(b, t̂(a, λ)) = τ

to compute its solution efficiently by Newton’s method. We show that such primal-dual
algorithms compute beyond the minimizer x̂ of (4) also the regularization parameter λ̂ such
that x̂ fulfills the general discrepancy principle (6).

The structure of this paper is as follows: In Section 2 we provide the basic notation and
recall useful relations. In particular, we provide a theorem on the general relation between
constrained and penalized convex problems and specify this for I-divergence constrained and
penalized least squares problems. Section 3 analyzes the constrained problem (4) and the
penalized problem (5) under rather general assumptions on H and L. We will see that under
such mild assumptions both problems have solutions and that different solutions of the same
problem leave ‖L·‖ andH· fixed. In Section 4, we deal with the minimization of the seminorm
- I-divergence constrained problem. First, we introduce the dual problems and consider their
relations to the primal ones. Then, we apply primal-dual first order methods together with
a discrepancy principle and a Newton algorithm for the appearing inner least squares - I-
divergence problems. We prove that on the one hand this algorithm converges to a solution
of (4) and on the other hand computes the regularization parameter λ̂ which fulfills the
discrepancy equation 6. In Section 5, we show how to choose appropriate parameters τ in the
cases of multiplicative Gamma-distributed noise and recall a result on Poisson noise from [8].
Section 6 demonstrates the performance of our algorithms both for the denoising of images
containing multiplicative Gamma-distributed noise and for deblurring images corrupted by
Poisson noise. We finish the paper with conclusions in Section 7. The Appendix contains
some auxiliary lemmas and provides standard relations on dual problems.
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2 Notation and Basic Relations

2.1 Notation

In this paper we deal with functions Φ : Rn → R ∪ {+∞}. By levτΦ := {x : Φ(x) ≤ τ}
we denote the (lower) level sets of Φ. For x∗ ∈ R

n, where Φ(x∗) is finite, the subdifferential
∂Φ(x∗) of Φ at x∗ is the set

∂Φ(x∗) := {p ∈ R
n : 〈p, x− x∗〉 ≤ Φ(x)− Φ(x∗) ∀x ∈ R

n}.

If Φ is proper, convex and x∗ ∈ ri(domΦ), then ∂Φ(x∗) 6= ∅. The Fenchel conjugate function
of Φ is defined by

Φ∗(p) := sup
x∈Rn

{〈p, x〉 − Φ(x)}.

Let ‖ · ‖ be a norm on R
n with dual norm ‖ · ‖∗ := max‖x‖≤1〈·, x〉. By B‖·‖(r) := {x ∈ R

n :
‖x‖ ≤ r} we denote the ball with respect to ‖ · ‖ with center 0 and radius r. Further

ιS(x) :=

{
0 if x ∈ S,

+∞ otherwise

signifies the indicator function ιS of a set S 6= ∅ and PS the orthogonal projector onto S. For
a norm we have

∂‖x‖ =

{
B‖·‖∗(1) if ‖x‖ = 0,

{p ∈ R
n : 〈p, x〉 = ‖x‖, ‖p‖∗ = 1} otherwise

(7)

and
‖p‖∗ = ιlev1‖·‖∗(p).

For the indicator function of a convex set S 6= ∅ it holds for x ∈ S that ∂ιS(x) = NS(x),
where NS denotes the normal cone to S at x ∈ S and ι∗S = σS with the support function
σS(x) := supy∈S〈x, y〉. Moreover, σ∗S = ιS if S is in addition closed. For S := R

n
≥0 and x ≥ 0,

we have for example

∂ιRn
≥0
(x) = NRn

≥0
(x) = I1 × . . .× In, where Ik :=

{
(−∞, 0] if xk = 0,

{0} if xk > 0
(8)

and ι∗
Rn
≥0

= σRn
≥0

= ιRn
≤0
.

For given b ∈ R
n
>0 and 1n denoting a vector consisting of n ones, the discrete I-divergence

also known as generalized Kullback-Leibler divergence is defined by

D(b, t) :=

{
〈1n, b log

b
t − b+ t〉 if t > 0,

+∞ otherwise,

cf. [26]. Note that

D(b, t) = 〈1n, t− b log t〉 − 〈1n, b− b log b〉 for t > 0.

Using the agreement that 0 log 0 := 0 it is possible to generalize the definition of the I-
divergence to b ≥ 0. In this paper, we restrict our attention to b > 0 since we will use

4



that in this case the function D(b, ·) is strictly convex and has b as unique minimizer, where
D(b, b) = 0. Since D(b, ·) is proper, convex and continuous, the level sets

levτD(b, ·) := {t ∈ R
n : D(b, t) ≤ τ}

are convex and closed. Moreover, levτD(b, ·) 6= ∅ if and only if τ ≥ 0. Using the agreement
that 0 log 0 := 0 it is possible to generalize the definition of the I-divergence to b ≥ 0. In this
paper, we restrict our attention to b > 0. The conjugate function of D(b, ·) is given by

D∗(b, p) :=

{
−〈b, log(1n − p)〉 if p < 1n,
+∞ otherwise.

2.2 Relation between penalized and constrained convex problems

We will use the following well-known relation between constrained and penalized convex
problems, see, e.g., [45].

Theorem 2.1. For proper, convex, lower semi-continuous functions F,G : Rn → R∪{+∞},
where F is continuous, the problems

argmin
x∈Rn

{G(x) + λF (x)}, λ ≥ 0 (9)

and
argmin
x∈Rn

{G(x) subject to F (x) ≤ τ} (10)

are related as follows:
i) Assume that domF ∩ domG 6= ∅. Let x̂ be a minimizer of (9). If λ = 0, then x̂ is also a
minimizer of (10) if and only if τ ≥ F (x̂). If λ > 0, then x̂ is also a minimizer of (10) for
τ := F (x̂). Moreover, this τ is unique if and only if x̂ is not a minimizer of G.
ii) Assume that ri(levτF ) ∩ ri(domG) 6= ∅. Let x̂ be a minimizer of (10). If x̂ is not a
minimizer of F , then there exists a parameter λ ≥ 0 such that x̂ is also a minimizer of (9).
If x̂ is in addition not a minimizer of G, then λ > 0.

Concerning i) we mention that in case the minimizer of (9) is not unique, say x̂1 6= x̂2, the
relation F (x̂1) 6= F (x̂2) can appear.
Concerning ii) note that there may exist in general various parameters λ corresponding to the
same parameter τ . For examples we refer to [25]. For finite, convex penalizers (which does
not include D(·, b)), the existence of a Lagrange multiplier λ ≥ 0 is assured by [55, Corollary
28.2.1] and it is known that the set of Lagrange multipliers λ is a bounded closed interval,
see [55, Corollary 29.1.5].
In the next section, will apply Theorem 2.1 with respect to the functions F := D(b,H·) and
G := ‖L · ‖+ ιRn

≥0
. We will see that for appropriately chosen τ and a (not necessarily unique)

solution x̂ of (10) there exists a unique λ such that x̂ is also a solution of (9). Moreover, we
will see that this λ appears a a by-product of our algorithm.
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2.3 Least Squares - I-Divergence Problems

The main part of our algorithms for solving (4) will consist in the solution of least squares
problems with constrained I-divergence

argmin
t∈Rn

{
1

2
‖t− a‖22 subject to D(b, t) ≤ τ}, τ ≥ 0 (11)

with a ∈ R
n by utilizing the corresponding penalized problems

argmin
t∈Rn

{
1

2
‖t− a‖22 + λD(b, t)}, λ ≥ 0. (12)

Since the functionals are coercive and strictly convex, both problems have a unique solution.
If a = b > 0, then the solution is given by t̂ = a for all τ, λ ≥ 0. If a 6= b, we obtain the
solution by the following lemma.

Lemma 2.2. Let a, b ∈ R
n with b > 0 and a 6= b be given.

i) Let λ = 0. Then problem (12) has the solution t̂ = a. This is also a solution of (11) if and
only if a > 0 and τ ≥ D(b, a). For λ > 0 problem (12) has the solution

t̂(a, λ) =
1

2

(
a− λ+

√
(a− λ)2 + 4λb

)
, (13)

where the notation has to be understood componentwise. In particular, t̂ 6∈ {a, b}. The
discrepancy function

f(λ) := D(b, t̂(a, λ)) = 〈1n, t̂(a, λ)〉 − 〈b, log t̂(a, λ)〉 − 〈1n, b− b log b)〉

is strictly decreasing and convex and t̂ is also the solution of (11) exactly for τ = D(b, g(a, λ)).
ii) Let τ = 0. Then problem (11) has the solution t̂ = b and there does not exist λ ≥ 0 such
that t̂ = b is the solution of (12). Let τ > 0. Then the unique solution t̂ > 0 of problem (11)
has the following properties: If a > 0 and D(b, a) ≤ τ , then t̂ = a and this is also the solution
of (12) exactly for λ = 0. Otherwise t̂ 6∈ {a, b} and there exists a unique λ > 0 such that t̂ is
also the solution of (12).

