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A Primal-Dual Method for Total Variation-Based

Wavelet Domain Inpainting
You-Wei Wen, Raymond H. Chan, Andy M. Yip

Abstract

Loss of information in a wavelet domain can occur during storage or transmission when the images are formatted and stored

in terms of wavelet coefficients. This calls for image inpainting in wavelet domains. In this paper, a variational approach is used

to formulate the reconstruction problem. We propose a simple but very efficient iterative scheme to calculate an optimal solution

and prove its convergence. Numerical results are presented to show the performance of the proposed algorithm.

Index Terms

Total variation, inpainting, wavelet, primal-dual.

I. INTRODUCTION

Image inpainting is used to correct corrupted data in images. It is an important task in image restoration with a wide range of

applications: texts and scratches removal [4], [5], [16], zooming [9], [32], impulse noise removal [8], [13], [29], high-resolution

image reconstruction [12], [24], [30], [35], parallel magnetic resonance imaging [7] among many others. Inpainting can be

done in the image domain or in a transformed domain, depending on where the corrupted data live. For example, in the image

compression standard JPEG 2000, images are formatted and stored in terms of wavelet coefficients. If some of the coefficients

are lost or corrupted during storage or transmission, the degraded image may contain some artifacts such as blurred edges and

black holes. This prompts the need of restoring corrupted information in wavelet domains [3], [27], [36], [39].

Inpainting in the image domain, such as zooming, is similar to interpolation, where the pixel values to be filled are

approximated by using the pixel values of the available pixels. Methods for inpainting in the image domain usually exploit

the property that neighboring pixel values are correlated, so that the corrupted pixel values can be estimated from neighboring

information. Inpainting in a transformed domain is a different matter, because the corrupted transformed coefficients can affect

the whole image and it is not easy to localize the affected regions in the image domain.

In digital image processing, an image is represented by a matrix or by a vector formed by stacking up the columns of the

matrix. In the latter representation of an n× n image, the (r, s)-th pixel becomes the ((r − 1)n + s)-th entry of the vector.

The acquired image g is modeled as the original image f plus an additive Gaussian noise η:

g = f + η.
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In the following, we denote by fr,s the ((r − 1)n + s)-th entry of f . In the JPEG 2000 format, images are transformed from

the pixel domain to a wavelet domain through a wavelet transform. Wavelet coefficients of an image under an orthogonal

wavelet transform W are designated by a hat ·̂. Thus, the wavelet coefficients of the noisy image g are given by ĝ = Wg.

The observed wavelet coefficients û are given by ĝ but with the missing ones set to zero:

ûi =





ĝi, i ∈ I,

0, i ∈ Ω \ I.

Here Ω is the complete index set in the wavelet domain and I ⊂ Ω is the set of available wavelet coefficients. Then an observed

image u is obtained by the inverse wavelet transform u = W T û. The aim of wavelet domain inpainting is to reconstruct the

original image f from the given coefficients û.

Durand and Froment considered to reconstruct the wavelet coefficients using total variation (TV) norm [22]. Rane et al. in

[36] considered wavelet domain inpainting in wireless networks. The method classifies the corrupted blocks of coefficients into

texture blocks and structure blocks, which are then reconstructed by using texture synthesis and wavelet domain inpainting

respectively. To fill in the corrupted coefficients in the wavelet domain in such a way that sharp edges in the image domain

are preserved, T. Chan, Shen and Zhou proposed in [17] to minimize the objective function

J (f) =
1
2

∑

i∈I

(
f̂ i − ûi

)2

+ λ ‖f‖TV , (1)

where

‖f‖TV ≡
∑

(r,s)∈Ω

(
| (Dxf)r,s |2 + | (Dyf)r,s |2

)1/2

is TV norm, Dz is the forward difference operator in the z-direction for z ∈ {x, y} and λ is a regularization parameter. This

is a hybrid method that combines coefficients fitting in the wavelet domain and regularization in the image domain. In [23], it

was shown that such a hybrid method can reduce the stair-case effect of the TV norm. Various alternative objective functions

with distinctive properties were proposed by Yau, Tai and Ng [45], Zhang, Peng and Wu [46] and Zhang and Chan [47].

