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Abstract

We propose and analyze the use of circulant preconditioners for
the solution of elliptic problems via preconditioned iterative methods
such as the conjugate gradient method� Part of our motivation is
to exploit the fast inversion of circulant systems via the Fast Fourier
Transform �FFT�� We prove that circulant preconditioners can be cho�
sen so that the condition number of the preconditioned system can
be reduced from O�n�� to O�n�� Numerical experiments also indicate
that the preconditioned systems exhibit favorable clustering of eigen�
values� Both the computation �based on averaging of the coe�cients of
the elliptic operator� and the inversion �using FFT�s� of the circulant
preconditioners are highly parallelizable�
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� Introduction

In this paper� we are concerned with the numerical solution of linear bound�
ary value problems of elliptic type� After discretization� such problems re�
duce to the solution of linear systems of the form Ax � b� In this paper�
we shall only consider the case where A is symmetric and positive de�nite�
In practice� large problems of this class are often solved by iterative meth�
ods� such as the Chebychev method and the conjugate gradient method�
Contrary to direct methods in which the coe�cients of A are directly trans�
formed� at each step of these iterative methods only the product of A with
a given vector v is needed� Such methods are therefore ideally suited to
exploit the sparsity which A possesses�

Typically� the rate of convergence of these methods depends on the
condition number ��A	 of the coe�cient matrix A
 the smaller ��A	 is�
the faster the convergence� Unfortunately� for elliptic problems of sec�
ond order� usually ��A	 � O�n�	� where n is the number of degrees of
freedom �e�g� mesh points	 in each coordinate direction� and hence grows
rapidly with n� To somewhat alleviate this problem� these iterative methods
are almost always used with a preconditioner M and the conjugate gradi�
ent method is applied instead to the transformed system �A�x � �b where
�A � M����AM����� �x � M���x and �b � M����b� The preconditioner M is
chosen with two criteria in mind
 to minimize ��M��A	 and to allow e��
cient computation of the productM��v for a given vector v� These last two
goals are often con�icting ones and much research has gone into devising
preconditioners that strike a delicate balance between the two�

One of the most popular and most successful class of preconditioners
is the class of incomplete LU factorizations� see for instance� ��� ��� The
central idea is to factor A into approximate triangular factors L and U via
an elimination process such that L and U have nonzero entries only where
the corresponding element of A is nonzero� For some of these precondition�
ers� it can be proven that ��M��A	 � O�n	 for certain classes of elliptic
problems� see �� ��� ��� This is a much slower growth compared to the
unpreconditioned system�

One potential problem with the ILU preconditioners is that both the
computation and the application of the preconditioners have limited degree
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of parallelism� due to the inherently sequential way in which the grid is tra�
versed� Attempts to modify the method �e�g� by re�ordering the grid points	
and to devise other more parallel methods �e�g� polynomial preconditioners	
often result in a deterioration of the convergence rate�

The purpose of this paper is to propose another class of precondition�
ers� one that is based on averaging the coe�cients of A to form a circulant

approximation M � Part of our motivation is to exploit the fast inversion
of circulant systems via the Fast Fourier Transform �FFT	� We prove that
circulant preconditioners can be chosen so that ��M��A	 � O�n	� just as
for ILU type preconditioners� In addition� we are motivated by recent re�
search on circulant preconditioners for Toeplitz systems �� ��� which shows
potential for favorable clustering of eigenvalues of the preconditioned sys�
tem� Finally� both the computation �based on averaging of the coe�cients
of the elliptic operator	 and the inversion �using FFT�s	 of our circulant pre�
conditioners are highly parallelizable across a wide variety of architectures�

Our preliminary numerical experiments show that the circulant precon�
ditioners are quite competitive in terms of number of iterations with the ILU
preconditioners for elliptic problems with mildly varying coe�cients� As is
well�known� the ILU preconditioners are rather insensitive to the variation
of the coe�cients and for such problems they rquire much fewer number of
iterations �than most known preconditioners in fact	� Part of our numerical
experiments are designed to study the cross�over point in this comparison�

Recently� several interesting multilevel elliptic preconditioners have been
proposed in the literature �� �� ��� ��� which are highly parallelizable and
have very attractive convergence rates� However� these preconditioners are
not directly applicable when the discrete algebraic problem does not have
an underlying multilevel structure� For such problems� we hope that the
circulant preconditioners proposed here will o�er an interesting alternative
to ILU�type preconditioners on parallel computers�

The idea of circulant preconditioners has been proposed independently
by Holmgren and Otto ��� for preconditioning implicit systems arising from
hyperbolic problems� For such problems� the coe�cient matrix A is often
highly nonsymmetric and non�diagonally dominant and hence many clas�
sical preconditioning techniques are not e�ective �and sometimes not well�
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de�ned	� For these problems� the circulant preconditioners are often the
only ones that work�

We mention that it is also possible to use skew�circulant precondition�
ers for general Toeplitz systems� Huckle ��� has shown that skew�circulant
preconditioners and combinations of skew�circulant and circulant precondi�
tioners can be as e�ective as the circulant preconditioners� However� we
shall limit our attention only to circulant preconditioners in this paper�

The outline of the paper is as follows� In x�� we de�ne the circulant
preconditioner and analyze a model problem in the one�dimensional case�
Analysis of the spectral condition number of the preconditioned system are
given in x� for the model Laplacian operator on a square and extended
to variable coe�cient operators in x�� Some numerical experiments are
presented in x� to verify these theoretical bounds and to illustrate the e�ect
of clustering of the spectrum� Extension to the case of irregular domains
are discussed in x��

� Circulant Approximations to Elliptic Operators�

The �D Case

In this section� we derive various circulant preconditioners for elliptic oper�
ators on rectangular domains� Our basic strategy is to choose as precondi�
tioner a matrix C which is a good approximation to the coe�cient matrix
A in the sense of minimizing kA � Ck in some appropriate norm� In the
Frobenius norm� denoted by k � kF � this problem has a trivial solution� �rst
noted in ��� Let the elements of A be denoted by ai�j and the elements of
the �rst row of C be denoted by �c�� c�� ���� cn	�

Theorem � The best circulant approximation C to a given n�by�n matrix

A in the sense of minimizing kA� CkF is given by�

ci �
�

n

nX
j��

aj��j�i���modn� ����	

Moreover� C is symmetric positive de�nite if A is�
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The above formula has a simple graphical interpretation
 ci is simply
the arithmetic average of that diagonal of A �extended to length n by wrap�
around if necessary	 containing the corresponding element a��i� For further
properties of this circulant approximation to a general matrix� we refer the
reader to ���

We remark that if A is a general Toeplitz matrix� one can de�ne other
good circulant approximations to A� see for instance� ��� ��� ���� How�
ever� we emphasize that some of these circulant approximations� such as the
Strang�s preconditioner ���� are not de�ned for general non�Toeplitz matrix�

Now consider applying the result on the best circulant approximation C
to a simple elliptic problem in �D� namely the problem


��a�x	ux	x � f�x	 ����	

on the interval �� �� with Dirichlet boundary conditions u��	 � u� and
u��	 � u�� Using the usual ��point centered di�erencing on a uniform mesh
with n interior grid points xi�s� the corresponding matrix A is a symmetric
tridiagonal matrix with nonzero elements of the i�th row given by

��a�xi� �

�

	� a�xi� �

�

	 � a�xi� �

�

	��a�xi� �

�

		�

The best circulant approximation to A is given by

c� � cn � � �

n

n��X
j��

a�xj� �

�

	

c� � ��c� � �

n
�a�x �

�

	 � a�xn� �

�

		�

with all other coe�cients ci�s de�ned to be zero� The coe�cients of the
circulants are therefore simple averages of the coe�cient a�x	 over the grid
points�

The question now is how good this preconditioner is in the sense of
minimizing ��C��A	� As it turns out� C de�ned this way is not as good
as some of the ILU type preconditioners asymptotically� Precisely� it can
be shown �as part of a result which we shall prove later	 that ��C��A	 �
O�n���	�
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The above situation is reminiscent of that of the unmodi�ed ILU precon�
ditioner ���� In that situation� the bound for the condition number can be
lowered to O�n	 if we modify the preconditioner in a simple way
 �� ��� at
each step of the elimination process� we add enough to the main diagonal
entry to make the row sum zero and then add a quantity of size O�n��	�
Borrowing from this idea� we can modify our circulant preconditioner C by
keeping the de�nitions of c� and cn the same and rede�ning c� as follows


c� � ���c�	 � �n��� ����	

where � is a positive constant independent of n and � � �� Clearly� this
modi�ed circulant matrix has each row sum equal to �n���

It turns out that this simple modi�cation is su�cient to reduce ��C��A	
to O�n	 for a suitably chosen �� We shall illustrate this for the special case
of a�x	 � �� In this constant�coe�cient case� A is a tridiagonal Toeplitz
matrices given by tridiag���� ����	 and C is a circulant matrix with the
only three nonzero coe�cients given by c� � �� � �n�� and c� � cn � ���
where � � n��

n � For easy reference by later discussion� we denote A and C
for this constant�coe�cient �D case by A� and C� respectively�

Theorem � Let A� � tridiag��� ����� and C� be the circulant matrix with

the �rst row given by

��� �
�

n�
���� �� � � � � ����	� ����	

where � � �n� �		n� � � O��	 and � � �� Then we have�

O�n���	 � 
�C��
� A�	 � O�n

�
� 	� if � � ��

and

O��	 � 
�C��
� A�	 � O�n���	� if � � ��

As a consequence� we have�

��C��
� A�	 � O�n��

�
� 	� if � � ��

and

��C��
� A�	 � O�n���	� if � � ��

The optimal value of ��C��
� A�	 � O�n	 is achieved with � � ��
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Proof� See Appendix�

Remark� It can be easily veri�ed that the unmodi�ed circulant precondi�
tioner corresponds to the case � � � and � � �� The results of the above
theorem show that in that case ��C��

� A�	 � O�n��		� justifying our earlier
statement�

When � � �� we can show furthermore that the spectrum of C��
� A� is

clustered�

Corollary � If � � �� then at most one eigenvalue of C��
� A� lies outside

c� n	�n� �	�� where c � ���	���� � �	 �O�n��	�

Proof� See Appendix�

� Analysis for the �D Model Problem

While so far we have discussed only �D problems for the purpose of illustra�
tion� the results do extend to higher dimensions� Consider for example the
�D problems


��a�x� y	ux	x � �b�x� y	uy	y � f�x� y	

on the unit square �� �� � �� �� with Dirichlet boundary condition� Let
the domain be discretized by using a uniform grid with n grid points in
each coordinate direction� denoted by xi and yj� Consider the usual ��
point centered di�erence approximation with the grid points ordered in the
x�direction �rst� The matrix A is an n��by�n� block tridiagonal matrix
where the diagonal blocks are scalar tridiagonal matrices and the o��diagonal
blocks are diagonal matrices�

We consider two choices of circulant preconditioners for A� The �rst is
obtained by applying the circulant approximation in Theorem � directly to
A� This preconditioner� denoted by CP � is de�ned by

c� � ��a � b	 � �n��� ����	
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c� � cn� � �a� ����	

cn�� � c�n���n�� � �b� ����	

where

a �
�

n�

nX
j��

n��X
i��

a�xi� �

�

� yj	� ����	

and

b �
�

n�

nX
i��

n��X
j��

b�xi� yj� �

�

	� ����	

and all other ci�s de�ned to be zero� Again these coe�cients are simple
averages of the coe�cients a�x� y	 and b�x� y	 of the di�erential problem
over the grid� We shall call CP the point�circulant preconditioner for A�

For the second choice of preconditioner� we preserve the block structure
of A and de�ne a block�circulant preconditioner CB as follows


CB � Cb � I � I � Ca� ����	

where Ca and Cb are n by n circulant matrices de�ned by


Ca
� � ��a� �n���

Ca
� � ��a�

Ca
n � ��a�

Cb
� � ��b� �n���

Cb
� � ��b�

Cb
n � ��b�

with all other diagonals of Ca and Cb de�ned to be zero�

We note that CB can be inverted on a given vector using n FFTs of size
n� whereas CP requires one FFT of size n��

Similar circulant matrices can be de�ned for more general elliptic opera�
tors with more complicated di�erence stencils and also in higher dimensions�

We now analyze the convergence rate of our method for the special case of
the discrete Laplacian on the unit square with Dirichlet boundary conditions�
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The n��by�n� coe�cient matrix Ac is given by

Ac � A� � I � I �A�� ����	

where A� � tridiag��� ������ In this case� �a � �b � � � �n � �		n� In
particular� the block�circulant preconditioner� denoted by Cb now� is given
by

Cb � C� � I � I � C�� ����	

where C�� given by ����	 and modi�ed by ����	� is the circulant approxima�
tion of A��

For the block�circulant preconditioner� the results in the �D case can
readily be generalized�

Theorem � For the block�circulant preconditioned systems for the �D model

problem� we have

O�n���	 � 
�C��
b Ac	 � O�n

�
� 	� if � � ��

and

O��	 � 
�C��
b Ac	 � O�n���	� if � � ��

As a consequence� we have�

��C��
b Ac	 � O�n��

�
� 	� if � � ��

and

��C��
b Ac	 � O�n���	� if � � ��

The optimal value of ��C��
b Ac	 � O�n	 is achieved with � � ��

Proof� See Appendix�

For the point�circulant preconditioned systems� we obtain a slightly
larger bound on their condition numbers� For simplicity� we only consider
the case where � � ��
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Theorem � Let Cp be the point�circulant preconditioner for the �D model

problem with � � �� Then we have O��	 � 
�C��
p Ac	 � O�n log n	 and

hence ��C��
p Ac	 � O�n log n	�

Proof� See Appendix�

� Analysis for Variable Coe�cient Problems in �D

In this section� we shall make use of the results of the previous section and
extend them to variable coe�cient problems� We consider elliptic equations
of the form

��a�x� y	ux	x � �b�x� y	uy	y � f�x� y	 ����	

on the unit square� We assume that the coe�cients a�x� y	 and b�x� y	 satisfy

� � cmin � a�x� y	� b�x� y	 � cmax

for some constants cmin and cmax� Without loss of generality� we assume
cmin � � and cmax � �� Let A be the n��by�n� matrix obtained by discretizing
����	 by the standard ��point scheme on a uniform n by n grid� De�ne
Amax � cmax �Ac and Amin � cmin �Ac� where Ac is given by ����	� We claim
that both Amax �A and A�Amin are both positive semi�de�nite matrices�

We verify the claim for A � Amin� Let us assume that the domain is
discretized by using a uniform grid with n grid points in each coordinate
direction� denoted by xj and yj� It is easy to see that every row in A�Amin

has at most �ve nonzero entries and they are given by

�A�Amin	j�j � a�xj� �

�

� yj	 � a�xj� �

�

� yj	 � b�xj � yj� �

�

	

�b�xj� yj� �

�

	� �cmin�

�A�Amin	j�j�� � cmin � a�xj� �

�

� yj	�

�A�Amin	j�j�� � cmin � a�xj� �

�

� yj	�

�A�Amin	j�j�n � cmin � b�xj � yj� �

�

	�

�A�Amin	j�j�n � cmin � b�xj � yj� �

�

	� j � �� � � � � n��
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where we employ the convention that ��	jk � � if k lies outside the range
�� n��� It is now clear that the diagonal entries of �A�Amin	 are non�negative
and the o��diagonal entries are non�positive� Moreover� we have

�A�Amin	j�j �
n�X
i��
i��j

j�A�Amin	j�ij�

Hence by the Gerschgorin Theorem� A�Amin is positive semi�de�nite� Sim�
ilarly� we can show that Amax�A is also positive semi�de�nite� Thus we see
that for all nonzero vectors x�

� � x�Aminx � x�Ax � x�Amaxx� ����	

Now let CB � Cmax and Cmin be the the block�circulant approximations
of A� Amax and Amin respectively� Clearly� Cmax � cmax � Cb and Cmin �
cmin � Cb� where Cb� given by ����	� is the block�circulant approximation of
Ac� Consider �rst the matrix CB�Cmin� By our de�nition of block�circulant
approximations� it can be easily veri�ed that this matrix has non�negative
diagonal entries and non�positive o��diagonal entries� It therefore follows
that

�CB �Cmin	j�j �
n�X
i��
i��j

j�CB �Cmin	j�ij� ����� cmin	

n�
�

n�X
i��
i��j

j�CB �Cmin	j�ij�

Thus by the Gerschgorin Theorem� the matrix CB � Cmin is positive semi�
de�nite� By a similar argument� so is the matrix Cmax � CB � Hence for all
nonzero vectors x� we also have�

� � x�Cminx � x�CBx � x�Cmaxx�

Combining this result with ����	� we get

� �
cmin

cmax

x�Acx

x�Cbx
�

x�Aminx

x�Cmaxx
� x�Ax

x�CBx
� x�Amaxx

x�Cminx
�

cmax

cmin

x�Acx

x�Cbx
�

Recalling the results for the constant�coe�cient case� namely Theorem ��
we have the following theorem�
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Theorem � Let A be the ��point discretization matrix of

��a�x� y	ux	x � �b�x� y	uy	y � f�x� y	

on the unit square with

� � cmin � a�x� y	� b�x� y	 � cmax

for some constants cmin and cmax and let CB be the block�circulant precon�

ditioner of A as de�ned in �	�
�� Then we have

O�n���	 � 
�C��
B A	 � O�n

�
� 	� if � � ��

and

O��	 � 
�C��
B A	 � O�n���	� if � � ��

As a consequence� we have�

��C��
B A	 � O�n��

�
� 	� if � � ��

and

��C��
B A	 � O�n���	� if � � ��

The optimal value of ��C��
B A	 � O�n	 is achieved with � � ��

For the point�circulant preconditioned systems� using a similar argu�
ment� we have the following results� As in Theorem �� we only consider the
case where � � ��

Theorem 	 Let A be the ��point discretization matrix of

��a�x� y	ux	x � �b�x� y	uy	y � f�x� y	

on the unit square with

� � cmin � a�x� y	� b�x� y	 � cmax

for some constants cmin and cmax and let CP be the point�circulant pre�

conditioner of A as de�ned in �	�����	�	� with � � �� Then we have

O��	 � 
�C��
P A	 � O�n log n	 and ��C��

P A	 � O�n log n	�
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Finally� we note that the application of the circulant preconditioners
require O�n� logn	 �ops� which is slightly more expensive than the O�n�	
�ops for the ILU�type preconditioners� However� the FFTs can be computed
in O�log n	 parallel steps with O�n�	 processors whereas the ILU precondi�
tioners require at least O�n	 steps regardless of how many processors are
available�

� Numerical Experiments

In this section� we compare the performance of our method to the modi�

�ed incomplete LU �MILU	 preconditioner ��� In these preliminary tests�
we shall mainly compare the number of iterations� rather than the actual
computing time� The equation we used is



x
�� � �ex�y	

u

x
� �



y
�� �

�

�
sin����x� y			

u

y
� � f�x� y	�

on the unit square and where � is a parameter� We discretize the equation
using the standard ��point scheme� Both the right hand side and the initial
guess are chosen to be random vectors and are the same for the di�erent
methods� Computations are done with double precision on a VAX ���� and
the iterations are stopped when jjrj jj�	jjr�jj� � ���
� Here rj is the residual
at the jth step and jj�x�� � � � � xn	�jj�� �

Pn
i�� x

�
i � The block� and the point�

circulant preconditioners we used are de�ned in x� and x�� The parameters
we choose for our experiments are � � � and � � � for both the circulant
and the MILU preconditioners�

Since the circulant preconditioners are based on averaging of these coe��
cients over the grid points� their performance will deteriorate as the variation
in the coe�cients increase� To somewhat alleviate this potential problem�
we �rst symmetrically scale A by its diagonal before applying the circulant
preconditioners� This technique has also proven to be very useful when used
in conjunction with other kinds of preconditioners� In our experiments� we
apply diagonal scaling to all methods�

Tables �a��b show the number of iterations required for convergence for
di�erent choices of �� The data for the preconditioned iterations are also
plotted in Figures �a��d�
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Figure 1a. epsilon=0.0, o:milu, +:point, *:block
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Figure 1b. epsilon=0.01, o:milu, +:point, *:block
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Figure 1c. epsilon=0.1, o:milu, +:point, *:block
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Figure 1d. epsilon=1.0, o:milu, +:point, *:block
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We see that for small values of � �e�g� � � ����	� the performance of the
circulant preconditioner seems to be better than that of MILU� However�
the MILU method is less sensitive to the changes in �� and for larger values
of � �e�g� � � ���	� MILU requires less number of iterations than the circu�
lant preconditioners� at least for the values of n used in our experiments�
We also observe that the number of iterations for the circulant precondi�
tioners grows with a rate slightly slower than the predicted O�

p
n	 growth

of MILU� Therefore� the circulant preconditioners appear more competitive
with MILU as n increases� In all cases� the number of iterations grows slower
than as predicted by Theorems � and ��
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� ��� ����

n No Block Point MILU No Block Point MILU

� � � � � �� � � �

� �� �� �� � �� �� �� �

�� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� ��

�� ��� �� �� �� ��� �� �� ��

�� ��� �� �� �� ��� �� �� ��

�� ��� �� �� �� ��� �� �� ��

��� ��� �� �� �� ��� �� �� ��

TABLE �a
 Number of iterations for di�erent systems�

� ��� ���

n No Block Point MILU No Block Point MILU

� �� � �� � �� �� �� �

� �� �� �� � �� �� �� �

�� �� �� �� �� �� �� �� ��
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�� ��� �� �� �� ��� �� �� ��

��� ��� �� �� �� ��� �� �� ��

TABLE �b
 Number of iterations for di�erent systems�

Tables � and � show the eigenvalue distributions of the preconditioned
systems for � � ��� and ��� respectively� In the table� the eigenvalues are
ordered as 
� � 
� � � � � 
n�� � 
n� We see that for the point� and the
block�circulant preconditioned systems� they have one outlying eigenvalue

n� The rest are in a relatively small interval� In Figures � and �� we plot

��



the eigenvalue distributions� leaving out the rightmost eigenvalue 
n� The
clustering e�ect is similar to that of MILU�

No MILU

n 
� 
n�� 
n 
� 
n�� 
n
� ����� ����� ����� ����� ����� �����

� ������ ����� ����� ����� ����� �����

�� ������ ����� ����� ����� ����� �����

TABLE �a
 Eigenvalue Distribution for � � ���

Block Point

n 
� 
n�� 
n 
� 
n�� 
n
� ����� ����� ����� ����� ����� �����

� ����� ����� ����� ����� ����� �����

�� ����� ����� ������ ����� ����� ������

TABLE �b
 Eigenvalue Distribution for � � ���

No MILU

n 
� 
n�� 
n 
� 
n�� 
n
� ����� ����� ����� ����� ����� �����

� ������ ����� ����� ����� ����� �����

�� ������ ����� ����� ����� ����� �����

TABLE �a
 Eigenvalue Distribution for � � ���

Block Point

n 
� 
n�� 
n 
� 
n�� 
n
� ����� ����� ����� ����� ����� �����

� ����� ����� ����� ����� ����� �����
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TABLE �b
 Eigenvalue Distribution for � � ���
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To summarize� we make the following observations from the numerical
results


�� The circulant preconditioners seem to grow slower than O�
p
n	 in num�

ber of iterations� which is the asymptotic rate for the MILU precondi�
tioner and also slower than the bounds in Theorems � and ��

�� For small variation of coe�cients �� � ��� in our test problem	� the
circulant preconditioners seem to be competitive with the MILU pre�
conditioner in number of iterations�

�� For large variation of coe�cients �� � ���	� MILU requires fewer num�
ber of iterations�

�� The circulant�preconditioned systems exhibit clustering of the eigen�
values around �� similar to MILU�

� Extensions and Remarks

We �rst discuss several ways for extending the idea of circulant precondi�
tioners for solving more general elliptic problems�

First� we discuss how to apply the idea of circulant preconditioners for
problems on irregular domains� It should be obvious that the circulant
approximation we use is sensitive to the ordering of the grid points� The
regularity of the coe�cient of the matrix A for the natural ordering on
rectangular domains� which plays a fundamental role in the successful per�
formance that we have observed so far� is not naturally present for irregular
domains� We now describe an embedding technique which does maintain
the regularity of the rectangular case� The main idea� which is similar to
one used in the Capacitance Matrix method ��� is to embed the irregular
grid� say �� in an inscribing rectangular grid S� A natural ordering of the
grid points of S is then used� For grid points in �� the di�erence stencil and
right hand side are chosen to match those of the corresponding problem de�
�ned on �� In addition� the di�erence operator must be chosen so that there
is no coupling with grid points in S n �� For the grids points in S n �� we
can use an arti�cially chosen elliptic operator and right hand side� as their

��



choice do not a�ect the solution in �� The circulant approximation �which
is de�ned on the embedding domain S	 is then obtained by the averaging
procedure de�ned in Theorem �� Note that in this approach� the iteration is
carried out on the whole domain S� Of course� the quality of the circulant
approximation will depend on the operator we choose on S n�� Intuitively�
one should choose it to be as close to the operator on � as possible�

We now make some general remarks on the application of the circulant
preconditioners� First� circulant preconditioners can be applied to more gen�
eral discretizations �e�g� higher order �nite elements	 and problems other
than second order elliptic problems with Dirichlet type boundary condi�
tions� As mentioned in the introduction� the possibility of applying them
to nonsymmetric linear systems arising from discretizations of hyperbolic
systems is particularly attractive� because many of the classical precondi�
tioners �e�g� ILU	 either are not well�de�ned or do not perform very well
for these problems� primarily due to the non�diagonal�dominance of the co�
e�cient matrix� Some promising preliminary numerical results have been
reported in ���� Finally� the type of boundary conditions may also a�ect
the performance of the circulant preconditioners� which should work better
for problems with periodic boundary conditions�

We would like to make a �nal comment on the relationship of circulant
preconditioners to preconditioning by approximations by separable elliptic
operators �and the use of fast direct solvers �FDS		� Both derive their ef�
�ciency from that of the Fast Fourier Transform �FFT	� For problems on
regular domains� it is possible for the FDS method to produce a spectrally
equivalent preconditioner to the original operator �� �although this does not
necessarily mean it is a more e�cient method for a problem with a given
size	� Unfortunately� for problems on irregular domains� the separable pre�
conditioner itself cannot be directly solved e�ciently via FDSs� The usual
approach is the capacitance matrix method� in which an embedding of the
irregular domain within a regular one is also made� The coe�cient matrix
S of the separable approximation to A on the embedded domain can be
written as
 S � B � UV T � where B is a separable operator on the regular
embedded domain and U and V are low rank matrices� In the capacitance
matrix approach� the system with S is solved using the Woodbury formula
and at each step the necessary application of B�� is computed by the FDS�
Thus� this approach consists of a two�step process
 preconditioning A by

��



S and then computing S��v via repeated applications of B��� The circu�
lant preconditioner approach can be viewed as directly solving the system
Ax � b by the preconditioned conjugate gradient method with a circulant
preconditioner B without going through a separable approximation �rst� In
some sense� one can view the circulant proconditioner approach as a way of
extending the FDS to irregular domains by using the main tools of the FDS
�i�e� FFT	 to de�ne a preconditioner�
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 Appendix

Proof of Theorem �� In the constant�coe�cient case�

A� � tridiag��� ������ ����	

and C�� constructed according to ����	 and ����	� is given by

C� � � � fA� � e�e
�
n � ene

�
�g�

�

n�
I ����	

where � � �n� �		n � O��	 and ej is the j�th unit vector�

To compute 
min�C
��
� A�	� we �rst note that for all n�vectors x�

x�C�x � �x�A�x� �x��e�e
�
� � ene

�
n	x� �x��e� � en	�e� � en	

�x�
�

n�
x�x�

Since the matrices �e� � en	�e� � en	
� and A� � �e�e

�
� � ene

�
n	 are positive

semi�de�nite� we have

x�C�x � ��x�A�x�
�

n�
x�x� ����	

��



Using the fact that x�x � O�n�	x�A�x and � � O��	� we see that

��� �O�n���		�� � 
min�C
��
� A�	� ����	

To compute 
max�C
��
� A�	� we note from ����	 that for all n�vectors x�

�x�A�x � x�C�x�
�

�
x��e��en	�e��en	

�x��

�
x��e��en	�e��en	�x� �

n�
x�x�

where the last two terms on the right hand side are always non�positive�
Thus

�x�A�x � x�C�x�
�

�
x�ee�x� ����	

where e � e� � en� Next we claim that for all nonzero n�vectors x�

x�ee�x

x�C�x
� jjC����

� ee�C
����
� jj� � O�n���	 �O�n���	� ����	

Substituting this into ����	� we have


max�C
��
� A�	 � O�n���	 �O�n���	�

Theorem � now follows by combining this with ����	�

It remains to prove ����	� We note that for all nonzero vectors x�

x�ee�x

x�C�x
� jjC����

� ee�C
����
� jj� � e�C��

� e�

Since C� is a circulant matrix� C� � F�F �� where

F � 
�p
n
e��ijk�n���j�n�����k�n���

is the Fourier matrix and � is the diagonal matrix containing the eigenvalues
of C�� It can easily be shown that