Parts of this lemma can be found in several papers. The explicit form (13) of the minimizer t̂
of (12) is contained, e.g., in [4, 10] and the discrepancy function f and its derivative f ′, e.g. in
[18]. More generally, it was proved in [8] that for strictly convex, coercive and differentiable
functions λD(b, ·)+Ψ, λ > 0, the minimizer t̂(λ) has the property that D(b, t̂(λ)) and Ψ(t̂(λ))
are, respectively, a decreasing and an increasing function of λ. Of course our least squares
- I-divergence model fits into this setting. For the whole proof of this lemma we refer to
our preprint [65], where the following formulas for the discrepancy function f were derived
(componentwise) with the abbreviation t̂ = t̂(a, ·):

f ′(λ) = −
(t̂′(λ))2

t̂(λ)

√
(a− λ)2 + 4λb < 0, (14)

f ′′(λ) =

(
t̂′(λ)

t̂(λ)

)2
a+ λ+ 2

√
(a− λ)2 + 4λb√

(a− λ)2 + 4λb
> 0,
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where

t̂′(λ) =
1

2

(
−1 +

λ− a+ 2b√
(a− λ)2 + 4λb

)
=

−t̂(λ) + b√
(a− λ)2 + 4λb

> 0

and the inequalities hold true for a 6= b. By Lemma 2.2 there exists a unique solution of

f(λ) = D(b, t̂(a, λ)) = τ

which can be efficiently computed by Newton’s method using (14).

3 Seminorm - I-Divergence Problems

In the following, let H ∈ R
n,n be such that {Hx : x ≥ 0}∩R

n
>0 6= ∅, i.e., we have for the cone

K := {x ∈ R
n
≥0 : Hx > 0} 6= ∅.

This is for example fulfilled for all x in the nonnegative orthant if H has only nonnegative
entries and contains no zero row. It guarantees that

τ0 := min
x≥0

D(b,Hx) (15)

is finite. Note that infx≥0D(b,Hx) is indeed attained, i.e., argminx≥0D(b,Hx) 6= ∅ as shown
in Lemma A.1 in the appendix. If b ∈ {Hx : x ≥ 0}, we obtain τ0 = 0. Otherwise, we have
τ0 > 0. Besides, levτD(b,H·) 6= ∅ for τ ≥ τ0.
For L ∈ R

m,n we are now interested in solving the constrained minimization problem

(P1,τ ) argmin
x≥0

{‖Lx‖ subject to D(b,Hx) ≤ τ} , τ ≥ τ0, (16)

which is closely related to the penalized problem

(P2,λ) argmin
x≥0

{‖Lx‖+ λD(b,Hx)} , λ ≥ 0. (17)

Setting

τL := min
x∈N (L), x≥0

D(b,Hx) (18)

it holds that τL = +∞ if L is for example invertible. In the following, we will assume that
τ0 < τL, i.e.,

argmin
x≥0

D(b,Hx) ∩ N (L) = ∅.

Example 3.1. In image restoration the minimizers of functions involving the TV seminorm
and the I-divergence often lead to good results. In this case, L = ∇ is a discrete gradient
operator as (29) with N (L) = {α1n : α ∈ R}. Moreover, H is often a blur operator which has
usually nonnegative entries, contains no zero row and fulfills the condition H∗1n = 1n. In
this case, we automatically have K 6= ∅.
The bound τL can here be obtained as follows: With (18) and the structure of N (L) we have
to find the minimizer of the function α 7→ D(b, αh), α > 0, where h := H1n. Due to the
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condition H∗1n = 1n, it holds that 〈1n, h〉 = n. Setting the derivative with respect to α of the
function

D(b, αh) = 〈1n, αh− b log(αh)〉 − 〈1n, b− b log b〉

= αn− 〈1n, b log(αh)〉 − 〈1n, b− b log b〉

to zero we obtain

0 = n−
〈1n, b〉

α
⇔ α =

〈1n, b〉

n
.

This is minimizer of the function D(b, ·h), since its second derivative is larger than zero for
α > 0. Thus, we have

α1n = argmin
x∈N (L), x≥0

D(b,Hx) with α =
〈1n, b〉

n

and

τL = D(b, αh) = αn− 〈1n, b log(αh)〉 − 〈1n, b− b log b〉

= −〈b, log(αh)〉 + 〈b, log b〉

=

〈
b, log

(
n

〈1n, b〉

b

h

)〉
.

Next, let us see under which conditions it holds that τ0 = τL. Since K 6= ∅ and D(b,H·) is
continuous on its domain, we know by Fermat’s rule that x̂ ∈ argminx≥0D(b,Hx) if and only
if x̂ ≥ 0 and

0 ∈ ∇D(b,H·)(x̂) + ∂ιRn
≥0
(x̂) = H∗

(
1n −

b

Hx̂

)
+NRn

≥0
(x̂) ⇔ H∗ b

Hx̂
− 1n ∈ NRn

≥0
(x̂).

Since NRn
≥0
(x) = {0} for all x > 0, we can conclude with x̂ = α1n > 0 that

τ0 = τL ⇔ H∗ b

h
= α1n.

If H is invertible, this is only possible if b = αh.

The following theorem clarifies the existence of a minimizer of the above problems and some
of its properties.

Theorem 3.2. Let H ∈ R
n,n be such that K 6= ∅ and L ∈ R

m,n fulfill N (H) ∩ N (L) = {0}.
Then the following relations are valid:

i) The problems (P1,τ ), τ ≥ τ0 in (16) and (P2,λ), λ ≥ 0 in (17) have a solution.

ii) If x̂, x̃ are solutions of (P2,λ) for λ > 0, then

‖Lx̂‖ = ‖Lx̃‖ and Hx̂ = Hx̃. (19)

iii) Let in addition argminx≥0D(b,Hx) ∩ N (L) = ∅ and τ0 < τ < τL. If x̂, x̃ are solutions
of (P1,τ ), then (19) holds true with D(b,Hx̂) = τ .
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Note that (19) implies
D(b,Hx̂) = D(b,Hx̃).

Proof. i) The assertion is a consequence of Lemma A.2 applied to the setting

R
n = R(H∗)⊕N (H) = R(L∗)⊕N (L)

with N (H) ∩ N (L) = {0} and G := ‖L · ‖, g := G|R(L∗), J := ιRn
≥0

and F defined problem
dependent below. Note that domG = R

n and g has nonempty and bounded level sets levβg
for β ≥ 0.
In case of problem (P1,τ ) we use F := ιlevτD(b,H·) and f := F |R(H∗). Since τ ≥ τ0, we have
that domF ∩ domG ∩ dom J 6= ∅. Clearly, levαf is nonempty and bounded for α ≥ 0.
In case of problem (P2,λ) with λ = 0 any x̂ ∈ N (L) with x ≥ 0 is a solution. For λ > 0 we use
F := λD(b,H·) and f := F |R(H∗). Since K 6= ∅, we have that domF ∩ domG ∩ dom J 6= ∅.
Clearly, levαf is nonempty and bounded for α ≥ τ0.
ii) This assertion is a direct consequence of Lemma A.3 with F := D(b,H·), G := ‖L · ‖+ ιRn

≥0

and R
n = R(H∗)⊕N (H).

iii) For problem (P1,τ ) the first relation in (19) is straightforward. Next, we prove that
D(b,Hx̂) = τ for any solution x̂ of (P1,τ ). We know by [9, Proposition 4.7.2] that since
levτD(b,H·) ∩R

n
≥0 6= ∅ and ‖L · ‖ is continuous on its domain R

n, there exists v ∈ ∂‖L · ‖(x̂)
such that

〈x− x̂, v〉 ≥ 0 ∀x ∈ levτD(b,H·) with x ≥ 0. (20)

We have that v = L∗∂‖Lx̂‖. Since τ < τL, we know that x̂ 6∈ N (L). Thus, by (7), v = L∗p̂
for some p̂ ∈ R

m with ‖p̂‖∗ = 1 and 〈p̂, Lx̂〉 = 〈v, x̂〉 = ‖Lx̂‖ > 0. Hence, there exists at least
one index i0 ∈ {1, . . . , n} such that vi0 > 0 and x̂i0 > 0.
If D(b,Hx̂) < τ , then we conclude by the continuity of D(b,H·) that there exists a neigh-
borhood of x̂ such that D(b,Hx) < τ for all x in this neighborhood. Since x̂ ≥ 0, we obtain
that for small enough η > 0 the vector x = (x1, . . . , xn)