A number of numerical methods have been proposed for solving TV minimization problems in the primal setting. They

include time marching scheme [41], fixed point iteration method [43], majorization-minimization approach [34] and many

others. Solving TV regularization problems using these methods faces a numerical difficulty due to the non-differentiability of

the TV norm. This difficulty can be overcome by introducing a small positive parameter ε in the TV norm that makes the TV

norm differentiable, i.e.,

‖f‖TV,ε ≡
∑

(r,s)∈Ω

(∣∣∣(Dxf)r,s

∣∣∣
2

+
∣∣∣(Dyf)r,s

∣∣∣
2

+ ε2

)1/2

.

The corresponding objective function then becomes

Jε(f) =
1
2

∑

i∈I

(
f̂ i − ûi

)2

+ λ ‖f‖TV,ε . (2)

In [17], Chan, Shen and Zhou derived the Euler-Lagrange equation and used an explicit gradient descent scheme to solve

(2) in the primal setting. In [28], numerical results showed that as ε decreases, the reconstructed edges become sharper. Since

the exact TV norm (i.e. ε = 0) can often produce better images than its smoothed version, one would prefer the original

formulation (1) to the smoothed one (2). In [14], we proposed an efficient optimization transfer algorithm to solve the original

problem (1). The method introduces an auxiliary variable ζ yielding a new objective function:

J2 (ζ,f) =
1 + τ

2τ

(∑

i∈I

(ζi − ûi)
2 + τ

∥∥∥ζ − f̂
∥∥∥

2

2

)
+ λ ‖f‖TV , (3)



3

where τ is a positive control parameter. We showed in [14] that J (f) = minζ J2(ζ,f) for any positive τ . An alternating

minimization algorithm is used to find a solution of the bivariate functional. For the auxiliary variable ζ, the minimizer has a

closed-form solution; for the original variable f , the minimization problem is a classical TV denoising problem:

STV (W T ζ) ≡ arg min
f

[
1
2

∥∥∥W T ζ − f
∥∥∥

2

2
+ γ ‖f‖TV

]
, (4)

where γ = λ
1+τ and STV (·) is known as the Moreau proximal map [21], which can be computed efficiently using dual-based

approaches [10], [11], [33], primal-dual hybrid methods [50], [51] and splitting schemes [26].

In Chambolle’s approach [11], the TV norm is reformulated using duality:

‖f‖TV = max
p∈A

fT divp, (5)

where A ⊂ R2n2
is defined by

A =
{

p =
(
(px)T , (py)T

)T ∈ R2n2
: px, py ∈ Rn2

,

(py
r,s)

2 + (px
r,s)

2 ≤ 1 for all r, s
}

.

The discrete divergence of p is a vector defined as:

(div p)r,s ≡ px
r,s − px

r−1,s + py
r,s − py

r,s−1

with px
0,s = py

r,0 = 0 for r, s = 1, . . . , n. Chambolle showed that solving (4) requires the orthogonal projection of the observed

image onto the convex constraints appearing in (5). Hence computing the solution of (4) hinges on computing a nonlinear

projection.

In [14], we applied Chambolle’s projection algorithm to solve the problem in (4). Since each iteration of algorithm in [14]

requires solving a TV denoising problem, the speed of the method in [14] largely depends on how fast we can solve TV

denoising problems. In practice, we found that it is not desirable to solve each TV denoising problem to full convergence;

a few iterations of Chambolle’s algorithm are sufficient. This approach is quite effective. However, we will show that the

computational cost can be further reduced by avoiding inner iterations.

In this paper, we apply a primal-dual approach to solve wavelet inpainting problems. By using the dual formulation of the

TV norm, the objective function J (f) in (1) can be written as

J (f) = max
p∈A

Q (f , p) ,

where

Q (f ,p) =
1
2

∑

i∈I

(
f̂ i − ûi

)2

+ λfT divp. (6)

Therefore, the minimization of (1) becomes the minimax problem

min
f

max
p∈A

Q(f ,p). (7)

We notice that the function in (6) is convex (in fact quadratic) in f and concave (in fact linear) in p. By using Proposition

2.6.1 in [6], an optimal solution f∗ of (1) can be obtained through a saddle point (f∗, p∗) of Q(f , p). Since the data fitting

term does not contain the complete index set, the minimax problem of (7) cannot be reformulated as a pure dual problem.

Thus, Chambolle’s dual approach cannot be directly applied to solve the minimax problem of (6). In this paper, we derive a

simple iterative scheme to calculate a saddle point of Q(f ,p).
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We highlight the major differences between our method and the previous primal-dual methods to solve TV problems.