��j�j � 
j�C�	 �
�

n�
� �� sin� �j�

where �j � �j	n� � � j � n� �� Hence

e�C��
� e � e�F���F �e

��



�
�

n

n��X
j��

cos� �j

�	n� � �� sin� �j

�
�

n

n�

�
�

�

n

n����X
j��

cos� �j

�	n� � �� sin� �j

� O�n���	 �
�

n�

n����X
j�n�n���

cos� �j

sin� �j
�

�

n

n�n���X
j��

cos� �j
�	n�

� O�n���	 �
�

��

Z ���

��n���
cot� �d��

�

n
� n

n���
� n

�

�

� O�n���	 �
�

��
cot�

�

n���
	 �O�n���	

� O�n���	 �O�n���	� �

Proof of Corollary �� We �rst observe that for any n�vectors x�

x�x � �� sin�
�

n� �
	��x�A�x � �n� �	�

���
x�A�x�

Thus by ����	� we have


min�C
��
� A�	 � ��� �

�

���
�O�

�

n
		�� � ���

���� � �
�O�

�

n
	�

Next we rewrite ����	 as

C
� �

�

� A�C
� �

�

� �
�

�
I � �

�n�
C��
� � C

� �

�

� �e� � en	�e� � en	
�C

� �

�

�

�C
� �

�

� �e� � en	�e� � en	
�C

� �

�

� �

Notice that the second and the third terms in the right hand side are negative
semi�de�nite matrices� Hence the matrix formed by the �rst three terms in
the right hand side will have eigenvalues 
 � �	�� Since the last term in the
right hand side is a rank one matrix� by Cauchy interlace theorem� see ���

p������ at most one eigenvalue of C
� �

�

� A�C
� �

�

� has value greater than �	��

Since C
� �

�

� A�C
� �

�

� and C��
� A� are similar� the Corollary follows� �
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Proof of Theorem �� For the constant�coe�cient case� we have

Ac � A� � I � I �A��

and its block�circulant approximation is given by

Cb � C� � I � I � C��

Here A� and C� are given by ����	 and ����	 respectively� By ����	� we have
for any n��vector x�

x�Cbx � x��C� � I	x� x��I �C�	x

� ��x��A� � I	x� x��I �A�	x� �
��

n�
x��I � I	x

� ��x�Acx�
��

n�
x�x�

Since x�x � O�n�	x�Acx for all vectors x� we have

��� �O�n���		�� � 
min�C
��
b Ac	�

To �nd 
max�C
��
b Ac	� we note that by ����	� we have

�x�Acx � x���A� � I	x� x��I � �A�	x

� x�Cbx�
�

�
x��I � ee�	 � �ee� � I	�x� ����	

where e � e��en� Since �C��I	 is positive de�nite� we have for all nonzero
vectors x� x�Cbx � x��I �C�	x� By ����	� we then have

x��I � ee�	x

x�Cbx
� x��I � ee�	x

x��I � C�	x
� k�I � C�	

� �

� �I � ee�	�I � C�	
� �

� k�

� k�I � C
� �

�

� 	�I � ee�	�I � C
� �

�

� 	k� � kI � �C
� �

�

� ee�C
� �

�

� 	k�
� kC� �

�

� ee�C
� �

�

� k� � O�n���	 �O�n���	�

Similarly� we have

x��ee� � I	x

x�Cbx
� O�n���	 �O�n���	�

��



Thus by ����	�


max�C
��
b Ac	 � O�n���	 �O�n���	� �

Proof of Theorem �� We �rst observe in this case�

Cp � �Ac � �L�n �
�

n�
I� ����	

where L�n is a symmetric matrix of rank �n given by

L�n � e�e
�
n� �

nX
j��

eje
�
n��n�j �

n��X
j��

ejne
�
jn��

�en�e
�
� �

nX
j��

en��n�je
�
j �

n��X
j��

ejn��e
�
jn�

By the Gerschgorin Theorem ���� we can easily check that Ac � L�n is a
positive semi�de�nite matrix� Thus for any n��vector x� �x�L�nx � x�Acx�
Since x�x � O�n�	x�Acx� we have� by ����	