T with xi := x̂i − ηvi if x̂i > 0 and
xi := 0 otherwise, lies in this neighborhood and fulfills x ≥ 0. Using this x in (20) we obtain
−η
∑

i∈I v
2
i ≥ 0, where I ⊂ {1, . . . , n} denotes the set of indices with x̂i > 0. Since i0 belongs

to I, this is a contradiction and consequently D(b,Hx̂) = τ .
To see the second relation in (19) assume that there exist two solutions x̂ = x̂1 + x̂0 ≥ 0
and x̃ = x̃1 + x̃0 ≥ 0 of (P1,τ ) with x̂1, x̃1 ∈ R(H∗), x̂1 6= x̃1 and x̂0, x̃0 ∈ N (H). Let
x = µx̂+ (1 − µ)x̃, µ ∈ (0, 1), so that x ≥ 0. Since D(b,H·) is strictly convex on R(H∗), we
have D(b,Hx) < τ . On the other hand, we obtain

‖Lx‖ ≤ µ‖Lx̂‖+ (1− µ)‖Lx̃‖ = ‖Lx̂‖

so that x is also a minimizer of (P1,τ ), which is impossible, since we know from the previous
part of the proof that any minimizer has to fulfill D(b,Hx) = τ . This completes the proof.

�

Remark. As observed in [8], if H has only nonnegative entries and contains no zero row, then
if N (H) is nontrivial, it consists only of vectors having at least one negative component. Thus
‖Hx‖ is coercive on the nonnegative orthant and part ii) of Theorem 3.2 follows immediately.
Our assumption on H is more general and requires just the existence of a vector x ≥ 0 for
which Hx > 0 is fulfilled.
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Lemma 3.3. Let H ∈ R
n,n be such that K 6= ∅, L ∈ R

m,n fulfill N (H) ∩ N (L) = {0} and
argminx≥0D(b,Hx) ∩ N (L) = ∅. Let x̂ be a solution of (P2,λ) in (17) with D(b,Hx̂) 6= τL.
Then x̂ 6∈ N (L) and

λ =
‖Lx̂‖

〈1n, b−Hx̂〉
.

Proof. Since K 6= ∅, we obtain by Fermat’s rule that x̂ ∈ argminx≥0{‖Lx‖ + λD(b,Hx)} if
and only if x̂ ≥ 0 and

0 ∈ ∂
(
‖L · ‖+ λD(b,H·) + ιRn

≥0

)
(x̂),

0 ∈ L∗∂‖Lx̂‖+ λH∗∇D(b,Hx̂) + ∂ιRn
≥0
(x̂),

0 ∈ L∗∂‖Lx̂‖+ λH∗

(
1n −

b

Hx̂

)
+NRn

≥0
(x̂),

λH∗

(
b

Hx̂
− 1n

)
∈ L∗∂‖Lx̂‖+NRn

≥0
(x̂).

By (7) this is fulfilled if and only if

λH∗

(
b

Hx̂
− 1n

)
= L∗p̂2 + p̂3

for some p̂3 ∈ NR
n
≥0
(x̂) and p̂2 ∈ R

m with ‖p̂2‖∗ = 1, 〈p̂2, Lx̂〉 = ‖Lx̂‖ > 0 if Lx̂ 6= 0 and

‖p̂2‖∗ ≤ 1 otherwise. This implies

λ

〈
b−Hx̂

Hx̂
,Hx̂

〉
= λ 〈b−Hx̂, 1n〉 = 〈L∗p̂2 + p̂3, x̂〉 = 〈p̂2, Lx̂〉+ 〈p̂3, x̂〉.

Since p̂3 ∈ NRn
≥0
(x̂), it holds by (8) that 〈p̂3, x̂〉 = 0. If x̂ 6∈ N (L), we thus obtain λ =

‖Lx̂‖
〈1n,b−Hx̂〉 . If x̂ ∈ N (L), then x̂ can only be a solution of (P2,λ) if x̂ ∈ argminx∈N (L), x≥0D(b,Hx).

But then we have the contradiction D(b,Hx̂) = τL. �

Using the previous considerations we can prove the following theorem on the relation between
solutions of (P1,τ ) and (P2,λ).

Theorem 3.4. Let H ∈ R
n,n be such that K 6= ∅, L ∈ R

m,n fulfill N (H) ∩ N (L) = {0} and
N (L) ∩ argminx≥0D(b,H·) = ∅. If x̂ is a solution of (P1,τ ) in (16) with τ0 < τ < τL, then
there exists a unique λ > 0 such that x̂ is also a solution of (P2,λ) in (17) . Moreover, λ does
not depend on the chosen solution of (P1,τ ).

Proof. Let x̂ be a solution of (P1,τ ) for τ0 < τ < τL. We want to apply Theorem 2.1ii) with
F := D(b,H·) and G := ‖L · ‖ + ιRn

≥0
. Since τ > τ0, we have that ri(levτF ) ∩ domG 6= ∅,

which replaces the regularity assumption in the theorem, since ιRn≥0 is a polyhedral function.
Since τ < τL, we have that x̂ ≥ 0 is not a minimizer of G, i.e., x̂ 6∈ N (L). Further, x̂
is not a minimizer of F by the following argument: Assume that x̂ ≥ 0 is a minimizer of
D(b,H·). Since D(b,H·) is continuous and τ > τ0, we obtain that x = (x1, . . . , xn)

T with
xi = x̂i + η(0 − x̂i) = (1 − η)x̂i if x̂i > 0 and xi = 0 otherwise also fulfills D(b,Hx) ≤ τ for
sufficiently small η > 0. But then we get the contradiction

G(x) = ‖Lx‖+ ιRn
≥0
(x) = (1− η)‖Lx̂‖ < ‖Lx̂‖+ ιRn

≥0
(x̂) = G(x̂).

10



Thus, by Theorem 2.1ii) there exists λ > 0 such that x̂ is also a solution of (P2,λ). By
Lemma 3.3 this λ is uniquely determined and by Theorem 3.2iii) it does not depend on the
chosen solution of (P1,τ ). �

For matrices H with nonnegative entries and no zero row the authors in [8] proposed to choose
the regularization parameter λ̂ as solution of the discrepancy equation

D(b,Hx̂(λ)) = τ, τ =
n

2
, (21)

where x̂(λ) is the solution of (P2,λ) in (17) and the choice of τ is explained in Section 5. The
uniqueness of the solution x̂(λ) of (P2,λ) was mentioned as one of the ’key issues’ for dealing
with (21). The criterion (21) was modified in [18] for b ≥ 0 containing zero components
and a criterion similar to (21) based on a quadratic approximation to the Kullback-Leibler
divergence was proposed in [3].
However, since the solution x̂(λ) of (P2,λ) in (17) is not given in an analytical form, the com-

putation of the parameter λ̂ fulfilling (21) still requires the numerical solution of a sequence
of penalized problems with different regularizers λ.
In the following section we will show that λ̂ can be obtained as limit of a sequence {λ̂(k)}k
generated by a primal-dual algorithm to solve the corresponding constrained problem. The
main idea is that the discrepancy principle is now applied in each step of algorithm to a much
simpler problem than (P2,λ) namely to an I-divergence penalized least squares problem (12).
By Lemma 2.2 this simple problem has an analytical solution such that its strictly monotone,
convex discrepancy function can be given analytically and the discrepancy equation can by
solved efficiently by Newton’s method. Note that our approach does not require that the
solution x̂(λ) of (P2,λ) is unique.

4 Minimization of Seminorms with Constrained I-Divergence

In this section, we compute a solution of (P1,τ ) for τ0 < τ < τL by various primal-dual algo-
rithms. First, we will apply an ADMM algorithm as in [17, 18] together with the discrepancy
principle and the Newton algorithm to solve the appearing inner least squares problems with
I-divergence constraints. We prove that on the one hand this algorithm converges to a solu-
tion of (P1,τ ) and on the other hand computes the regularization parameter λ̂ such that the
penalized problem (P2,λ̂) has the same solution. Then, we discuss the application of other
primal-dual algorithms.
To understand the structure of the algorithms we have to involve the dual problems of (P1,τ )
and (P2,λ), which will be done in the next subsection.
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4.1 Primal and Dual Problems

To understand the structure of the algorithms we have to involve the dual problems of (P1,τ )
and (P2,λ). The problems (P1,τ ) and (P2,λ), λ > 0 can be rewritten as

(P1,τ ) argmin
x∈Rn

y∈R2n+m

{
〈0, x〉︸ ︷︷ ︸
=:f1(x)

+ ιlevτD(b,·)(y1) + ‖y2‖+ ιy3≥0(y3)︸ ︷︷ ︸
:=f2(y1,y2,y3)

s.t.