First of all, none of the existing primal-dual methods [15], [50], [51] address the wavelet inpainting problem. In terms of

numerical algorithms, the method in [15] requires solving a large linear system in each of its Newton’s iteration and uses

an approximated TV norm to ensure the Newton’s iteration is well-defined. Our method does not require solving any linear

system and uses the exact (discrete) TV norm. The method in [50], [51] employs a gradient descent method to the primal and

dual variables alternatively. While our method resembles in some way the alternating direction optimization method [25], it

uses an optimization transfer method to the primal variable and a predictor-corrector scheme to the dual variable. Moreover,

in [50], [51], the conditions on the step size of the primal and dual variables under which the algorithm converges have not

been given. But here we provide a convergence analysis of our method together with a restriction to the step size.

The paper is organized as follows. In Section II, the optimality conditions of (6) are studied and the main iterative scheme

is given. We also give the convergence analysis. Numerical results are given in Section III. Finally, some concluding remarks

are given in Section IV.

II. PRIMAL-DUAL BASED ITERATIVE ALGORITHM

Numerous methods have been proposed to solve saddle point problems. They include finite envelope method, primal-dual

steepest descent algorithm, alternating direction method and so on, see [18], [25], [38], [42], [44], [48], [49]. In this section,

we develop an iterative algorithm to calculate a saddle point of (7) and show the convergence of the proposed algorithm.

Before deriving the optimality conditions of (7), we introduce some definitions. The discrete gradient operator ∇ is defined

such that (∇f)r,s = ((Dxf)r,s, (Dyf)r,s)
T . The projection of x onto the set A is defined as

PA(x) = argmin{‖z − x‖2 | z ∈ A}.

for each x ∈ R2n2
. For x = (xx

1,1, . . . , x
x
n,n,xy

1,1, . . . , x
y
n,n)T ∈ R2n2

, let αr,s = max
{√

(xx
r,s)2 + (xy

r,s)2, 1
}

. Then, the

projection is given by

PA(x) =
(

xx
1,1

α1,1
, . . . ,

xx
n,n

αn,n
,
xy

1,1

α1,1
, . . . ,

xy
n,n

αn,n

)T

.

For convenience, we assume that two variables f and f̂ can be transformed into each other by f̂ = Wf and f = W T f̂ ,

when there is no ambiguity. Let M be a diagonal matrix with Mii = 1 if i ∈ I and Mii = 0 if i ∈ Ω \ I . The objective

function in (6) can be re-written as:

Q(f , p) =
1
2

∥∥∥Mf̂ − û
∥∥∥

2

2
+ λfT divp. (8)

By using Proposition 2.6.1 in [6], a pair (f∗, p∗) is a saddle point of (8) if and only if f∗ and p∗ are optimal solutions of

the problems

f∗ = arg min
f

Q(f ,p∗)

p∗ = arg min
p∈A

Q(f∗, p),

respectively. Notice that f∗ is an optimal solution of the problem minf Q(f , p∗) if and only if

Mf̂
∗ − û + λWdivp∗ = 0. (9)

Here we use the fact that û = Mû. Since the matrix M is rank deficient, it is impossible to represent the primal variable f∗

using the dual variable p∗. The equation (9) can be modified as

f̂
∗

= K
(
τ f̂

∗
+ û− λWdivp∗

)
. (10)
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where τ > 0 is a parameter and K = (M + τI)−1. We remark that K is a diagonal matrix. By definition, for any p ∈ A,

we have

Q(f∗, p∗) ≥ Q(f∗, p).

Substituting the expression of Q(f ,p) in (8) into the above inequality, we obtain

(f∗)T (divp∗ − divp) ≥ 0.

Using the fact that div = −∇T , we obtain

(p− p∗)T∇f∗ ≥ 0, (11)

which is the same as

(p− p∗)T (p∗ − (p∗ − sλ∇f∗)) ≥ 0,

for any s > 0. Recall that v∗ ∈ A is the projection of a point v onto a convex set A if and only if

(p− v∗)T (v∗ − v) ≥ 0 (12)

for any p ∈ A [2], [6]. It follows that

p∗ = PA(p∗ − sλ∇f∗) (13)

for any s > 0 if and only if (11) holds.