x�Cpx � ��� �O��		x�Acx�

for any vector x� Thus 
min�C
��
p Ac	 � O��	�

Next we claim that 
max�C
��
p Ac	 � O�n log n	� By ����	�

C
� �

�

p AcC
� �

�

p �
�

�
�I � �

n�
C��
p 	 � C

� �

�

p L�nC
� �

�

p � ����	

Let

�L�n 	
nX

j��

eje
�
j �

n�X
j�n��n��

eje
�
j �

nX
j��

ejne
�
jn �

n��X
j��

ejn��e
�
jn���

and
M 	 �L�n � L�n

��



then it is straightforward to check that

M �

nX
j��

�ej � en��n�j	�ej � en��n�j	
�

�

n��X
j��

�ejn � ejn��	�ejn � ejn��	
� � �e� � en�	�e� � en�	

��

which is clearly a positive semi�de�nite matrix�

Rewrite ����	 as

C
� �

�

p AcC
� �

�

p �
�

�
�I � �

n�
C��
p 	� C

� �

�

p MC
� �

�

p � C
� �

�

p
�L�nC

� �

�

p � �����	

For j � �� �� � � � � n�� since


j�Cp	 � �� sin� �
�j

n�
	 � �� sin� �

�j

n
	 �

�

n�
� �����	

we have
�

n�
� �� � 
j�Cp	 � �

n�
�

Therefore�


max�
�

�
�I � �

n�
C��
p 		 � �

�
��� �

�� ��n�
	 � O��	� �����	

Since C
� �

�

p MC
� �

�

p is a positive semi�de�nite matrix� to get a bound for

max�C

��
p Ac	� it remains to estimate the ��norm of the last term in �����	�

We notice that for all j � �� � � � � n��

kC� �

�

p eje
�
jC

� �

�

p k� � ke�jC��
p ejk� � C��

p �jj �

the j�th diagonal entry of C��
p � Since C��

p is circulant and positive de�nite�
C��

p �jj � d for all j� where d is some positive constant� Thus

jjC� �

�

p
�L�nC

� �

�

p jj� � �nd� �����	

Next we estimate d� By the Trace Theorem and �����	� we have

d �
�

n�

n�X
j��

�


j�Cp	
�

�

n�

n�X
j��

�
�

n�
� �� sin� �

�j

n�
	 � �� sin� �

�j

n
	

���
�

��



Since


n��j�Cp	 �
�

n�
� �� sin� �� � �j

n�
	 � �� sin� �n� � �j

n
	

�
�

n�
� �� sin� �

�j

n�
	 � �� sin� �

�j

n
	 � 
j�Cp	�

for j � �� � � � � n�	�� we see that

d � �

n�

n���X
j��

�
�

n�
� �� sin� �

�j

n�
	 � �� sin� �

�j

n
	

���
�

�

�
� �����	

We now compute the summation in �����	 by partitioning the interval �� n
�

� �
into n subintervals of length �

�n�

Let k � �� � � � � n���� We �rst consider the case when kn�� � j � kn� n
� �

Since

� � �j

n�
� ��kn� n	�	

n�
� ��k � �	n

n�
� �	��

we see that

�� sin� �
�j

n�
	 � ���

j�

n�
�

Similarly� if we let � � j � kn� then ��	n � �	�� and we have

�� sin� �
��

n
	 � ���

��

n�
�

Thus using the substitution � � j � kn� we have

kn�n��X
j�kn��

�
�

n�
� �� sin� �

�j

n�
	 � �� sin� �

�j

n
	

���

�
n��X
���

�
�

n�
� ���

�� � kn	�

n�
� �� sin�

�
���� kn	

n

����

�

n��X
���

�
�

n�
� ����

��

n�
�
��kn

n�
�

k�

n�
	 � �� sin� �

��

n
	

���

�
n��X
���

�
�

n�
� ���

k�

n�
� ���

��

n�

���

� n�
n��X
���

�
�� ����k� � ��	

���
� �����	

��



For kn � �
�n � � � j � kn � n� we let � � j � kn and use the same

argument as above� we have

kn�nX
j�kn� �

�
n��

�
�

n�
� �� sin��

�j�

n�
	 � �� sin� �

�j

n
	

���

�
nX

�� �

�
n��

�
�

n�
� ���

k�

n�
� �� sin� �

��

n
	

���

�

�

�
n��X
���

�
�

n�
� ���

k�

n�
� �� sin� �

��

n
	

���

� n�
n��X
���

��� ����k� � ��		���

Combining this inequality with �����	� we see that �����	 becomes

d � �

n����X
k��

n��X
���

��� ����k� � ��		�� �
�

�
� O�logn	�

Hence by �����	� kC� �

�

p
�L�nC

� �

�

p k� � O�n log n	� Applying this result and

�����	 to �����	 and noting that C
� �

�

p MC
� �

�

p and C
� �

�

p AcC
� �

�

p are positive
semi�de�nite� we see that


max�C
��
p Ac	 � kC� �

�

p AcC
� �

�

p k� � O�n log n	� �
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