H
L
I




︸ ︷︷ ︸
A

x =

(
y1
y2
y3

)
}
, (22)

(P2,λ) argmin
x∈Rn

y∈R2n+m

{
〈0, x〉+ λD(b, y1) + ‖y2‖+ ιy3≥0(y3) s.t.

(
H
L
I

)
x =

(
y1
y2
y3

)
}
.

Using the duality relations in Appendix A.2, in particular (31), and the fact that f∗1 (p) = 0
for p = 0 and f∗1 (p) = +∞ otherwise, we obtain that the dual problems of (P1,τ ) and (P2,λ),
λ > 0, are given by

(D1,τ ) argmin
p=(pT1 ,p

T
2 ,p

T
3 )

T

{σlevτD(b,·)(p1) + ιlev1‖·‖∗(p2) + ιRn
≤0
(p3) s.t. H∗p1 + L∗p2 + p3 = 0},

(D2,λ) argmin
p=(pT1 ,p

T
2 ,p

T
3 )

T

{
λD∗

(
b,
p1
λ

)
+ ιlev1‖·‖∗(p2) + ιRn

≤0
(p3) s.t. H∗p1 + L∗p2 + p3 = 0

}
.

Note that ιlevτD(b,·)(Hx) = ιlevτD(b,H·)(x) and H
∗NlevτD(b,·) = NlevτD(b,H·).

The following theorem provides the Karush-Kuhn-Tucker optimality conditions and relates
the solutions of the dual and primal problems. In the following, let SOL(X) denote the
solution set of problem (X).

Lemma 4.1. Let H ∈ R
n,n be such that K 6= ∅ and L ∈ R

m,n such that N (H)∩N (L) = {0}.
Let τ > τ0 and λ > 0. Then the following relations hold true:

x̂ ∈ SOL(P1,τ )
p̂ ∈ SOL(D1,τ )

}
⇔

{
p̂1 ∈ NlevτD(b,·)(Hx̂), p̂2 ∈ ∂‖Lx̂‖, p̂3 ∈ NRn

≥0
(x̂)

such that H∗p̂1 + L∗p̂2 + p̂3 = 0,
(23)

and

x̂ ∈ SOL(P2,λ)
p̂ ∈ SOL(D2,λ)

}
⇔

{
p̂1 = λ(1n − b

Hx̂), p̂2 ∈ ∂‖Lx̂‖, p̂3 ∈ NRn
≥0
(x̂)

such that H∗p̂1 + L∗p̂2 + p̂3 = 0.
(24)

Since SOL(P1,τ ) and SOL(P2,λ) are nonempty, the proof follows by standard arguments from
the duality theory of convex functions, cf. [11].
The following subsections describe algorithms to solve (P1,τ ).

4.2 ADMM Involving Least Squares Problems with I-Divergence Con-

straints

We apply the ADMM algorithm for solving (P1,τ ) as in the PIDSplit+ algorithm in [61],
see also [10, 36]. Considering (P1,τ ) in the form (22) and solving the inner I-divergence
constrained least square problems based on the discrepancy principle by a Newton method,
we obtain the following algorithm which was recently also suggested in [17, 18].
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Algorithm I (ADMM for solving (P1,τ ))

Initialization: q
(0)
1 = q

(0)
2 = q

(0)
3 = 0, y

(0)
1 = Hb, y

(0)
2 = Lb, y

(0)
3 = b and γ > 0.

For k = 0, 1, . . . repeat until a stopping criterion is reached:

x(k+1) = argmin
x∈Rn

{
‖q

(k)
1 +Hx− y

(k)
1 ‖22 + ‖q

(k)
2 + Lx− y

(k)
2 ‖22 + ‖q

(k)
3 + x− y

(k)
3 ‖22

}

= (HTH + LTL+ I)−1
(
HT(y

(k)
1 − q

(k)
1 ) + LT(y

(k)
2 − q

(k)
2 ) + (y

(k)
3 − q

(k)
3 )
)
.

y
(k+1)
1 = argmin

y1∈Rn

{
ιlevτD(b,·)(y1) +

γ

2
‖ q

(k)
1 +Hx(k+1)

︸ ︷︷ ︸
=:a(k+1)

−y1‖
2
2

}

=

{
a(k+1) if a(k+1) > 0 and D(b, a(k+1)) ≤ τ

t̂
(
a(k+1),

λk+1

γ

)
otherwise,

λk+1 =

{
0 if a(k+1) > 0 and D(b, a(k+1)) ≤ τ

as solution of D
(
b, t̂
(
a(k+1), λγ

))
= τ otherwise.

y
(k+1)
2 = argmin

y2∈Rm

{
‖y2‖+

γ

2
‖q

(k)
2 + Lx(k+1) − y2‖

2
2

}

=
(
I − PB‖·‖∗ (1/γ)

)(
q
(k)
2 + Lx(k+1)

)

y
(k+1)
3 = argmin

y3∈Rn

{
ιy3≥0(y3) +

γ

2
‖q

(k)
3 + x(k+1) − y3‖

2
2

}
,

= PR≥0

(
q
(k)
3 + x(k+1))

q
(k+1)
1 = q

(k)
1 +Hx(k+1) − y

(k+1)
1 ,

q
(k+1)
2 = q

(k)
2 + Lx(k+1) − y

(k+1)
2 ,

q
(k+1)
3 = q

(k)
3 + x(k+1) − y

(k+1)
3 .

The computation of y
(k+1)
1 is justified by Lemma 2.2, where t̂ is given by (13). The unique

solution λk+1 of the discrepancy equation D
(
b, t̂
(
a(k+1), λγ

))
= τ can be computed by New-

ton’s method.
The orthogonal projection onto B‖·‖∗(1/γ) required in the computation of y

(k+1)
2 can be easily

computed for the ℓp-norms with p = 1,∞ and their mixed versions, see, e.g., [30, 62, 73].
Finally note that this is a so-called scaled ADMM algorithm where q = p/γ replaces the dual
variable p.

The convergence of the algorithm is ensured by the following theorem. In particular, we
obtain that the sequence {λk}k converges to the regularization parameter λ̂ > 0 such that
x̂ = limk→∞ x(k) is both a solution of (P1,τ ) and of (P2,λ̂).

Theorem 4.2. Let b ∈ R
n, b > 0 and L ∈ R

m,n, H ∈ R
n,n such that N (L)∩N (H) = {0} and

argminx≥0D(b,Hx) ∩ N (L) = ∅. Let τ0 < τ < τL. Then the sequence {(x(k), y(k), q(k), λk)}k
generated by the ADMM Algorithm I converges to (x̂, ŷ, q̂, λ̂), where x̂ is a solution of problem
(P1,τ ) in (16) and of problem (P2,λ̂), λ̂ > 0 in (17) and p̂ = γq̂ is a solution of the dual

problems (D1,τ ) and (D2,λ̂). Further, ŷ = (HT LT I)Tx̂ holds true.
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Proof. 1. The convergence of {(x(k), y(k), q(k))}k to (x̂, ŷ, q̂), where x̂ ∈ SOL(P1,τ ), p̂ = γq̂ ∈
SOL(D1,τ ) and ŷ = (HT LT I)Tx̂ follows from general convergence results of the ADMM, see,
e.g., [33, 37, 60].
2. It remains to prove the convergence of {λk}k. By part 1 of the proof we have that a(k) =

Hx(k) + q
(k−1)
1 converges to â = ŷ1 + q̂1 and that g(a(k), λk

γ ) converges to ŷ1. Furthermore, it
follows by componentwise computation that

g

(
a(k),

λk
γ

)
=

1

2

(
a(k) −

1

γ
λk +

√(
a(k) −

1

γ
λk
)2

+ 4
1

γ
b λk

)
= y

(k)
1 ,

⇔

√(
a(k) −

1

γ
λk
)2

+ 4
1

γ
b λk = 2y

(k)
1 −

(
a(k) −

1

γ
λk
)
,

⇔
1

γ
λk(b− y

(k)
1 ) = y

(k)
1 (y

(k)
1 − a(k)),

⇔ λk(b− y
(k)
1 ) = −y

(k)
1 p

(k)
1 , p

(k)
1 := γq

(k)
1 . (25)

Note that g(a(k), 0) = a(k), a(k) > 0 is also contained in this setting. By Theorem 3.2iii)
we know that b − Hx̂ = b − ŷ1 6= 0, i.e., bi − ŷ1,i 6= 0 at least for one index i ∈ {1, . . . , n}.