The equations (10) and (13) suggest that the computation of a saddle point of (6) can be done by performing an iterative

scheme. Starting from some initial pair (f (0),p(0)), the iteration scheme has the form

p(k+ 1
2 ) = PA(p(k) − sλ∇f (k)), (14)

f (k+1) = W T K

(
τ f̂

(k)
+ û− λWdivp(k+ 1

2 )

)
, (15)

p(k+1) = PA(p(k) − sλ∇f (k+1)), (16)

The main computational complexity of the proposed iterative scheme comes from forward and backward wavelet transformation,

the gradient operation and the divergence operator. Hence, the cost of each iterative step is O(N), where N is the number

of pixels. In order to guarantee the convergence of the algorithm, the dual variable is computed twice at each iteration: the

predictor step p(k+ 1
2 ) and the corrector step p(k+1). Performing two steps to the dual variables allows for computing a lower

bound of the difference between the primal variable at two consecutive iterations. We state the following property and give

the proof in the Appendix.

Lemma 1: Let (f (k), p(k)) be the sequence generated by (14)–(16). Then

(f (k+1) − f (k))T div(p(k+1) − p(k+ 1
2 )) ≤ 8sλ

∥∥∥f (k+1) − f (k)
∥∥∥

2

2
. (17)

For the dual variable, the predictor-corrector scheme used can be understood as a primal point method [18], [37], that is,

p(k+ 1
2 ) and p(k+1) are the minimizers of Qp(f (k), p) and Qp(f (k+1),p) respectively, where

Qp(f ,p) = −Q(f , p) +
1
2s
‖p(k) − p‖22. (18)

We state this property below and give the proof in the Appendix.
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Original Image Original Image

Fig. 1. Boat and Goldhill images.

Lemma 2: Let Qp(f , p) be defined in (18). Then, we have

p(k+ 1
2 ) = arg min

p∈A
Qp(f (k), p),

p(k+1) = arg min
p∈A

Qp(f (k+1), p).

The following theorem states that the proposed iterative scheme (14)–(16) converges to an optimal primal-dual solution,

under an assumption on the step size of the primal and dual variable. The proof is given in the Appendix.

Theorem 1: The sequence (f (k), p(k)) generated by (14)–(16) converges to a saddle point (f∗, p∗) of Q(f ,p) provided

that s < τ
16λ2 .

Since minf J (f) = minf maxpQ(f ,p), we deduce that f∗ is a minimizer of J (f) , i.e., the limit point of the primal

variable is a solution of the original wavelet inpainting problem (1).

We remark that the preceding discussion is based on an orthogonal wavelet transform. This method can be generalized to

non-orthogonal wavelet transforms, for example, bi-orthogonal wavelet transforms [19], redundant transforms [31] and tight

frames [40]. In these cases, W is not orthogonal, but still has full rank, so that W T W is invertible. From f̂ = Wf , we get

f =
(
W T W

)−1

W T f̂ = W †f̂ . Therefore, the iteration for the primal variable is modified to

f (k+1) = W †K
(

τ f̂
(k)

+ û− λWdivp(k+ 1
2 )

)
.

To guarantee convergence, the parameter s and τ should satisfy s < τ/
(
16λ2‖(W †)T W †‖22

)
.

III. NUMERICAL RESULTS

In this section, we report some experimental results to illustrate the performance of the proposed approach. The experiments

were performed under Windows Vista Premium and MATLAB v7.6 (R2008a) running on a desktop machine with an Intel

Core 2 Duo CPU (E6750) at 2.67 GHz and 3 GB of memory.

The wavelet transform used is the Daubechies 7-9 bi-orthogonal wavelets with symmetric extensions at the boundaries [1],

[19]. The initial guess of f is set to the observed image in all the experiments reported below. As is usually done, the quality
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Observed Wavelet Coefficients Observed Wavelet Coefficients

Observed Image Observed Image

Restored Image Restored Image

Fig. 2. Reconstruction results (25% lost). First row: the available wavelet coefficients. The original images were corrupted by an additive white Gaussian

noise with standard deviation σ = 10. 25% of their wavelet coefficients were lost randomly. Second row: observed images in the spatial domain. Third row:

restored images using the proposed algorithm.
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Fig. 3. Evolution of SNR against CPU time for the Boat and Goldhill images.

of a restored image is assessed using the Signal-to-Noise Ratio (SNR) defined as

SNR = 10 log10

( ‖f true‖22
‖f true − f‖22

)
,

where f true and f are the original image and the restored image respectively.

