
Fast Dense Matrix Method for the Solution of Integral Equations of

the Second Kind

Raymond H� Chan� Fu�Rong Liny Wing�Fai Ngz

Abstract

We present a fast algorithm based on polynomial interpolation to approximate matrices arising
from the discretization of second�kind integral equations where the kernel function is either smooth�
non�oscillatory and possessing only a �nite number of singularities or a product of such function with
a highly oscillatory coe�cient function� Contrast to wavelet�like approximations� our approximation
matrix is not sparse� However� the approximation can be constructed in O�n� operations and
requires O�n� storage� where n is the number of quadrature points used in the discretization�
Moreover� the matrix�vector multiplication cost is of order O�n logn�� Thus our scheme is well
suitable for conjugate gradient type methods� Our numerical results indicate that the algorithm is
very accurate and stable for high degree polynomial interpolation�

AMS�MOS� subject classi�cations� ��L��� ��R���

Key Words� Fredholm integral equation� polynomial interpolation�

� Introduction

Solution of integral equations of the second kind is a much studied subject and various direct and
iterative methods have been proposed for their numerical solutions� see 	�
 for instance� However� one
overriding drawback of these methods is the high cost of working with the associated dense matrices�
For problems discretized with n quadrature points� classical direct methods such as Gaussian elimina�
tion method requires O�n� operations to obtain the numerical solutions� For iterative methods such
as the conjugate gradient method �see 	�
� each iteration requires O�n� operations� Therefore even
for well�conditioned problems� the method requires O�n� operations� which for large�scale problems
is often prohibitive�

In recent years� a number of algorithms for the fast numerical solutions of integral equations have
been developed� see for instance 	�� ��� �� �
� The fast multipole method proposed in 	�
 combines the
use of low�order polynomial interpolation of the kernel function with a divide�and�conquer strategy�
For kernel functions that are Coulombic or gravitational in nature� it results in an order O�n algorithm
for the matrix�vector multiplications� In 	��
� the integral equation is discretized at Chebyshev points

�Department of Mathematics� Chinese University of Hong Kong� Shatin� Hong Kong� Research supported in part by
Hong Kong Research Grant Council grants no� CUHK�����	E�

yDepartment of Mathematics� Shantou University� Shantou 
�
��	� Guangdong� Peoples Republic of China�
zDepartment of Mathematics� Chinese University of Hong Kong� Shatin� Hong Kong�

�



and the resulting matrix is approximated by a low�rank modi�cation of the identity matrix which
can be obtained in O�n logn operations� However� if the kernel function is not smooth enough� such
as the kernel functions discussed in that paper� the solution of the discretized system still requires
O�n� operations to obtain� In 	�
� an O�n log n algorithm is developed by exploiting the connections
between the use of wavelets and their applications on Calderon�Zygmund operators� In 	�
� wavelet�
like bases are used to transform the dense discretization matrices into sparse matrices� which then is
inverted by the Schulz method� The complexity of the resulting algorithm is bounded by O�n log� n�

In this paper� we will consider Fredholm integral equations of the second kind that are studied in
	�
� i�e� the kernel functions are either smooth� non�oscillatory and possessing only �nite number of
singularities or products of such functions with highly oscillatory coe�cient functions� see ��� We will
start with the same approach as in 	�
� More precisely� we write the discretized dense matrix A as the
sum of a sequence of block matrices where the blocks are of increasing size� Then we use polynomial
interpolation as in 	�� �
 for each of the block matrix� However� we do not use wavelet�like bases as in
	�
 to further approximate the operator to get a sparse representation� Our resulting approximation
�A will therefore be a dense matrix in general�

However� we show that the approximation �A can be obtained in O�n operations and only
O�n storage is required� We also show that matrix�vector multiplication of the form �Ax can be
done in O�n log n operations� Thus for second�kind integral equations� which are in general well�
conditioned problems� solving the approximated systems by conjugate gradient type methods requires
only O�n logn operations� We have applied our scheme to kernel functions tested in 	�
 and also to
kernel functions where the algorithm in 	�
 is inapplicable� Our numerical results show that our method
is more accurate and stable even when higher degree polynomials are used in the approximation�

The outline of the paper is as follows� In x�� we recall the Nystr�om method for the numerical
solution of integral equations� In x� we derive our procedure in approximating integral operators� In
x�� we discuss the construction cost of the approximation� the matrix�vector multiplication cost and
the storage requirement� A variety of numerical examples are given in x� to demonstrate the accuracy
and stability of our proposed algorithm� its e�ectiveness in performing matrix�vector multiplications
and the convergence of the conjugate gradient type methods for the approximate systems� Finally in
x�� we will give concluding remarks�

� The Problem

Consider the linear Fredholm integral equation of the second kind�

f�x�

Z �

�
a�x� tf�tdt � g�x� x � 	�� �


where the kernel function a�x� t is in L�	�� �
� and the unknown function f�x and the right�hand side
function g�x are in L�	�� �
� De�ne the integral operator

�Af�x �

Z �

�
a�x� tf�tdt� ��

Then the integral equation can be written as

�I �Af � g� ��

�



where I is the identity operator�
As in 	�
� we concern ourselves �rst with kernel functions a�x� t which are analytic except at

x � t� where it possesses an integrable singularity� It is well�known that integral operators with
weakly singular kernels are compact operators� see for instance 	��� Theorem ����
� Therefore the
operator I � A is well�conditioned unless � is the eigenvalue of A� in which case� the operator is
singular� Thus a good method for solving these well�conditioned equations is the conjugate gradient
method or its variants� see for instance 	�� �
� They converge to the solution in a linear rate� cf� 	�

and Table � in x��

To �nd the solution numerically� we discretize �� by Nystr�om�s method �see 	�
 at equally spaced
points �i� ���n� �� i � �� � � � � n� on 	�� �
� This results in a matrix equation

�I�Af � g� ��

where I is the identity matrix� g is a given vector and f is the unknown vector� As in 	�
� we de�ne
the entries of the discretization matrix A to be

	A
i�j �

�
�

n��a�
i��
n�� �

j��
n�� i �� j�

� i � j�
��

This corresponds to a primitive� trapezoid�like quadrature discretization of the integral operator A�
We can solve �� by using conjugate gradient type methods� However� for these methods to work

e�ciently� the matrix�vector multiplication Ay should be done fast for any vector y� For A de�ned
in ��� the multiplication requires O�n� operations� In x�� we will �nd an approximation �A of A�
such that �Ay can be computed fast in O�n logn operations� The main idea is to take advantage of
the smoothness of the kernel function a�x� t� We know that smooth functions can be approximated
quite accurately by polynomials� As an example mentioned in 	�
� for any c � �� the function log jxj
can be approximated within ��� accuracy on 	c� �c
 by using polynomials of degree at most �� Since
A possesses the same smoothness properties as that of the kernel a�x� t� we see that if a�x� t is
smooth� we can approximate A or submatrices of A by low rank matrices obtained via polynomial
interpolation� This is done in the next section�

Besides smooth kernels� the authors in 	�
 have also studied a more general class of integral equa�
tions which are of the form�

f�x� d�x

Z �

�
a�x� tf�tdt � g�x� x � 	�� �
� ��

where a�x� t is again analytic except with an integrable singularity at x � t and the coe�cient function
d�x can be oscillatory� These problems lie between the problems with smooth kernels and those with
arbitrary oscillatory kernels� The corresponding operator equation is of the form

�I � DAf � g� ��

where A is given in �� and D is the operator de�ned by

�Df�x � d�xf�x�

In 	�
� it is assumed that d�x is positive and a new wavelet bases is applied to the symmetrized
operator D���AD��� to obtain a sparse representation� However� we note that as long as d�x is

�



bounded �no need to be positive� then D will be a bounded operator� Therefore if a�x� t is at
most weakly singular� then A and hence DA will be a compact operator� This is because product of
bounded operator and compact operator is still compact� see for instance 	��� Theorem ����
� Hence
I � DA will still be well�conditioned and we can solve �� by conjugate gradient type methods and
the convergence rate will again be linear�

Clearly� the discretized equation of �� is given by

�I�DAf � g� ��

where A is given by �� and D is a diagonal matrix with entries given by

	D
i�i � d�
i� �

n� �
� i � �� � � � � n�

We will approximate A by low rank matrices to obtain the approximation �A� where the matrix�vector
product �Ay can be obtained in O�n logn operations for any vector y� Since D is diagonal� we see
that the product �I�D �Ay can be computed in O�n logn operations�

� The Approximation

The main idea in getting an approximation of A is to approximate A by low rank matrices� However�
if the whole matrix A is approximated by one low rank matrix� the approximation will not be good in
general� especially for kernels with diagonal singularities� Therefore a general idea is to divide A into
blocks of di�erent sizes and approximate each of the block by a low rank� say rank k� matrix� We will
follow the partition as suggested in 	�
 �see also Figure � therein and assume the size of A is given
by n � k � �l� Here k is a small integer that depends on the smoothness of the kernel function a��� ��

With the partition� the matrix A is cut into blocks of di�erent sizes� The blocks near the main
diagonal are of size k�by�k� those next remote are of size �k�by��k� and so forth up to the largest
blocks of size �l��k�by��l��k� By grouping blocks of the same size into one matrix� we can express the
matrix A as

A � A��� �A��� � � � ��A�l���� ��

where A�u�� u � �� � � � � l � �� consists only of blocks of size �uk�by��uk� We can easily check that the
number of nonzero blocks in A�u� is given by

vu �

�
� � �l � � u � ��
���l���u � � u � �� � � � � l � ��

��

We will denote these nonzero blocks by A�u�v�� v � �� � � � � vu� As an illustration� for l � �� A��� is of

�



the form

A��� �

A����� A�����

A�����

A����� A���	�

A���
�

A����� A�����

A�����

A������

A������ A������

A������

A������ A����	�

A����
�

A������ A������

���

where each A���v� is a �k�by��k matrix and other blocks not written out explicitly are zero blocks� As
in 	�
� our idea is to write each block A�u�v� in A�u� as

A�u�v� � �A�u�v� �E�u�v��

where �A�u�v� is of rank k and the error matrix E�u�v� has small norm�
Our approach of constructing �A�u�v� is as follows� Let the entries of A�u�v� be given by

	A�u�v�
i�j �
�

n� �
a��i� � i� �h� �j� � j � �h� � � i� j � �uk� ���

i�e� the entries of A�u�v� are obtained by evaluating the kernel function a�x� t in the domain 	i�h� i�h�
��uk��h
�	j�h� j�h���

uk��h
� Our idea is to map this domain to 	��� �
� and do our approximation
there� On the domain 	��� �
�� we will take k� samples of the function a��� � at equally�spaced points
and use the values to approximate the matrix A�u�v�� The resulting transformation matrix will be
more stable and requires less storage to store� see x� and x��

Clearly� the transformation is given by

���
��

�x � �� � �
x� i�h

��uk � �h
�

�t � �� � �
t� j�h

��uk � �h
�

���

�



where ��x� �t will be in 	��� �
�� For simplicity� let us denote �a��x� �t � a�x� t� We then construct the
k�by�k sample matrix �A�u�v� by evaluating �a��� � at k� equally�spaced points in 	��� �
�� That is

	 �A�u�v�
i�j �
�

n� �
�a��� � �

i� �

k � �
��� � �

j � �

k � �
� � � i� j � k� ���

Since by the assumptions on a��� �� the function �a��� � is smooth and non�oscillatory in 	��� �
�� it can
be approximated accurately by polynomials of small degree� In particular� we have

�

n� �
�a��x� �t 	

kX
r�

kX
s�

��u�v�rs �xr���ts��� ���

where �
�u�v�
rs are the coe�cients of the Taylor series expansion of the function on the left hand side�

Combining ��� and ���� we then have

	 �A�u�v�
i�j 	
kX

r�

kX
s�

��u�v�rs ��� � �
i� �

k � �
r����� � �

j � �

k � �
s��� � � i� j � k� ���

In matrix terms� we then have
�A�u�v� 	 PT

k�
�u�v�Pk ���

where Pk and ��u�v� are k�by�k matrices with entries given respectively by

	Pk
i�j � ��� � �
j � �

k � �
i��� � � i� j � k� ���

and
	��u�v�
i�j � �

�u�v�
ij � � � i� j � k�

We are now ready to approximate A�u�v� by a rank k matrix� By ���� ��� and ���� we have