Thus, we see in the ith equation in (25) that λk → λ̂ = −ŷ1,i p̂1,i/(bi − ŷ1,i) as k → ∞. Now,
(23) implies that p̂2 = γq̂2 ∈ ∂‖Lx̂‖ and p̂3 = γq̂3 ∈ NRn

≥0
(x̂) with H∗p̂1 + L∗p̂2 + p̂3 = 0.

Moreover, we have by (25) and since Hx̂ > 0 that

λ̂ (b−Hx̂) = −(Hx̂) p̂1,

λ̂ (1n −
b

Hx̂
) = p̂1.

Since τ < τL, it holds that x̂ 6∈ N (L). Hence, λ̂ = 0 would imply p̂1 = 0 and thus further
0 = L∗p̂2 + p̂3 with ‖p̂2‖∗ = 1, 〈p̂2, Lx̂〉 = ‖Lx̂‖ > 0. But then 0 = 〈x̂, L∗p̂2 + p̂3〉 and with
(8) we have 0 = 〈Lx̂, p̂2〉 = ‖Lx̂‖, which yields a contradiction. Consequently, λ̂ > 0 and
x̂, p̂ fulfill the right-hand of (24). Therefore, they are also solutions of (P2,λ̂) and (D2,λ̂),
respectively. �

4.3 Other Primal-Dual Algorithms

Finally, we want to comment on other algorithms to solve (P1,τ ). In particular, these al-
gorithms avoid solving the linear system of equations in the computation of x(k+1). We
emphasize that the purpose of this paper is not to compare different algorithms, but to show
that our idea can be incorporated into several existing techniques.
Let us start with the Arrow-Hurwitz method [1], which was first used in image processing
(with some speedup suggestions) in [75] under the name primal-dual hybrid gradient algorithm
(PDHG). In general this algorithm computes a solution of

argmin
x∈Rn,y∈Rd

{f1(x) + f2(y) subject to Ax = y}

as follows:

Algorithm (Arrow-Hurwitz Method, PDHG)
Initialization: x(0) = 0, p(0) = 0 and s, t > 0 with st < 1

‖A‖22
.
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For k = 0, 1, . . . repeat until a stopping criterion is reached:

x(k+1) = argmin
x∈Rn

{
f1(x) + 〈p(k), Ax〉+

1

2s
‖x− x(k)‖22

}

= argmin
x∈Rn

{
1

2
‖x− (x(k) − sA∗p(k))‖22 + sf1(x)

}
,

p(k+1) = argmin
p∈Rd

{
f∗2 (p)− 〈p,Ax(k+1)〉+

1

2t
‖p− p(k)‖22

}

= argmin
p∈Rd

{
1

2
‖p− (p(k) + tAx(k+1))‖22 + tf∗2 (p)

}
.

For our setting (22) with f1 = 0 the first step results in x(k+1) = x(k) − sA∗p(k). The second
step of the algorithm can be decoupled into two parts, see [19, 75]:

y(k+1) = argmin
y∈Rd

{
f2(y) +

t

2
‖
1

t
p(k) +Ax(k+1) − y‖22

}
, (26)

p(k+1) = p(k) + t(Ax(k+1) − y(k+1)). (27)

For f2 as in our setting (22) and q(k) := p(k)/t these two steps are exactly those of the ADMM
algorithm for updating y = (yT

1 , y
T
2 , y

T
3 )

T and q = (qT1 , q
T
2 , q

T
3 )

T, where we have to replace γ
by t now. The Arrow-Hurwitz method was improved by involving an extrapolation step by
Pock et al. in [54]. The convergence of the algorithm was proved in [19] (with some speedup
suggestions). Using this extrapolation idea for the dual variable in its simplest form, the first
step of the algorithm becomes

x(k+1) = argmin
x∈Rn

{
1

2
‖x− (x(k) − sA∗(2p(k) − p(k−1)))‖22 + sf1(x)

}
.

We summarize the algorithm which we call PDHGMp (PDHG with modified dual variable p)
for our special setting:

Algorithm II (PDHGMp with inner Newton iterations)

Initialization: (y(0)) =
(
(y

(0)
1 )T, (y

(0)
2 )T, (y

(0)
3 )T

)T

with y
(0)
1 = Hb, y

(0)
2 = Lb, y

(0)
3 = b and

q(0) = 0 and s, t > 0 with st < 1
‖(HTLTI)‖22

.

For k = 0, 1, . . . repeat until a stopping criterion is reached:

x(k+1) = x(k) − st(HT LTI)(2q(k) − q(k−1)),

y(k+1) as in Algorithm I with γ := t,

q(k+1) as in Algorithm I.

Another algorithm for solving problem (2)/(3) was proposed in [71]. It is based on [16] and
resembles in some way the dual method in [38]. The method in [38] uses a predictor-corrector
scheme [23] in the alternating direction iterations for the dual variable. This algorithm can
be adapted to our setting (22) as follows:
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Algorithm (PDHG with Predictor-Corrector Step)
Initialization: x(0) = 0, p(0) = 0 and s, t > 0 with st < 1

2‖A‖22
For k = 0, 1, . . . repeat until a stopping criterion is reached:

p(k+
1
2
) = argmin

p∈Rd

{
1

2
‖p− (p(k) + tAx(k))‖22 + tf∗2 (p)

}

x(k+1) = argmin
x∈Rn

{
1

2
‖x− (x(k) − sA∗p(k+

1
2
))‖22 + sf1(x)

}
,

p(k+1) = argmin
p∈Rd

{
1

2
‖p− (p(k) + tAx(k+1))‖22 + tf∗2 (p)

}
.

Note that the update steps for p can be splitted again as in (26)-(27).

This algorithm is efficient in the special case when H = I is the identity matrix, e.g., for
denoising problems in imaging. Instead of (22) the simpler constraint problem

argmin
x∈Rn

{‖Lx‖ subject to D(b, x) ≤ τ} , τ > 0 (28)

has to be solved, which can be rewritten as

argmin
x∈Rn

{
ιlevτD(b,·)(x)︸ ︷︷ ︸

f1(x)

+ ‖y‖︸︷︷︸
f2(y)

subject to Lx = y
}
.

Using that f∗2 (p) = ιlev1‖·‖∗(p) the above algorithm becomes

Algorithm III (ADM with predictor-corrector step for minimizing (28))
Initialization: x(0) = b, p(0) = Lb, λ0 = 0, s, t > 0 with st < 1

2‖L‖22
.

For k = 0, 1, . . . repeat until a stopping criterion is reached:

p(k+
1
2
) = PB‖·‖∗(1)

(p(k) + t Lx(k)),

x(k+1) = argmin
x∈Rn

{
1

2
‖x− (x(k) − sLTp(k+

1
2
))‖22 subject to D(b, x) ≤ τ

}
,

p(k+1) = PB‖·‖∗ (1)
(p(k) + t Lx(k+1)).

The update step for the primal variable x requires again the solution of a least squares problem
with I-divergence constraints, which can be done by Lemma 2.2 as follows:

h(k+1) = x(k) − sLTp(k+
1
2
),

If h(k+1) > 0 and D(b, h(k+1)) ≤ τ, then

λk+1 = 0,

x(k+1) = h(k+1),

Otherwise

Find λk+1 as solution of D(b, g(h(k+1), sλ)) = τ by Newton’s method initialized by λk,

x(k+1) = g(h(k+1), sλk+1).
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A convergence proof of the algorithms can be given similarly to [71]. Note that one can prove
convergence under the milder assumption st < 1/‖A‖2 by using the technique in [19].

5 Choosing a Suitable Value for τ

As already pointed out in the introduction problems of the form (16) or rather (17) have
been studied in the literature for the removal of Poisson or multiplicative Gamma noise in
images, respectively, cf., [4, 47, 49, 63]. Here, it is typically assumed that x ≥ 0 represents
the original image vector and b is a corrupted version of x, which possibly underwent some
linear transformation modeled by H and Hx is either corrupted by Poisson or multiplicative
Gamma noise. To obtain a good reconstruction x̂ of the original, noise-free image vector by
(16) or (17), respectively, suitable values for λ and τ need to be chosen. In contrast to the
regularization parameter λ in (17) a reasonable value for τ in (16) can usually be directly
determined by statistical considerations if the type of noise corrupting the data is known. For
Poisson data this was done e.g. in [3, 4, 8] and we recall the results from [8] in the following
Lemma 5.1i) and Theorem 5.2i) while the parts ii) deal with multiplicative Gamma noise.
To explain the idea, let us first consider only one noisy pixel bi > 0. Since this pixel is
supposed to be corrupted by noise, it can be viewed as one realization of a random variable
Bt with the given noise statistics. To determine now a reasonable value τ we may assume
for a moment that the noise-free value t = (Hx)i of bi is known and we may ask what mean
value we can expect for our I-divergence term D(bi, t) for different noisy realizations bi of Bt:

Lemma 5.1. i) Let Bt be a Poisson distributed random variable with expectation value

E(Bt) = t > 0. For t large enough it holds that

E

(
Bt log

Bt

t
−Bt + t

)
=

1

2
+O

(1
t

)
.

ii) Let V be a Gamma distributed random variable with density

pV (v) =
KK

Γ(K)
vK−1 exp(−K v) 1v≥0(v), K ≥ 1

and set Bt := t V . Then, we have

E

(
Bt log

Bt

t
−Bt + t

)
= t
(
ψ(K + 1)− log(K)

)
,

where ψ(x) := ∂
∂x log Γ(x) = Γ′(x)

Γ(x) represents the digamma function and

Γ(x) :=
∫∞
0 exp(−s) sx−1 ds denotes the gamma function.

Proof. The proof of i) can be found in [74]. To prove ii) we use the definition of Bt and the
fact that E(V ) = 1 so that

E

(
Bt log

Bt

t
−Bt + t

)
= E

(
t V log V − t V + t

)

= t
(
E(V log V )− E(V ) + 1

)

= tE(V log V ).

17



Further, we obtain that

E(V log V ) =
KK

Γ(K)

∞∫

0

vk log v exp(−Kv) dv

= ψ(K + 1)− log(K)

(Ψ(x) =
∫∞
0

exp(−s)
s − exp(−xs)

1−exp(−s) ds) so that finally,

E

(
Bt log

Bt

t
−Bt + t

)
= t

(
ψ(K + 1)− log(K)

)
.

�

Summing these results up over the whole image vectors we immediately obtain the following
theorem:

Theorem 5.2. Let B = (B1, . . . , Bn) be a random vector and t = (t1, . . . , tn) ∈ R
n
>0.

i) If each Bi is Poisson distributed with expectation value ti for i = 1, . . . , n, then it holds

that

E(D(B, t) ) =
1

2
n+

n∑

i=1

O
( 1
ti

)
.

ii) If all Vi are Gamma distributed and Bi := ti Vi for i = 1, . . . , n, we have

E(D(B, t) ) =
( n∑

i=1

ti

)(
ψ(K + 1)− log(K)

)
=
( n∑

i=1

E(Bi)
)(
ψ(K + 1)− log(K)

)
.

This result shows that in case of Poisson noise and pixels with high original intensities ti the
expectation value of D(B, t) is approximately 1

2 n and thus, τ = 1
2 n is a good choice in (16).

On the other hand, if the given image is corrupted by multiplicative Gamma noise, case ii)
shows that

τ =
( n∑

i=1

E(Bi)
)(
ψ(K + 1)− log(K)

)

is a reasonable choice, where
∑n

i=1 E(Bi) can well be approximated by
∑n

i=1 bi. The following
remark outlines the range of values τ we can expect for varying K:

Remark 5.3. Using standard results for the digamma function ψ, see, e.g., [40, Sec. 8.36],
it is not hard to show for case ii) that

• E(D(B, t) ) is a strictly decreasing function in K (K ≥ 1),

• for K = 1 we have

E(D(B, t) ) = (1− c)
( n∑

i=1

E(Bi)
)

≈ 0.423
( n∑

i=1

E(Bi)
)
,

where c = 0, 577... denotes the Euler-Mascheroni constant,

• E(D(B, t) ) → 0 for K → ∞.
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6 Numerical Examples

Next, we want to illustrate the theoretical results of the former sections by numerical exper-
iments with images corrupted by Poisson and multiplicative Gamma noise, respectively. For
this purpose, we use for ‖Lx‖ the mixed l1-norm ‖ | · | ‖1 and set L to be either a matrix
modeling non-local similarities, see Remark 6.1, or the discrete gradient operator

∇ :=

(
I ⊗D
D ⊗ I

)
, D :=




−1 1
0 −1 1

. . .
. . .

−1 1
0




(29)

with ⊗ denoting the tensor product (Kronecker product) of matrices. In the latter case, ‖Lx‖
becomes the discrete total variation TV (x) := ‖ |∇x| ‖1 mentioned in the introduction.
We apply the peak signal to noise ratio (PSNR) defined by

PSNR = 10 log10
|maxx0 −minx0|

2

1
N ‖x− x0‖22

for a quantitative comparison of the images x, where x0 denotes the original image which we
want to reconstruct. For solving problem (16) all algorithms are implemented in MATLAB
and executed on a computer with an Intel Core i7-870 Processor (8M Cache, 2.93 GHz) and
8 GB physical memory.

6.1 Deblurring Facing Poisson Noise

Figure 1: Left: Original image with values scaled to [0, 3000] so that the brightest pixels
correspond to 3000 detected photons. Middle: Corrupted image blurred by a Gaussian kernel
(standard deviation 1.3) and contaminated by Poisson noise. Right: Restoration result by
the I-divergence constrained model (16) with total variation seminorm.

Our first test image in Figure 1 shows a part of the ’cameraman’ image, which has been
corrupted by a Gaussian blur and contaminated by Poisson noise. The image gray values are
here interpreted as photon counts in the range [0, 3000]. For synthetically adding Poisson
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Figure 2: Convergence speed of x(k) and λ(k) in Algorithm I when computing the restored
image in Figure 1 (right). Left: Iterates λ(k) for different parameters γ. Right: Evolution of
the mean square errors 1

N ‖x(k)−x∗‖22 between the intermediate results x(k) and a sufficiently
converged reference result x∗.

noise to the noise-free image we applied the MATLAB routine imnoise(X,’poisson’). This
procedure assumes for data given in double precision that the input image X consists of the
number of detected photons divided by 1012 - the maximal number of detectable photons.
Therefore, we divided our given image by 1012 before applying this procedure and afterwards
we scaled back again.
Computing the usually unknown value D(b,Hx) for these test images yields a value of
0.5046n, which is close to the estimate τ = 0.5n derived in Section 5. To restore the cor-
rupted image we now solve the constrained minimization problem (16) with the total variation
seminorm and τ = 0.5n, which yields the good reconstruction depicted in Figure 1 (right).
The minimization is here performed by the ADMM Algorithm I. As a by-product of the al-
gorithm we obtain by Theorem 4.2 that the penalized problem (17) yields the same solution
for a regularization parameter of λ = 134.9. As illustrated in Figure 2 the convergence speed
of the iterates x(k) and λ(k) depends as usual on the chosen parameter γ > 0. Compared to a
simplified version of Algorithm I for the penalized problem with fixed λ we see on the right
that for our constrained problem Algorithm I is only slightly slower for equal values of γ.
The restoration result for the whole ’cameraman’ image is shown in Figure 3. ADMM Al-
gorithm I requires approximately 13.8 seconds (816 iterations) with optimized γ = 0.0111 to
compute a solution x(k) so that the maximal relative pixel error ‖x(k)−x∗‖∞/3000 to a suffi-
ciently converged reference result x∗ is smaller than 1%. Here, the occurring linear system of
equations has been solved using the discrete cosine II transform. For the same accuracy the
PDHGMp Algorithm II requires only approximately 9 seconds (864 iterations) with s = 16.9
and t = 0.01. However, two parameters have to be optimized, here.

6.2 Denoising Facing Multiplicative Gamma Noise

TV Regularization Our next example in Figure 4 shows a 512×512 aerial image corrupted
by multiplicative Gamma noise. The obtained restoration result by solving the constrained
problem (16) with H := I, total variation seminorm and τ =

(∑n
i=1 bi

)(
ψ(K+1)−log(K)

)
≈

20



Figure 3: Result for the whole ’cameraman’ image. Left: Original image of size 256 × 256
with values scaled to [0, 3000]. Middle: Corrupted image. Right: Restoration result by the
I-divergence constrained model (16) with total variation seminorm.