We consider the original clean 256× 256 Boat and Goldhill images shown in Figure 1. They are corrupted by an additive

white Gaussian noise with standard deviation σ = 10. We compare the performance of the proposed method with the gradient

descent algorithm [17] and the fast optimization transfer algorithm (OTA) [14]. The former algorithm simply applies the

steepest descent iteration to the minimization problem (2). The latter uses an alternating minimization method to the bivariate

functional (3). OTA requires solving TV denoising problems (4), which are done by Chambolle’s projection algorithm [11].

In practice, only a few iterations of Chambolle’s algorithm are run.

In the first experiment, we consider that the noisy images lost 25% of their wavelet coefficients randomly. The observed

images in the wavelet domain and the spatial domain are shown in first row and second row of Figure 2, respectively. The

restored images by using the proposed approach are shown in the third row of Figure 2.

We investigate how the SNR is improved by the proposed method and the OTA method (with various number of inner

iterations) as time increases. The plots in Figure 3 show the evolution of SNR against CPU time for the Boat and Goldhill

images. We set the TV smoothing parameter ε = 0.1 and the number of inner iterations of the OTA to m = 1, 2, 4, 8. From

the plots, we observe that the proposed method produces the best SNRs. We remark that the computational complexity per

iteration of both the proposed method and the OTA is O(N). However, the proposed method requires fewer iterations than the

OTA to reach convergence.

In the second experiment, we consider that the noisy images lost 25% of their wavelet coefficients in 8×8 blocks randomly.

Figure 4 shows the observed images in the wavelet domain and in the spatial domain, and the restored images by the proposed

method. The plots in Figure 5 show the evolution of SNR against CPU time. Once again the proposed method produces the

best SNRs.

In order to reduce the size of an image, the JPEG 2000 standard can reduce the resolution automatically through its multi-

resolution decomposition structure. The wavelet coefficients of all high-frequency sub-bands are discarded and only that of

low-frequency sub-bands are kept. In this scheme, we obtain a low resolution image. The reconstruction of the original image

from this low resolution image is reported in the third experiment.
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Observed Wavelet Coefficients Observed Wavelet Coefficients

Observed Image Observed Image

Restored Image Restored Image

Fig. 4. Reconstruction results (25% lost). First row: the available wavelet coefficients. The original images were corrupted by an additive white Gaussian

noise with standard deviation σ = 10. 25% of their wavelet coefficients in 8 × 8 blocks were lost randomly. Second row: observed images in the spatial

domain. Third row: restored images using the proposed algorithm.
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Fig. 5. Evolution of SNR against CPU time with Boat and Goldhill images.

Fig. 6. Left: Wheel image. Middle: The observed image was corrupted by a white Gaussian noise with standard deviation σ = 15 and all high-frequency

sub-bands missing. Right: The reconstructed image.

In Figure 6, the original clean Wheel image of size 256×256 is corrupted by a white Gaussian noise with standard deviation

σ = 15. Then all its high-frequency sub-bands are discarded and only a low resolution image of size 64 × 64 is kept. The

reconstructed image is shown in the right of Figure 6. We observe that the sharp edges are reconstructed very well.

IV. CONCLUSION

We proposed an approach to total variation wavelet domain inpainting by exploiting primal-dual techniques. The original

TV norm is represented by the dual formulation. The minimization problem (1) is transformed into a minimax problem, where

a saddle point is sought. We show that each saddle point is a zero of the equations (10) and (13) and vice versa. However,

equation (13) involves an expression of a non-differentiable projection operator, which prevents us from using higher order

numerical methods that involve the use of derivatives. Instead, we show that a simple fixed point iteration without inner

iterations is very efficient. We also prove that the sequence generated by the iterative scheme converges to a saddle point of

the saddle problem. Numerical results show state-of-the-art performance and speed.

V. APPENDIX

A. Proof of Lemma 1

Proof: Let q1 = p(k) − sλ∇f (k+1) and q2 = p(k) − sλ∇f (k). According to the definition of the operators div and ∇,

we have div = −∇T . Thus we obtain
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sλ(f (k+1) − f (k))T div(p(k+1) − p(k+ 1
2 ))

=−
(
sλ∇(f (k+1) − f (k))

)T

(PA(q1)−PA(q2))

=(q1 − q2)
T (PA(q1)− PA(q2)) .