	A�u�v�
i�j �
�

n� �
a��i� � i� �h� �j� � j � �h

�
�

n� �
�a��� � �

i� �

�uk � �
��� � �

j � �

�uk � �


	
kX

r�

kX
s�

��u�v�rs ��� � �
i� �

�uk � �
r����� � �

j � �

�uk � �
s��� � � i� j � �uk�

In matrix terms� we then have the approximation�

A�u�v� 	 �P�u�T��u�v�P�u� ���

where P�u� is the k�by��uk matrix with entries given by

	P�u�
i�j � ��� � �
j � �

�uk � �
i��� � � i � k� � � j � �uk� ���

Thus the approximation �A�u�v� of A�u�v� is obtained as follows�

�



�� Compute approximation ��
�u�v�
rs of �

�u�v�
rs by requesting that the approximate equation ��� holds

exactly for all k� sampled points� More precisely� we compute approximate coe�cients matrix
���u�v� of ��u�v� by ���� i�e�

���u�v� � �P��
k T �A�u�v�P��

k ���

where �A�u�v� and Pk are given by ��� and ��� respectively�

�� The approximation �A�u�v� of A�u�v� is then given by ���� i�e�

�A�u�v� � �P�u�T ���u�v�P�u� ���

where P�u� is given by ����

We emphasize that we do not have to form the �uk�by��uk matrix A�u�v� in order to get its
approximation �A�u�v�� If only matrix�vector multiplications are required� as is in the case of conjugate
gradient type methods �see 	�
� then there is no need to explicitly form the approximation �A�u�v�� and
we only have to store ���u�v� and P�u��

We remark that by transforming into the domain 	��� �
�� both basis function matrices Pk andP
�u�

are now independent of the index v of the block we are approximating� Numerical results show that our
basis function matrices are less ill�conditioned than those we would obtain without the transformation�
For example� when k � � and ��� condition numbers of Pk are about ��

� and ��	 respectively� whereas
if no transformation is used� the numbers will exceed ��� and ���� respectively and vary with v� In
	�
� polynomial bases functions are used in the interpolation without mapping to the domain 	��� �
�

�rst� The resulting basis function matrices are then shifted and scaled by methods di�erent from ours
to make them more stable� Their condition numbers� which vary with di�erent blocks and depends
on n� are about the same order as that of our Pk�

Another important advantage of having this v independence in the basis function matrices is that
we can use the same P�u� for all �A�u�v�� Recalling the block structure of each A�u� �cf� ��� and the
approximation �A�u�v� of each block A�u�v� in ���� we see that A�u� can now be approximated by

�A�u� �
h
I�l�u 
 �P�u�T

i
� ���u� �

h
I�l�u 
P�u�

i
� ���

Here I�l�u is the identity matrix of size �l�u� 
 is the Kronecker tensor product and ���u� is a matrix
having the same block structure as A�u�� except that the blocks A�u�v� in A�u� are of size �uk whereas
the blocks ���u�v� in ���u� are of size k� As an illustration� the matrix �A��� for l � � is of the form �cf�
����

�



�A��� �
h
I�
N�

P���
�T i

������� �������

�������

������� �����	�

�����
�

������� �������

�������

��������

�������� ��������

��������

�������� ������	�

������
�

�������� ��������

	
I�
N

P���



where each �����v� is a k�by�k matrix�
Having de�ned the approximation matrix �A�u� for each A�u�� u � �� � � � � l � �� we can now de�ne

our approximation matrix �A to the original matrix A�

�A � A��� � �A��� � �A��� � � � � � �A�l���� ���

see ��� In x�� we will compute the di�erence A� �A for di�erent kernel functions a�x� t and di�erent
k and n to illustrate the accuracy of our approximation�

We remark that in 	�
� after the approximation with low�order polynomials� the operator is further
approximated �by throwing away entries less than a given threshold by using wavelet�like basis func�
tions so that the �nal approximation matrix is sparse� In our case� we stop at the approximation by
low�order polynomials and the approximation matrices �A are in general dense� However� we empha�
size that if we are going to solve the linear system relating to �A by conjugate gradient type methods�
then only matrix�vector multiplications of the form �Ay are required� In this case� there is no need to
explicitly form �A� All we need is to store A���� ���u�v� and P�u�� see x�� We will also show in x� that
the matrix�vector multiplication �Ay can be obtained in O�n logn operations�

� Complexity Analysis

In this section� we consider the complexity of obtaining and storing a representation of �A so that
matrix�vector multiplications of the form �Ax can be done fast� We also consider the cost of doing