2.64n is depicted on the right. For computing this solution we used again Algorithm I. The
occurring linear system of equations is solved here by a CG method, since due to the sparsity
of the relevant matrices the CG method turned out to be even faster than a straightforward,
non-optimized implementation of the cosine II transform. Since H is the identity matrix, the
non-negativity of x is guaranteed by the I-divergence constraint. Therefore, we can simplify
the algorithm by omitting the constraint x ≥ 0 and thus the variables y3 and q3 in the
algorithm. This is equally true for the PDHGMp Algorithm II, where s t < 1/‖(I LT)‖22
is guaranteed for s t < 1/9. Alternatively, we can also use the predictor-corrector ADM
Algorithm III, here. In Table 1 a speed comparison between these algorithms for ’trial and
error’ optimized parameters γ, s and t with respect to the error measure ‖x(k) − x∗‖∞ is
provided. The sufficiently converged reference result x∗ is obtained by Algorithm III. As the

PSNR: 22.63 PSNR: 27.03

Figure 4: Left: Original image of the French city of Nı̂mes (512×512) with values in the range
[1, 256], see also [32]. Middle: Image corrupted by multiplicative Gamma noise (K = 10).
Right: Restoration result by the I-divergence constrained model (16) with total variation
seminorm (γ = 0.015).
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Algorithms
Parameters Number of Computation

γ s t iterations times

‖x(k) − x∗‖∞ < 3

Algorithm I: ADMM 0.042 – – 36 2.3 sec

Algorithm I: ADMM with fixed λ = 3.2286 0.035 – – 33 1.5 sec

Algorithm II: PDHGMp – 4.6 0.033 44 1.4 sec

Algorithm III: ADM with predictor-corr. step – 3.18 1
17 70 2.0 sec

” – (1)
(

1
16

)
(222) (5.9 sec)

‖x(k) − x∗‖∞ < 1

Algorithm I: ADMM 0.055 – – 66 4.6 sec

Algorithm I: ADMM with fixed λ = 3.2286 0.058 – – 67 3.6 sec

Algorithm II: PDHGMp – 3.5 0.043 81 2.2 sec

Algorithm III: ADM with predictor-corr. step – 3.06 1
17 95 2.6 sec

” – (1)
(

1
16

)
(284) (7.6 sec)

Table 1: Computation times required by the algorithms to compute x(k) with specified max-
imal pixel differences to the sufficiently converged reference result x∗ of size 512 × 512 in
Figure 4. The times are averaged here over 100 runs of the algorithms.

comparison shows Algorithm II is fastest here followed by Algorithm III if we optimize s and
t disregarding the theoretical convergence constraints s t < 1/‖(I LT)‖22 and s t < 0.5/‖L‖22 ,
respectively. For the non-optimized values s = 1/16 and t = 1 used in [71] Algorithm III
performs worse.
The ADMM Algorithm I is slightly slower than Algorithms II and III with optimized values s
and t, here. However, this algorithm has the benefit that we only need to optimize one instead
of two parameters and that convergence is theoretically assured for any γ > 0. Strategies
for an adaptive parameter selection of γ for ADMM have been studied in [12, 43] and it is
future work to adapt these methods for our algorithms. To get additionally a feeling about
the performances compared to solving the penalized problem (17) we also executed Algorithm
I with fixed, already optimized λ. In this case the algorithm is faster, but not significantly
compared to the case where λ has to found by inner Newton iterations.

Nonlocal Regularization As mentioned in the introduction alternatively to the total
variation seminorm, nonlocal terms ‖ |Lx| ‖1 can also be used in the restoration models.
These methods often lead to better restoration results than TV-regularized approaches, but
are computationally more demanding, since the matrix L is adapted to the image and is
not as sparse as the discrete gradient matrix. For multiplicative Gamma noise appropriate
nonlocal matrices L can be constructed as follows, compare [39, 63, 64]:

Remark 6.1. We start with a zero weight matrix w ∈ R
n,n. For every image pixel i we
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PSNR: 21.79

PSNR: 26.53 PSNR: 26.77

Figure 5: Top: Parts of the images depicted in Fig. 4 (left and middle). Bottom: Restored
images by the I-divergence constrained model (16) with total variation seminorm (left) and
the nonlocal term (p = 17, ω = 17, a = 4) (right), respectively.

compute for all j within a search window of size ω × ω around i the distances

da(i, j) :=

⌈ l−1
2

⌉∑

h1=−⌈ l−1
2

⌉

⌈ l−1
2

⌉∑

h2=−⌈ l−1
2

⌉

ga(h1, h2) s
(
f
(
i+ (h1, h2)

)
, f
(
j + (h1, h2)

))
,

where s(fi, fj) := K log
(2+fi/fj+fj/fi

4

)
and ga represents a discrete normalized Gaussian of

mean 0 and standard deviation a. The parameter l controls here the size of the image parts
being compared. For a predefined bound m̃ = 5 we select the k ≤ m̃ ’neighbors’ j 6= i of i for
which da(i, j) takes the smallest values and the number of nonzero elements in the row w(j, ·)
is smaller than 2m̃. Here, we set w(i, j) = w(j, i) = 1, which causes several weights w(j, ·)
to be already non-zero before we actually reach pixel j. To avoid that the number of non-zero
weights becomes too large, we set the number of chosen neighbors to k := min{m̃, 2m̃−r} with
r being the number of non-zero weights w(i, ·) before the selection. Finally, we construct the
matrix L ∈ R

dn,n with d = 2m̃ so that L consists of d blocks of size n×n, each having maybe
some zero rows and rows with −1 as diagonal element plus one additional nonzero value 1
whose position is determined by the nonzero weights w(i, j).

For such a matrix the constrained problem (16) with the estimated bound τ = 2.64n leads
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Algorithms
Parameters Number of Computation
γ s t iterations times

‖x(k) − x∗‖∞ < 3

Algorithm I: ADMM 0.044 – – 34 1.24 sec

Algorithm I: ADMM with fixed λ = 6.4454 0.029 – – 23 0.73 sec

Algorithm II: PDHGMp – 1.65 1
38 58 0.89 sec

Algorithm III: ADM with predictor-corr. step – 4 1
80 30 1.04 sec

‖x(k) − x∗‖∞ < 1

Algorithm I: ADMM 0.047 – – 46 1.46 sec

Algorithm I: ADMM with fixed λ = 6.4454 0.035 – – 44 1.07 sec

Algorithm II: PDHGMp – 1.65 1
38 76 1.22 sec

Algorithm III: ADM with predictor-corr. step – 2.4 1
47 67 2.32 sec

Table 2: Computation times required by the algorithms to compute x(k) with specified max-
imal pixel differences to the sufficiently converged reference result x∗ of size 180× 180 shown
in Figure 5 (right). The times are averaged here over 100 runs of the algorithms.

to even better restoration results than the total variation seminorm, see Figure 5.
Table 2 shows a time comparison of the algorithms for solving problem (16) with the nonlocal
matrix (d = 10). The PDHGMp Algorithm II is here again slightly faster than the other
algorithms. However, compared to approximately 7.2 seconds which we require for the con-
struction of the matrix L, the time differences between the algorithms are almost negligible.

To finally conclude this section we also provide a result for a real synthetic aperture radar
(SAR) image in Figure 6. Due to the image acquisition process the squared image values
are corrupted by multiplicative Gamma noise (K ≈ 2.6), here. Therefore, the I-divergence
model (16) is applied to the squared image values and we take the square root of the output
as final result. To compute the restoration result of (16) with the TV seminorm such that
‖x(k) − x∗‖∞ < 3, ADMM Algorithm I needs approximately 5.3 seconds (97 iterations, γ =
0.00013) compared to 3 seconds required by PDHGMp Algorithm II (105 iterations, s = 1150,
t = 1

7400 ). To compute the result of (16) with the nonlocal matrix (d = 10) and the same
accuracy, ADMM Algorithm I takes approximately 11.7 seconds (40 iterations, γ = 0.00024)
compared to 11.2 seconds required by PDHGMp Algorithm II (99 iterations, s = 550, t =

1
13000 ). Due to the image size the generation of the matrix L takes here with 48 seconds by
far the most time.

7 Summary and Conclusions

We have examined the minimization of semi-norms under I-divergence constraints D(H·, b) ≤
τ . One advantage of these models over penalized ones is the fact that the constraining
parameter τ can be estimated by statistical methods if some knowledge on the (type of) noise
is available. Primal-dual minimization algorithms for the constrained problem involve the
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Figure 6: Left: Real multi-look SAR image (copyright by [34]) of size 512 × 512 with values
in [0, 255]. Middle: Restoration result by the I-divergence constrained model (16) with the
total variation seminorm applied to the squared image. Right: Result by the I-divergence
constrained model (16) with the nonlocal term (l = 9, ω = 13, a = 3) applied to the squared
image.

solution of I-divergence constrained least squares problems in each iteration step k. To solve
these problems one can utilize that the corresponding least squares problem with penalized I-
divergence has an analytical solution t̂(k)(λ(k)) which depends on the regularization parameter
λ(k). Fortunately, there exists a unique parameter λ̂(k) which solves the discrepancy equation
D(b, t̂(k)(λ(k))) = τ . This λ̂(k) can be efficiently computed by Newton’s method. It turns out
that the sequence {λ̂(k)}k converges to the regularization parameter λ̂ for which the penalized
problem (17) has the same solution.
Future directions of research may include the following:

• In the analysis of Lemma A3 which influences the following results of the paper we have
used that D(b, ·) is strictly convex for b > 0. Indeed this is a restriction for various
image processing tasks. Using the agreement that 0 log 0 := 0 the definition of the
I-divergence can be generalized to b ≥ 0. It remains to prove under which assumptions
on H and L our analysis still valids.

• The modification of our approach to spatially adapted regularization parameter selec-
tion, see [22, 29, 44], will be interesting. For this task, further estimates of appropriate
parameters τ will be useful.

• The application of multiplicative iterative update rules for incorporating the non-negativity
constraint, cf. [6, 28] should be examined.

• Moreover, the determination of the parameters inherent in the algorithms, i.e., γ and
s, t is ongoing research.

• Recently, variance stabilizing transforms (VST) [31, 20] as the (generalized) Anscombe
transform were applied instead of the I-divergence to restore Poissonian data, see, e.g.,
[20, 31]. However, the variance stabilizing property was not completely utilized since
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all the models are penalized once where a parameter estimation is still necessary. The
solution of the corresponding constrained problems was not addressed up to now.

• Finally, we are interested in analyzing multiple constraints. Here it may be useful to
apply the primal-dual algorithms suggested in [19, 67] and epigraphical projections as
in [5, 24].

Acknowledgement. Many thanks to the referees for pointing to the recent references [17,
18].

A Appendix

A.1 Auxiliary Lemmata

The first lemma ensures the existence of τ0 in (15).

Lemma A.1. Let H ∈ R
n,n with K 6= ∅. Then argminx≥0D(b,Hx) 6= ∅ holds true.

Proof. Let τ0 := infx≥0D(b,Hx) and x(n) ≥ 0 be a sequence with limn→∞D(b,Hx(n)) = τ0.

We have the unique decomposition x(n) = x
(n)
1 + x

(n)
0 with x

(n)
1 ∈ R(H∗) and x

(n)
0 ∈ N (H).

Since D(b,H·) is lower level-bounded on R(H∗) and limn→∞D(b,Hx
(n)
1 ) = τ0, the sequence

{x
(n)
1 } is bounded. Thus, there exists a convergent subsequence {x

(nj )
1 } with limj→∞ x

(nj)
1 =

x̂1 ∈ R(H∗) and since D(b,H·) is continuous,

lim
j→∞

D(b,Hx
(nj)
1 ) = D(b,Hx̂1) = τ0. (30)

We still have that x(nj) = x
(nj)
1 + x

(nj)
0 ≥ 0 for some x

(nj)
0 ∈ N (H). By the following reasons

there exists x̂0 ∈ N (H) such that x̂ := x̂1 + x̂0 ≥ 0: Assume that this is not the case.
Then, the affine space x̂1 +N (H) and the polyhedral cone R

n
≥0 have an empty intersection.

By [55, p. 175, Corollary 19.3.3] both sets can be strongly separated by a hyperplane, i.e.,
‖x̂1 + v − z‖ ≥ δ > 0 for all v ∈ N (H) and all z ≥ 0. Thus,

δ ≤ ‖x̂1 − x
(nj)
1 + x

(nj)
1 + v − z‖ ≤ ‖x̂1 − x

(nj)
1 ‖+ ‖x

(nj)
1 + v − z‖ ∀v ∈ N (H),∀z ≥ 0.

However, this is a contradiction, since the last summand becomes zero for v = x
(nj)
0 ∈ N (H)

and some z ≥ 0, and ‖x̂1 − x
(nj)
1 ‖ becomes arbitrary small for j large enough.

Finally, we conclude by (30) that there exists x̂ ∈ argminx≥0D(b,Hx). �

Next, we provide some useful lemmas which were applied in Section 3. The first lemma is a
generalization of a lemma from [25].

Lemma A.2. Let Rn be decomposed as orthogonal sums R
n = U1 ⊕ U2 and R

n = V1 ⊕ V2 of
subspaces U1, U2 and V1, V2, where U2 ∩ V2 = {0}. Let F,G : Rn → R ∪ {+∞} be proper,
convex, lower semi-continuous functions with

F (x) = F (x+ u2), G(x) = G(x+ v2)
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for all x ∈ R
n, u2 ∈ U2 and v2 ∈ V2. Set f := F |U1 and g := G|V1 and assume that

the level sets levαf , levβg are nonempty and bounded for some α, β ∈ R. Moreover, let
J : Rn → R ∪ {+∞} be a proper, lower semi-continuous function which is bounded from
below. If domF ∩ domG ∩ domJ 6= ∅, then F +G+ J attains its finite minimum.

Proof. Since f, g are proper, convex and lower semi-continuous and levα(f), levβ(g) are
nonempty and bounded for some α, β ∈ R, we know that f and g are level-bounded, i.e.,
all their level sets are bounded, cf. [55, Cor. 8.7.1]. Moreover, by the lower semi-continuity
of f and g all these level sets are compact. With the properness and again the lower semi-
continuity of f and g we can further conclude that f and g are bounded from below. Without
loss of generality we may therefore assume f ≥ 0, g ≥ 0, J ≥ 0, which yields also that F ≥ 0
and G ≥ 0.
Now, we want to show that F+G+J is level-bounded. Since domF∩domG∩dom J 6= ∅, there
exist α̃, β̃, γ̃ ∈ R with levα̃(F )∩levβ̃(G)∩levγ̃(J) 6= ∅. Following the same arguments as in [25,
Lemma 3.1 i)] we obtain by U2 ∩ V2 = {0} and the boundedness of levα̃+β̃(f) and levα̃+β̃(g)
that levα̃+β̃(F ) ∩ levα̃+β̃(G) is bounded. Since F,G ≥ 0, the level set levα̃+β̃(F + G) ⊆
levα̃+β̃(F )∩levα̃+β̃(G) is bounded as well and non-empty due to the fact that levα̃+β̃(F+G) ⊇
levα̃(F )∩ levβ̃(G) 6= ∅. Since F +G is proper, convex and lower semi-continuous, this implies
by [55, Cor. 8.7.1] that F + G is level-bounded and with J ≥ 0 we obtain that F + G + J
is level-bounded, too. Using now that domF ∩ domG ∩ dom J 6= ∅ and that F , G and J
are proper and lower semi-continuous, we know that F + G + J is also proper and lower
semi-continuous. Thus, it finally follows by [56, Thm. 1.9] that F + G + J attains its finite
minimum. �

The next lemma is taken from [25].

Lemma A.3. Let the Euclidean space R
n be decomposed into the direct sum R

n = U1⊕U2 of
two subspaces U1, U2 and let F : Rn → R∪{+∞} be a convex function which is strictly convex
on U1 and which inheres the translation invariance F (x) = F (x+u2) for all x ∈ R

n and u2 ∈
U2. Furthermore, let G : Rn → R ∪ {+∞} be any convex function with domF ∩ domG 6= ∅.
Then all x̂, x̃ ∈ argminx∈Rn{F (x) +G(x)} fulfill x̂− x̃ ∈ U2 and F (x̂) = F (x̃), G(x̂) = G(x̃).

A.2 Duality

Let f1 : Rn → R ∪ {+∞}, f2 : Rd → R ∪ {+∞} be proper, convex, lower semi-continuous
functions and A ∈ R

d,n. Then the primal problem

(P ) min
x∈Rn

{f1(x) + f2(Ax)}

can be rewritten as

(P ) min
x∈Rn,y∈Rd

{f1(x) + f2(y) subject to Ax = y}.

Using the Lagrangian L(x, y, p) = f1(x) + f2(y) + 〈p,Ax − y〉 the primal and dual problems
read

(P ) min
x∈Rn,y∈Rd

max
p∈Rd

{f1(x) + f2(y) + 〈p,Ax− y〉} ,

(D) max
p∈Rd

min
x∈Rn,y∈Rd

{f1(x) + f2(y) + 〈p,Ax− y〉}

27



and applying the definition of the conjugate function this becomes

(P ) min
x∈Rn

max
p∈Rd

{f1(x)− f∗2 (p) + 〈p,Ax〉} ,

(D) max
p∈Rd

min
x∈Rn

{f1(x)− f∗2 (p) + 〈p,Ax〉} .

For the minimizers p̂ of the dual problem we have that

p̂ ∈ argmin
p∈Rd

{
f∗2 (p)− min

x∈Rn
{f1(x) + 〈p,Ax〉}

}

=argmin
p∈Rd

{
f∗2 (p) + max

x∈Rn
{〈−A∗p, x〉 − f1(x)}

}

=argmin
p∈Rd

{f∗2 (p) + f∗1 (−A
∗p)}. (31)
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