Using the classical inequality 2aT b ≤ ‖a‖22 + ‖b‖22 for any vector a and b, we have

(q1 − q2)
T (PA(q1)− PA(q2))

≤ 1
2

(‖q1 − q2‖22 + ‖PA(q1)−PA(q2)‖22
)

≤ ‖q1 − q2‖22
=

∥∥∥sλ∇(f (k+1) − f (k))
∥∥∥

2

2
.

The last inequality uses the fact that the projection operator is nonexpansive [20]. By definition, for any f , we have

‖∇f‖2 =
∑
r,s

(
(fr+1,s − fr,s)2 + (fr,s+1 − fr,s)2

)

≤ 2
∑
r,s

(
f2

r+1,s + 2f2
r,s + f2

r,s+1

)

≤ 8‖f‖2.

Hence, the result holds.

B. Proof of Lemma 2

Proof: By using Proposition 4.7.2 in [6], p(k+ 1
2 ) minimizes Qp(f (k),p) over the set A if and only if there exists a

d ∈ ∂pQp(f (k), p(k+ 1
2 )) such that

(z − p(k+ 1
2 ))T · d ≥ 0,

for all z ∈ A. It is easy to check that

d = λ∇f (k) +
1
s
(p(k+ 1

2 ) − p(k))

=
1
s

(
p(k+ 1

2 ) − (p(k) − sλ∇f (k))
)

=
1
s

(
p(k+ 1

2 ) − v
)

.

Here v = p(k) − sλ∇f (k).

From (14), we know p(k+ 1
2 ) = PA(v). Hence for any z ∈ A, we have

(z − p(k+ 1
2 ))T · d =

1
s
(z − PA(v))T (PA(v)− v) ≥ 0,

where the inequality follows from the property (12) of the projection operator. Hence the result holds for p(k+ 1
2 ). Similarly,

we can show that the result also holds for p(k+1).
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C. Preliminary Lemmas

Before the proof of Theorem 1, we start with the following lemma, which gives an upper bound of the difference between

the iterate f (k+1) and the optimal solution f∗ .

Lemma 3: Let (f∗,p∗) be a saddle point of Q(f ,p), and (f (k), p(k)) be the sequence generated by (14)–(16). Then, we

have

τ
∥∥∥f (k+1) − f∗

∥∥∥
2

2

≤ τ
∥∥∥f (k) − f∗

∥∥∥
2

2
− τ

∥∥∥f (k+1) − f (k)
∥∥∥

2

2

−2λ(f (k+1))T div(p(k+ 1
2 ) − p∗). (19)

Proof: Notice that by (15), we have

Mf̂
(k+1) − û + λWdivp(k+ 1

2 ) = τ

(
f̂

(k) − f̂
(k+1)

)
.

Hence

Q(f∗,p(k+ 1
2 ))−Q(f (k+1), p(k+ 1

2 ))

= 1

2

‚‚‚M(bf∗ − bf (k+1)
)
‚‚‚

2

2
+ τ

“bf∗ − bf (k+1)
”T “bf (k) − bf (k+1)

”

≥ τ
(
f∗ − f (k+1)

)T (
f (k) − f (k+1)

)
. (20)

Since (f∗, p∗) is a saddle point of Q(f , p), we have

Q(f∗, p(k+ 1
2 )) ≤ Q(f∗, p∗) ≤ Q(f (k+1), p∗).

Thus we obtain

Q(f (k+1), p∗)−Q(f∗, p(k+ 1
2 )) ≥ 0. (21)

Adding the inequalities (20) and (21), we have

Q(f (k+1), p∗)−Q(f (k+1), p(k+ 1
2 )) ≥ τ

(
f∗ − f (k+1)

)T (
f (k) − f (k+1)

)
. (22)

By the definition of Q(f , p), we have

Q(f (k+1),p∗)−Q(f (k+1),p(k+ 1
2 )) = λ(f (k+1))T div(p∗ − p(k+ 1

2 )). (23)

Also, we have trivially that
∥∥∥f − f (k)

∥∥∥
2

2
=

∥∥∥f − f (k+1)
∥∥∥

2

2
+

∥∥∥f (k+1) − f (k)
∥∥∥

2

2
− 2

(
f − f (k+1)

)T (
f (k) − f (k+1)

)
. (24)

Rearranging (22),(23) and (24), we obtain the result.

D. Proof of Theorem 1

Proof: Notice that Qp(f ,p) in (18) is a quadratic function and the Hessian matrix of Qp(f ,p) for the variable p is 1
sI .

Hence Qp(f ,p) is a strongly convex function with respect to the variable p, i.e.,

Qp(f , p) ≥ Qp(f , q) +
1
2s
‖p− q‖22
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for any p ∈ A and q = argminpQp(f ,p). By Lemma 2, we have

Qp(f (k+1),p) ≥ Qp(f (k+1), p(k+1)) +
1
2s

∥∥∥p− p(k+1)
∥∥∥

2

2
.

In particular, when p = p∗, we have

λ
(
f (k+1)

)T

div(p(k+1) − p∗) +
1
2s

∥∥∥p(k) − p∗
∥∥∥

2

2

≥ 1
2s
‖p(k) − p(k+1)‖22 +

1
2s

∥∥∥p(k+1) − p∗
∥∥∥

2

2
. (25)

Similarly, by Lemma 2 again, we have

Qp(f (k),p) ≥ Qp(f (k),p(k+ 1
2 )) +

1
2s

∥∥∥p− p(k+ 1
2 )

∥∥∥
2

2
.

In particular, when p = p(k+1), we have

λ
(
f (k)

)T

div(p(k+ 1
2 ) − p(k+1)) +

1
2s
‖p(k) − p(k+1)‖22

≥ 1
2s

∥∥∥p(k) − p(k+ 1
2 )

∥∥∥
2

2
+

1
2s

∥∥∥p(k+1) − p(k+ 1
2 )

∥∥∥
2

2
. (26)

Multiplying the inequalities (25) and (26) by 2 on both sides, then adding them to the inequality (19), we have

τ
∥∥∥f (k+1) − f∗

∥∥∥
2

2
+

1
s

∥∥∥p(k+1) − p∗
∥∥∥

2

2

≤τ
∥∥∥f (k) − f∗

∥∥∥
2

2
+

1
s

∥∥∥p(k) − p∗
∥∥∥

2

2
− 1

s

∥∥∥p(k) − p(k+ 1
2 )

∥∥∥
2

2

− 1
s

∥∥∥p(k+1) − p(k+ 1
2 )

∥∥∥
2

2
− τ

∥∥∥f (k+1) − f (k)
∥∥∥

2

2

+ 2λ(f (k+1) − f (k))T div(p(k+1) − p(k+ 1
2 )).

According to Lemma 1, we have

τ
∥∥∥f (k+1) − f∗

∥∥∥
2

2
+

1
s

∥∥∥p(k+1) − p∗
∥∥∥

2

2

≤τ
∥∥∥f (k) − f∗

∥∥∥
2

2
+

1
s

∥∥∥p(k) − p∗
∥∥∥

2

2
− 1

s

∥∥∥p(k) − p(k+ 1
2 )

∥∥∥
2

2

− 1

s

‚‚‚p(k+1) − p(k+ 1
2 )
‚‚‚

2

2
+
`
16sλ2 − τ

´ ‚‚‚f (k+1) − f (k)
‚‚‚

2

2
.

When s < τ
16λ2 , we have

τ
∥∥∥f (k+1) − f∗

∥∥∥
2

2
+

1
s

∥∥∥p(k+1) − p∗
∥∥∥

2

2

≤ τ
∥∥∥f (k) − f∗

∥∥∥
2

2
+

1
s

∥∥∥p(k) − p∗
∥∥∥

2

2
. (27)

Thus the sequence (f (k), p(k)) is bounded and hence contains a subsequence (f (ki), p(ki)) converging to some limit point

(f∞, p∞).

It is easy to check that (f∞, p∞) satisfies the equations (10) and (13), hence (f∞,p∞) is a saddle point of Q(f , p). Let

(f∗,p∗) = (f∞,p∞). Since the subsequence (f (ki),p(ki)) converges, for any ε > 0, there exists a constant M such that

τ
∥∥∥f (ki) − f∞

∥∥∥
2

2
+

1
s

∥∥∥p(ki) − p∞
∥∥∥

2

2
< ε,

for any i > M . According to (27), for any given ε > 0, there is

τ
∥∥∥f (k) − f∞

∥∥∥
2

2
+

1
s

∥∥∥p(k) − p∞
∥∥∥

2

2
< ε

for any k > kM . Hence the result holds.
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