�



such matrix�vector multiplication� We �rst recall that by ��� and ���� we have

�Ax � A���x�

l��X
u�

h
I�l�u 
 �P�u�T

i
� ���u� �

h
I�l�u 
P�u�

i
x� ���

Thus we see that for the computation of �Ax� it su�ces to form and store A���� ���u� and P�u�� For
simplicity� in the following� we count only the number of multiplications in the operation counts� The
number of additions is of the same order�

Storage Requirement�

Forming Storage Explanation

A��� �� � �l � �k� A��� consists of �� � �l � � blocks of size k� see ���
���u� ���l���u � �k� ���u� is a block matrix with ���l���u � � nonzero blocks� see ���

Each nonzero block ���u�v� is of size k� see ����

P�u� �uk� P�u� is a k�by��uk matrix� see ����

Thus the total storage requirement is

�� � �l � �k� �

l��X
u�

n
���l���u � �k� � �uk�

o
� �� � �lk� � ��nk�

Construction Cost�

To form ���u�v� using ���� we �rst form the basis function matrix Pk �see ��� and its inverse�
This requires O�k� operations and the matrices can be used for all u and v� For a given u and v� we
form ���u�v� in ��� by forming �A�u�v� �rst� By using ���� this requires k� function evaluations of the
kernel function a��� �� Then ���u�v� is obtained by using ��� which requires �k� multiplications� Thus
each ���u�v� can be obtained in k� function evaluations and �k� multiplications� In the following table�
f�e� denotes function evaluation of a��� ��

Forming Complexity Explanation

A��� �� � �l � �k� f�e� A��� consists of �� � �l � � blocks of size k� see ���
���u� ���l���u � �k� f�e� and ���u� contains ���l���u � � nonzero blocks� see �� and each

����l���u � �k� nonzero block ���u�v� requires k� f�e� and �k� multiplications�

P�u� �uk� P�u� is a k�by��uk matrix� and its entries can be formed row�
wise to avoid taking power� see ����

Summing all these costs together� we conclude that the cost of forming A���� ���u� and P�u� for all
u � �� � � � � l � � is

l��X
u�

n
����l���u � �k� � �uk�

o
� � � �lk� � �lk� � �nk� �O�nk

�



multiplications and

�� � �l � �k� �
l��X
u�

���l���u � �k� � � � �lk� � �nk

function evaluations� In contrast� forming A requires n� function evaluations�

Cost of Matrix�Vector Multiplication�

We compute matrix�vector multiplication �Ax as in ����

Forming Complexity Explanation

A���x �� � �l � �k� Each of the �� ��l�� blocks inA��� need to multiply with
the corresponding subvector of length k�

yu � �I�l�u 
P�u�x �lk� There are �l�u copies of P�u� in I�l�u 
 P�u� and multi�
ply each copy of P�u� to length �uk vector requires �uk�

multiplications�

zu � ���u�yu ���l���u � �k� There are ���l���u � � nonzero blocks of size k in ���u�

and multiply each of them to length k vector requires k�

multiplications�	
I�l�u 
 �P�u�T



zu �lk� There are �l�u copies of �P�u�T in I�l�u 
 �P�u�T and

multiply each copy of �P�u�T to length k vector requires
�uk� multiplications�

Combining all these together� we conclude that the total number of multiplications required in forming
�Ax is

�� � �l � �k� �
l��X
u�

n
���l���u � �k� � � � �lk�

o
� ��l � ��lk� � ��l � �nk�

which is of order O�n logn� In contrast� the cost of forming Ax is n� multiplications�

� Numerical Examples

In this section� we show the e�ciency and accuracy of our scheme by applying it to the following six
kernel functions�

�i log jx� tj�

�ii cos�xt� log jx� tj�

�iii cos�xt�jx� tj�����

�iv cos�xt�jx� tj����

�v �� � �
� sin����x log jx� tj� and

��



�vi sin����x log jx� tj�

Kernel functions �i to �v are examples tested in 	�
� We note that kernels �v and �vi are kernels with
a highly oscillatory coe�cient function d�x that is equal to �� �

� sin����x and sin����x respectively�
see ��� Obviously� both coe�cient functions are bounded and therefore our algorithm works for both
examples� see x�� We note however that since d�x for kernel �vi is not positive� the algorithm in 	�

is not applicable for this kernel�

The discretized equations for kernels �i to �iv are given by �� and for kernels �v and �vi� they
are given by ��� Given a kernel function a��� �� we compute the matrix A as de�ned in �� and its
approximation �A by ���� We measure the accuracy of the approximation by computing the relative
error kA� �AkF �kAkF � where jj�jjF is the Frobenius norm� All our computations are done in MATLAB
on a SUN Sparc��� workstation� Table � shows the results for di�erent k and l� We recall that the
size of the matrices is n � k � �l� Thus the largest matrix we tried is of size ��� ����by���� ����

Note that kernel functions �v and �vi give the same dense matrix approximation �A as that of �i
as the a�x� t for all three kernels are all equal to log jx� tj� Therefore� in Table �� results for kernel
functions �v and �vi are omitted� We see from Table � that our scheme provides a very accurate
approximation �A to the original matrix A even for small k like �� We recall from x� that the cost of
forming �A is of order O�nk� operations whereas the cost of forming A is of O�n� operations�

k � � k � � k � �� k � �� k � � k � � k � �� k � ��

l a�x� t � log jx� tj a�x� t � cos�xt� log jx� tj

� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
�� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���

l a�x� t � cos�xt�jx� tj���� a�x� t � cos�xt�jx� tj���

� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
�� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���

Table �� jjA� �AjjF �jjAjjF for di�erent kernels�

Next we illustrate the e�ciency and accuracy of solving �� and �� using the approximation �A�
For kernel functions �i to �iv� we �rst choose a random vector x to generate the right hand side
vector b � �I � Ax� Then we solve the approximate equation �I � �A�x � b for the approximate
solution �x� For kernel functions �v and �vi� we again choose a random vector x to generate the right
hand side vector b � �I�DAx� see ��� Then we solve the approximate equation �I�D �A�x � b for
the approximate solution �x� All equations are solved by the CGLS method �see 	�
 which basically
solves the normal equation of a given equation by the conjugate gradient method�

In the CGLS method� we choose the zero vector as the initial guess and the stopping criterion is

krqk�
kr�k�

� �����

��



where rq is the residual vector at the qth iteration� The numbers of iterations required for convergence
for the six kernels are given in Table �� To measure the accuracy of the approximate solution �x� we
have computed the relative error kx� �xk��kxk�� The results are shown in Table ��

k � � k � � k � �� k � �� k � � k � � k � �� k � ��

l a�x� t � log jx� tj a�x� t � cos�xt� log jx� tj

� �� �� �� �� �� �� �� ��
� �� �� �� �� �� �� �� ��
� �� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� �� ��

l a�x� t � cos�xt�jx� tj���� a�x� t � cos�xt�jx� tj���

� �� �� �� �� � � � �
� �� �� �� �� � � � �
� �� �� �� �� � � � �
�� �� �� �� �� � � � �

l a�x� t � �� � �
� sin����x log jx� tj a�x� t � sin����x log jx� tj

� �� �� �� �� �� �� �� ��
� �� �� �� �� �� �� �� ��
� �� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� �� ��

Table 	� Numbers of iterations required for convergence�

k � � k � � k � �� k � �� k � � k � � k � �� k � ��

l a�x� t � log jx� tj a�x� t � cos�xt� log jx� tj

� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
�� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���

l a�x� t � cos�xt�jx� tj���� a�x� t � cos�xt�jx� tj���

� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
�� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���

l a�x� t � �� � �
� sin����x log jx� tj a�x� t � sin����x log jx� tj

� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���
�� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E��� ����E���

Table 
� jjx� �xjj��jjxjj� for di�erent kernels�

Since the kernel functions we tried are at most weakly singular� we see from Table � that the
convergence rate is linear as expected� see 	��� Theorem ����
� Recall from x� that the cost of matrix�
vector multiplication �Ay is of O�n log n operations� the total cost of solving the systems is thus of

��



O�n log n operations too� We emphasize again that in order to get the approximate solution �x� we
only have to form �A �which requires only O�nk� operations and no need to form A�

We �nally compare the operations required in computing the matrix�vector multiplications �Ax
and Ax� Tables �a��d give the numbers of �oating point operations ��ops required� We note that
the counts do not depend on the kernel functions used� In the tables� the ratios denote the ratios of
the operation counts when the size n of the matrix is doubled� We clearly see from the ratios that the
cost of the matrix�vector multiplication �Ax is approaching O�nkl � O�n log n� whereas that of Ax
is O�n��

n �Ax ratio Ax ratio

�� ����� � ����� �
�� ����� ������ ����� ������
��� ������ ������ ������ ������
��� ������ ������ ������� ������
��� ������� ������ ������� ������
���� ������� ������ ��������� ������
���� ������� ������ ��������� ������
���� ��������� ������ ���������� ������
���� ��������� ������ ����������� ������
����� ��������� ������ ����������� ������

Table �a� Flops counts in computing �Ax and Ax for k � ��

n �Ax ratio Ax ratio

�� ����� � ����� �
��� ������ ������ ������ ������
��� ������ ������ ������� ������
��� ������� ������ ������� ������
���� ������� ������ ��������� ������
���� ������� ������ ��������� ������
���� ��������� ������ ���������� ������
���� ��������� ������ ����������� ������
����� ���������� ������ ����������� ������

Table �b� Flops counts in computing �Ax and Ax for k � ��

n �Ax ratio Ax ratio

�� ������ � ������ �
��� ������ ������ ������ ������
��� ������� ������ ������� ������
��� ������� ������ ������� ������
���� ������� ������ ��������� ������
���� ��������� ������ ���������� ������
���� ��������� ������ ���������� ������
����� ��������� ������ ����������� ������
����� ���������� ������ ������������� ������

��



Table �c� Flops counts in computing �Ax and Ax for k � ���

n �Ax ratio Ax ratio

��� ������ � ������ �
��� ������ ������ ������� ������
��� ������� ������ ������� ������
��� ������� ������ ��������� ������
���� ��������� ������ ��������� ������
���� ��������� ������ ���������� ������
���� ��������� ������ ����������� ������
����� ���������� ������ ����������� ������
����� ���������� ������ ������������� ������

Table �d� Flops counts in computing �Ax and Ax for k � ���

� Concluding Remarks

In this paper� we have discussed the fast solution of second�kind integral equation where the kernel
function is either smooth� non�oscillatory and possessing only a �nite number of singularities or a
product of such function with a highly oscillatory coe�cient function� We have shown that our
approximation coe�cient matrix �A can be constructed in O�n operations and requires O�n storage�
and the matrix�vector multiplication of �A requires O�n logn operations� The numerical results show
that our scheme is stable for high degree polynomial interpolation and to reach a given tolerance� the
number of iterations of CGLS is independent of the size n of the discretization system and small� For
an application of our scheme� we refer readers to 	�� �
� where we discuss fast solution of boundary
integral equations�

��



References

	�
 B� Alpert� G� Beylkin� R� Coifman and V� Rokhlin�Wavelets for the Fast Solution of Second�Kind

Integral Equations� SIAM J� Sci� Comput�� �������� ��������

	�
 G� Beylkin� R� Coifman and V� Rokhlin� Fast Wavelet Transforms and Numerical Algorithms I�
Comm� Pure Appl� Math�� �������� ��������

	�
 A� Bj�orck� Least Squares Methods� Handbook of Numerical Methods� P� Ciarlet and J� Lions� ed��
V �� Elsevier� North�Holland� �����

	�
 R� Chan� W� Ng and H� Sun� Fast Construction of Optimal Circulant Preconditioners for Matrices

from Fast Dense Matrix Method� Res� Rept� ������� Math� Dept�� Chinese University of Hong
Kong� submitted�

	�
 R� Chan� H� Sun and W� Ng� Circulant Preconditioners for Ill�Conditioned Boundary Integral

Equations from Potential Equations� Res� Rept� ������� Math� Dept�� Chinese University of
Hong Kong� submitted�

	�
 L� Delves and J� Mohamed� Computational Methods for Integral Equations� Cambridge University
Press� Cambridge� �����

	�
 G� Golub and C� Van Loan� Matrix Computations� �nd ed�� John Hopkins University Press�
Baltimore� �����

	�
 L� Greengard and V� Rokhlin� A Fast Algorithm for Particle Simulations� J� Comput� Phys��
�������� ��������

	�
 R� Hayes� Iterative Methods of Solving Linear Problems on Hilbert Space� Nat� Bur� Standards
Appl� Math� Ser�� �������� �������

	��
 R� Kress� Linear Integral Equations� Applied Mathematical Sciences� V ��� Springer�Verlag� New
York� �����

	��
 L� Reichel� Fast Solution Methods for Fredholm Integral Equations of the Second Kind� Numer�
Math�� �������� ��������

	��
 W� Rudin� Functional Analysis� �nd ed�� McGraw�Hill� New York� �����

��


